
A STUDY ON FOUR-FERMIONIC  

TENSORIAL INTERACTIONS  

 

M.Sc. Thesis 
 

 

 

 

 

By 

UTTIYA SARKAR 
 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

DISCIPLINE OF PHYSICS 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
JUNE 2015



A STUDY ON FOUR-FERMIONIC  

TENSORIAL INTERACTIONS  

 
 
 

A THESIS 

 

Submitted in partial fulfillment of the  

requirements for the award of the degree 

of 

Master of Science 
 

 

 

by 

Uttiya Sarkar 
 

 

 

 

 

 

 

 
 

 

 

DISCIPLINE OF PHYSICS 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 
JUNE 2015



 

INDIAN INSTITUTE OF TECHNOLOGY INDORE 

CANDIDATE’S DECLARATION 

 I hereby certify that the work which is being presented in the thesis entitled A STUDY ON FOUR-

FERMIONIC TENSORIAL INTERACTIONS in the partial fulfillment of the requirements for the award 

of the degree of MASTER OF SCIENCE and submitted in the DISCIPLINE OF PHYSICS, Indian 

Institute of Technology Indore, is an authentic record of my own work carried out during the time period 

from July 2014 to June 2015 under the supervision of Dr. Manavendra N. Mahato, Associate Professor,  

Department of Physics, IIT Indore.    

 The matter presented in this thesis has not been submitted by me for the award of any other degree of 

this or any other institute. 

 

                                                                            Signature of the student with date 

                                                                                                                                (UTTIYA SARKAR) 

---------------------------------------------------------------------------------------------------------------------------- 

 This is to certify that the above statement made by the candidate is correct to the best of my 

knowledge. 

 

 

  Signature of the Supervisor of  

M.Sc. thesis (with date) 

                                                                                                 (Dr. MANAVENDRA N. MAHATO) 

-------------------------------------------------------------------------------------------------------------------------------- 

 UTTIYA SARKAR has successfully given his/her M.Sc. Oral Examination held on JUNE 30 2015.                                       

 

 

Signature(s) of Supervisor(s) of MSc thesis                  Convener, DPGC    

Date:                   Date:                                                

 

 

Signature of PSPC Member #1      Signature of PSPC Member #2            

Date:          Date:       

-----------------------------------------------------------------------------------------------------------------------------------                                     

http://iiti.ac.in/people/~manav/


ACKNOWLEDGEMENTS 

 

Foremost, I would like to express my sincere gratitude to my advisor Prof. Manavendra N. Mahato for his 

continuous support and guidance of my M.Sc. study and research and his patience, motivation, enthusiasm, 

and immense depth of knowledge. His guidance helped me in all the time of research and writing of this 

thesis as well as all other aspects of life. I could not have imagined having a better advisor and mentor for 

my M.Sc project work. 

I thank other faculty members of Physics department, Dr. Ankhi Roy, Dr. Sudeshna Chattopadhyay and Dr. 

Rajesh Kumar; without their help and support it would not have been possible for me to fulfill my Master 

studies. I thank my DPGC members, Dr. Antony Vijesh and Dr. Subhendu Rakshit for their continuous 

support to the project. I would also like to thank Dr. Swadesh K. Sahoo for his helpful contribution to the 

project. 

I thank my classmates, Anupriya Aggarwal, Md. Balal, Rupnayan Borah, Rohit Gupta and Ashish Sehrawat, 

my seniors in Physics department Najimuddin Khan, Ajay Pratap Singh, Trayambak Bhattacharyya, 

Siddharth Karmakar, Sudeep ghosh and Sudip Naskar for their help and motivation without which this would 

not have been possible. I thank my rommies Sourabh Solanki and Jigar Chowdhary, Ravi Kumar and 

Sahidul. You were the best buddies I have. 

Nevertheless, I thank my mother Shrimati Krishna Halder, my father Shri Subimal Sarkar, my sister Shrimati 

Shreya Sarkar and my brother-in-Law Shri Goutam Dey for their immense help and support throughout my 

carrier. 

 

Indore, India            Uttiya Sarkar 

June 22nd, 2015 

 

 



 

 

 

 

 

 

 

 

Dedicated to: 

 

All those trees,  

who have unknowingly contributed by providing papers 

 

 



A Study on Four-Fermionic

Tensorial Interactions

A thesis report

submitted in partial fulfilment of the

requirement for the degree of

Master of Science in Physics

submitted by

Uttiya Sarkar

under the guidance of

Dr. Manavendra Mahato

Discipline of Physics

Indian Institute of Technology

Indore

June 2015



Abstract

The study of four-fermionic interactions is a field in particle physics which drew a

lot of attention of the physicists for the past few decades. But due to the limitations

of these theories, the models that are based on four-fermionic theories are generally

called toy models. The existing toy models in late twentieth century like Nambu-

Jona-Lasinio model and the famous Gross-Neveu model gave some start up to these

kind of interactions. Although there were many set backs of the 1st model, but the

2nd one was well founded and gave nice results and conclusions. However the Gross-

Neveu model was shown to be integrable only in two dimensions and the theory was

essentially massless, it gave some enthusiasm to the researchers to formulate similar

theories.

After the success of Gross-Neveu, people started looking at it seriously. In literature,

it is already seen that, theories involving four-fermion interactions give condensations

of the composite fields and this type of field theories or models serve the purpose

of explaining color superconductivity in quantum chromodynamics, phase condensa-

tions, formation of cooper pairs and chiral condensations. So, by an intelligent guess,

such models can give such interesting results.

In our work, the construction of a four-fermion quadratic interacting field is done by

promoting the Gross-Neveu model into an interacting tensor field. The chiral symme-

try of the theory is verified. The model is rewritten in terms of auxiliary fields as it

simplifies the calculations. The possible condensate is guessed and an auxiliary field

proportional to it is introduced. In order to study it, the guessing of auxiliary field
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is done. Both symmetric and anti-symmetric forms of the auxiliary field are tested

for the validity under condensation conditions. The symmetric form of the auxiliary

field gave known result of scalar condensation of the field which is like Gross-Neveu

condensate in higher dimensions. The anti-symmetric form is also tested. To reduce

the number of free parameters in the chosen form of the auxiliary field, self-dual con-

dition is employed. This is done to make the calculations simpler and to formulate

a simpler model. From anti-symmetric case, under the self-duality condition, it is

shown that if the condensate occurs then it will be imaginary. To check the conden-

sation formation, generally search of other vacua states is performed and study of

their stability is required.
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Chapter 1

Introduction

The aim of the project is to construct a four-fermionic interacting field theory. The

existing models like Gross-Neveu model(GN Model),(1.1) is perhaps the simplest

interacting, fermionic field theory. Although this model is integrable only in 1+1

dimensions, but this is the first ever integrable model formulated forty years ago.

In this model N massless flavors of Dirac fermions interact via a scalar-scalar four-

fermion interaction in 1+1 dimensions. The Lagrangian is given in the following

form

LGN =
N∑
i=1

ψ̄ii∂/ψi +
g2

2

(
N∑
i=1

ψ̄iψi

)2

. (1.1)

The large N limit of this model is physically suggestive of higher dimensions.

After this formulation, a number of generalisations of the GN model have been con-

sidered, adding a bare mass term or modifying the interaction. The best known such

generalization is presumably the chiral GN model, the 2d version of the NambuJona-

Lasinio (NJL) model which is even older than the GN model,

LNJL =
N∑
i=1

ψ̄(i)i∂/ψ(i) +
g2

2

( N∑
i=1

ψ̄(i)ψ(i)

)2

+

(
N∑
i=1

ψ̄(i)iγ5ψ
(i)

)2
 . (1.2)

Here the discrete Z2 chiral symmetry of (1.1) gets promoted to a continuous U(1) chi-

ral symmetry. Other four-fermion interactions which can be found in the literature

interpolate between (1.1) and (1.2) by introducing two different coupling constants
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,or have extra terms which give rise to fermion-fermion pairing rather than fermion-

antifermion pairing. These models are of particular interest because such models can

give explanation to phase transitions or condensation processes, such as phenomenon

of color superconductivity in quantum chromodynamics,or cooper pair formations.

Accordingly, the emphasis of these works has typically been on the patterns of sym-

metry breaking and the phase condensations.

For massive GN models, no important conclusion is achieved so far, or even with

some variation of interaction terms, not too many models were constructed. The

integrability is undoubtedly crucial in these kind of models. Since it is quite excep-

tional to be able to solve both equilibrium thermodynamics and the time evolution

of an interacting quantum field theory exactly, the question arises whether there are

other physically relevant integrable four-fermion models. This is the main topic of

the thesis.

This is not an easy question; therefore we shall proceed rather heuristically. The

main ingredients have proven helpful in our search for integrability; i.e. related to

symmetries, since any integrable model can posses infinite number of symmetries. So

any model holding symmetry conditions will be more likely to be integrable. Con-

sidering symmetry issues, if one wishes to generalize an integrable model by making

it more complicated without losing integrability, we find it plausible that it helps if

the symmetry of the starting model gets enhanced in this process. Thus for instance,

adding a mass term to the GN Lagrangian (1.1) breaks the discrete chiral symmetry

and renders the model non-integrable. By contrast, switching on an interaction in the

tensor channel as in the scalar channel still holds the chiral symmetry of the model,

but we are not sure whether it maintains integrability. Notice also that the known

integrable models have only one coupling constant. It is hard to imagine that inte-

grability can be kept if one adds more interactions with arbitrary coupling constants.

So keeping the following discussion on mind, we include a new kind of interaction

that involves four-fermionic tensor interactions to the GN model. We expect possible
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condensation from the model which in turn can highlight some physical phenomena.

In this thesis, two of the most celebrated models ”Nambu-Jona-Lasinio” and ”Gross-

Neveu” model are discussed with special emphasis on Gross-Neveu model. This chap-

ter is devoted to the discussion of the model by Nambu and Jona-Lasinio. It is very

briefly discussed and the construction of the form of the Lagrangian is shown. In

the next section, borrowing the idea of Nambu-Jona-Lasinio, a model constructed by

Gross and Neveu is discussed in detail by following their original paper. The construc-

tion of the model, loop calculations from that model for large N limit, spontaneous

symmetry breaking of the theory giving rise to fermionic mass is shown explicitly.

After that dynamical symmetry breaking is also discussed.

Since our work is based on Gross-Neveu model so the continuation of calculation for

the tensor interacting field is done by following the GN model.

In chapter 2, the construction of the model including the following calculations are

shown. The proposed model is discussed. The chiral symmetry of the model is shown.

Then the Lagrangian is rewritten in terms of auxiliary fields. Now, we expect con-

densation if the vacuum expectation value of the auxiliary field is non vanishing. So

we try to guess the form of the auxiliary field by choosing it to be both symmetric

and anti-symmetric form. We see that the symmetric form of the auxiliary field gives

back the known scalar condensation of Gross-Neveu type. Hence the condensation

from it does not give any new result. Whereas from the anti-symmetric form of the

auxiliary field, under some necessary conditions,we find no acceptable solutions of

fermionic field. However time does not permit to evaluate loop level diagrams of the

theory, performing functional methods to evaluate the condensation and checking the

stability and ground state energy of the auxiliary field.

In chapter 3, results are discussed. Finally, in chapter 4, some conclusive remarks are

made and future work that can be done in this topic is discussed.
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1.1 Nambu-Jona-Lasinio Model

In 1961, Nambu and Jona-Lasinio together proposed a model by which tried to in-

vestigate the cause of nucleon mass generation. That time it was suggested that the

nucleon mass arises due to the self-energy of primary fermionic field. This idea was

put into a mathematical formulation using Hartree-Fock approximation. In their work

they have considered a simplified model of quadratic four-fermion interaction. This

allows a γ5 gauge group and an interesting consequence of this symmetry is that there

arises automatically pseudoscalar zero-mass bound states of nucleon-antinucleon pair

which may be regarded as an idealized pion. The theory contains two parameters

which can be explicitly related to observed nucleon mass and the pion-nucleon cou-

pling constant. However a detailed treatment of this NJL model will not be discussed

here.

A dynamical theory of elementary particles in which nucleons and mesons are derived

from a spinor field with interaction term of order 4 is developed (see references [1],[2]).

In basic physical ideas, it has thus the characteristic features of a compound-particle

model, but from most of the existing theories, dynamical treatment of the interaction

makes up an essential part of the theory.

The scheme is motivated by the observation of an interesting analogy between the

properties of Dirac particles that appear in the theory of superconductivity, which was

originated with great success by Bardeen, Cooper, and Schrieffer and subsequently

given an elegant mathematical formulation by Bogoliubov. The characteristic fea-

ture of the BCS theory is that it produces an energy gap between the ground state

and the excited states of a superconductor. Superconductivity is something that has

been confirmed experimentally at very low temperatures. The gap is caused due to

the fact that the attractive phonon-mediated interaction between electrons produces

correlated pairs of electrons known as Cooper pairs with opposite momenta and spin

near the Fermi surface, and it takes a finite amount of energy to create it.

Here,while not going into details we will only discuss about the Lagrangian con-
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structed by Nambu and Jona-Lasinio which will be helpful in understanding the

Gross-Neveu Model.

1.1.1 The Lagrangian

The possible nature of the primary interaction between fermions can be interaction

mediated by some fundamental Bose field or due to an inherent non-linearity in the

fermion field. According to this postulate, the interactions essentially include chirality

conservation in addition to the conservation of nucleon number. The chirality(χ)here

is defined as the eigenvalue of γ5, or in terms of quantized fields,

χ =

∫
ψ̄γ0γ5ψd

3x (1.3)

And the nucleon number is given by

N =

∫
ψ̄γ0ψd

3x (1.4)

So, we can also write the generators of the γ5 and ordinary gauge group transformation

as

ψ → eiαγ5ψ, ψ̄ → ψ̄eiαγ5 (1.5)

ψ → eiαψ, ψ̄ → ψ̄e−iα (1.6)

Now the dynamics of the theory would require that the interaction be attractive

between particle and antiparticle in order to make bound-state formation possible.

Under the chiral transformation given by (1.5), various tensors transform as follows:

V ector : iψ̄γµψ → iψ̄γµψ

AxialV ector : iψ̄γµγ5ψ → iψ̄γµγ5ψ

Scalar : ψ̄ψ → ψ̄ψ cos 2α + iψ̄γ5ψ sin 2α

Pseudoscalar : iψ̄γ5ψ → iψ̄γ5ψ cos 2α− ψ̄ψ sin 2α

Tensor : ψ̄σµνψ → ψ̄σµνψ cos 2α + iψ̄γ5σµνψ sin 2α

5



It can be seen that a vector or pseudovector Bose field coupled to the fermion field

satisfies the invariance. The vector would satisfy the dynamical requirement since, as

in the electromagnetic interaction, the forces would be attractive between opposite

nucleon charges. The pseudovector field does not meet the requirement as can be

seen by studying the self-consistent mass equation.

The vector field seems to be of particular interest since it can be associated with the

nucleon gauge group.

Here the model is dealt with strong interactions, such a field would have to have a

finite observed mass in a realistic theory. But in order to hold the invariances of the

model it is difficult to add a mass term in the model. Also if the bare mass of both

spinor and vector field were zero, the theory would not contain any parameter with

the dimensions of mass. The quadratic fermion interaction seems to offer another

possibility.

The following Lagrangian density will be assumed with ~ = 1 and c=1

LNJL = ψ̄i∂/ψ +
g2

2
[(ψ̄ψ)2 − (ψ̄γ5ψ)2] (1.7)

The coupling constant g2 is positive, and of dimension to the (mass)−2.

The above model gives us a good starting point of such toy models. We can em-

phasize more and focus ourselves in the model proposed by Gross and Neveu which

is considered to be a simpler toy model in 1+1 dimensions. In the next section an

overview of the model is discussed step by step.

1.2 Gross-Neveu Model

1.2.1 Gross-Neveu Model

In 1974, David. Gross and Andre Neveu published a paper based on a two-dimensional

massless fermion field theories with quadratic interactions. We will show that these

models are asymptotically free. The models are considered in large N limit, where N is
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the number of components of the fermion field. In such an expansion, one can explic-

itly sum to all orders in the coupling constants. The dynamical symmetry breaking

occurs in this model for any value of the coupling constant.

The resulting theory produces a fermion mass dynamically, which is explicitly shown

in here. The search for symmetry breaking is performed using functional methods,

and the theory develops a non-vanishing vacuum expectation value. The ”potential”

of fields is discussed and constructed. General results are derived for arbitrary theo-

ries in which all masses are generated dynamically. The model is extended to include

gauge fields. It is then found that the gauge vector mesons acquire a mass through a

dynamical Higgs mechanism.

The usual method of generating spontaneous symmetry breaking in quantum field

theory is to introduce an elementary scalar field which develops a non-vanishing vac-

uum expectation value. However, this mechanism is, of course, not necessary in every

case. In more general way of spontaneous symmetry breaking, such as the Goldstone

theorem, it is independent of whether the Goldstone particle is associated with an

elementary or composite field. In the model of Nambu and Jona-Lasinio, the origin

of the spontaneous chiral symmetry breaking is discussed in detail. The specific field

theoretic model was analysed, which indicated dynamical symmetry breaking. But

unfortunately this model, involving quadratic fermion interaction in four dimensions,

was un-renormalizable. Thus it was necessary to introduce a cut-off and the validity

of the approximations made to solve the model was very unclear.

Here, the two-dimensional model field theories are examined, which involve fermions

with quartic interactions. These models are essentially equivalent to the Nambu-

Jona-Lasinio models, but it is in two dimensions, so they are renormalisable.

The reason for choosing such kind of Lagrangian is that these are physical asymptoti-

cally free theories. In order to perform calculations of the N-component fermion fields

the large N limit condition is imposed. In such an expansion one can sum, in each

order of 1/N, to all orders in the coupling constant. This is a good approximation,
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as the lowest order provides us a very non-trivial theory. In four-dimensional gauge

theories, on the other hand, no small expansion parameter appears to exist in the

small momentum region. We find that the increasing attractive interaction at long

distances invariably produces bound states and dynamical symmetry breaking. The

resulting theories produce a fermion mass, a scalar bound state, and if the broken

symmetry is continuous, the bound-state is a Goldstone boson. All dimensionless pa-

rameters are calculable, and the theory ends up involving no adjustable parameters.

This is in agreement with asymptotically free theories. The model is also extended

to include gauge fields in the Lagrangian. Then it is shown that the gauge mesons

acquire a mass through a dynamical Higgs mechanism, as one might expect.

Now, let us proceed in discussing the paper which will be extremely helpful in devel-

oping our own Lagrangian.

1.2.2 The Model

The models that are considered in this paper will contain N-component fermion fields

with quartic interactions in two space-time dimensions. These models are without

the exception of non-Abelian gauge theories in four dimensions, the only physically

sensible asymptotically free theories. Now, if we let N to be very large, these theories

can be solved in an expansion in powers of 1/N . The spontaneous symmetry breaking

is also studied from this model. The model is given in the form of the Lagrangian

density

LGN = ψ̄i∂/ψ +
g2

2
(ψ̄ψ)2 (1.8)

where ψ is the N-component, massless fermion field. This Lagrangian is invariant

under the discrete γ5 transformation ψ → γ5ψ which ensures the masslessness of the

fermion to any order of perturbation theory. It can be easily noted that if mass term

is added in the Lagrangian, it will not remain to be invariant under γ5 transformation.
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In the large-N limit, as we shall see, g will vanish like 1/N so that we define

λ = g2N

which is the t-Hooft condition. For large N, λ must be finite, so g will be very small.

This theory is renormalisable in two dimensions and will require only wave-function

and coupling-constant renormalisation. It is easy to verify that no new interactions,

such as (ψ̄γµψ)(ψ̄γµψ) are generated, at least to order g8 = λ4(1/N)4. Thus one can

restrict himself in calculating only one loop calculations of this theory. The resulting

theory is then characterized by a single dimensionless parameter, g2.

Now, let us concentrate on a Yukawa interaction, in which the mass of the scalar and

its coupling become infinite in such a way so as to reproduce in the limit our local

quadratic coupling. Consider the Yukawa Lagrangian

L′ = ψ̄i∂/ψ +
1

2
∂µφ∂µφ−

1

2
m2φ2 + gmψ̄ψφ (1.9)

Here g is a positive constant. Now if m becomes infinite, the above Yukawa interaction

becomes equivalent to the original interaction of Eq.(1.8), the combination of vertices

(igm)2 and scalar propagator i/(P 2 −m2) yielding for infinite m the local coupling

+ig2. Since the resulting theory is asymptotically free, it is expected that the the

theory will survive in the large-m limit. The Lagrangian L = −g2
(
ψ̄ψ
)2

corresponds

to the local limit of a Yukawa theory with imaginary coupling.

The m→∞ limit can be taken in L by rescaling the scalar field

σ = mφ (1.10)

and letting m→∞ The resulting Lagrangian

Lσ = ψ̄(i∂/)ψ − 1

2
σ2 − gψ̄ψσ (1.11)

Now this gives the exact fermion Green’s functions as does LGN This can also be

seen by examining the generating functional for these Green’s functions in the path-
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integral formulation:

Z(η, η̄) = (constant)

∫
dψdψ̄exp

[
i

(
ψ̄∂/ψ +

g2

2
(ψ̄ψ)2 + η̄ψ + ψ̄η

)]
= (constant)

∫
dψdψ̄dσexp

[
i

(
ψ̄∂/ψ − 1

2
(σ)2 − gψ̄ψ + η̄ψ + ψ̄η

)]
(1.12)

and performing the σ integration in the latter expression. Now for simplicity, one can

always consider the theory generated by Lσ since both of them has the same form of

Green’s function and we will be always involved in calculating some amplitude related

to Green’s function. So any one of the theory will give the same result. The discrete

symmetry which prevents g from acquiring a mass in perturbation theory is

ψ → γ5ψ

σ → σ (1.13)

We can also do the same treatment and rewrite the NJL model Lagrangian LNJL in

terms of Lσ

LNJL = ψ̄i∂/ψ +
g2

2
[(ψ̄ψ)2 − (ψ̄γ5ψ)2] (1.14)

in the form

Lσ = ψ̄i∂/ψ − 1

2

(
σ2 + π2

)
+ g

(
σψ̄ψ + iπ(ψ̄γ5ψ)

)
(1.15)

where σ and π are the auxiliary fields.

We have already discussed that this model is chirally invariant. We will use this Lσ

to show the dynamical symmetry breaking and generation of mass of the gauge field.

1.2.3 Loop Calculation

Now the model is solved in the large-N limit. The dominant graphs in this limit

will be those containing the maximal number of fermion loops, since each of these

yields a factor of g2N . Keeping λ fixed, as N → ∞. It is easy to see that in the σ
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formulation and from equation (1.14), the only radiative corrections of order 1 to the

4-point function are those that are given by σ propagator.

Figure 1.1: self-energy of σ

The lowest-order of self-energy graph (1.1) is simply

Π(P ) = −(g)2N

∫
d2k

(2π)2

Tr[k/(k/− P/)]
k2(k − P )2

Π(P 2) =
+iλ

2π

∫ 1

0

dα

[
ln

(
−λ2

α(1− α)P 2

)
− 2

]
(1.16)

where λ is an ultraviolet cut-off. We have used the Feynman formula in Eq.(1.16) to

perform the integration

1

ab
=

∫ 1

0

dα

[aα + b(1− α)]2
(1.17)

The renormalisation requires that the propagator,

D(P ) =
i

[1 + iπ(P )]

satisfy DR(P 2) = −i at P 2 = −µ2.

This means that we must subtract Π(P 2) at P 2 = −µ2 :

ΠR(P 2, µ2) = − iλ
2π

ln(−P 2/µ2)

DR(P 2, µ2) =
−i

1 + (λ/2π) ln(−P 2/µ2)
. (1.18)

All other radiative corrections are of order 1/N. Thus, the 4-point function is given

by the graphs in Fig.1.2(which are equivalent to the graphs of Fig.1.3) and is equal

to
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Figure 1.2: 4-point Fermion interaction graph

G(P1P2;P3P4) = ig2

[
1

1 + (λ/2π) ln(s/µ2)
+

1

1 + (λ/2π) ln(u/µ2)

]
, (1.19)

where s = −(P3 − P1)2, u = −(P4 − P1)2 are the Mandelstam variables such that

positive s and u mean space-like energy squared and momentum transfer squared.

Figure 1.3: Leading order graphs which are equivalent to Fig.1.2

To evaluate the renormalisation- group parameters we note that to order 1/N there is

no wave-function renormalisation of the ψ field, nor is the vertex ψ̄ψσ renormalised.

Therefore the renormalised coupling gR is related to the bare coupling g0 by gR =

g0

√
Zσ, where Z is the wave-function renormalisation constant of the σ field. Thus

the β function and the anomalous dimension of σ(γσ) are related by

β(g) = µ
∂

∂µ
gR

= gµ
∂

∂µ

√
Zσ

= gγσ(g) (1.20)

Now the σ propagator must satisfy the renormalisation group equation given[
µ
∂

∂µ
+ β(g)

∂

∂g
+ 2γσ(g)

]
DR(P, µ) = 0 (1.21)
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Now, putting Equation (118) back in this equation and solving for β(g)it is deduced

that

β(g) =
λg

2π

γσ(g) =
λ

2π
(1.22)

The negative sign of β(g) means that the theory is asymptotically free. The effective

coupling constant satisfies

d ¯g(g, t)

dt
= β(ḡ)

ḡ(g, 0) = g. (1.23)

Thus it is given by

¯g2(g, t) =
g

1 + (λ/π)t
(1.24)

The effective coupling, ḡ2, vanishes for large momenta (t → ∞), logarithmically (as

1/t). This is common to all asymptotically free theories. If we see carefully that

Equation.(1.24) holds for all t. Thus the small-momentum behaviour of the theory

can also be explored. Now ḡ2 develops a pole at

t =
π

λ

P 2 = −µ2exp(−2π/λ) (1.25)

This pole is present for any value of λ , approaching zero when λ→ 0.

The existence of this tachyon pole could mean one of two things. First, the theory

could be simply nonsense at least in the leading 1/N approximation. Another possi-

bility is that we could simply be constructing the theory about the ”wrong” vacuum

state. When we separate the fermion-antifermion pairs by a large space-like separa-

tion, the Green’s function does not fall off exponentially. This can be explained if the

vacuum about which we have been perturbing, the normal vacuum which is invariant

under ψ → γ5ψ, σ → −σ is not the ground state. In the following we shall show that
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this indeed is the case and the pole in ḡ2 is simply the signal for spontaneous sym-

metry breaking. The symmetry breaking will generate a fermion mass and prevent

us from concluding from the pole at some small space-like momenta that the fermion

amplitudes develop tachyon poles.

1.2.4 Spontaneous Symmetry Breaking

In the previous section it is shown that in the large-N limit the model necessarily

develops tachyon poles for any value of the coupling. For the theory to be consistent

in this approximation, the normal symmetric vacuum is not in fact the ground state.

So we may have perturbed the model about wrong vacuum. If this is the case, we

would expect that the true ground state ψ̄ψ has a non-vanishing vacuum expectation

value. This is shown here by looking at the ”potential” of ψ̄ψ. Let us first consider

our theories with the addition of a constant external source coupled to ψ̄ . In this

case, an external source is simply a mass term. Thus the Lagrangian becomes

L = ψ̄(i∂/−M)ψ +
g2

2
(ψ̄ψ)2 (1.26)

Or

Lσ = ψ̄(i∂/−M)ψ − 1

2
σ2 − gψ̄ψσ (1.27)

By just following the previous treatment, the 4-point fermion Green’s function can

be constructed which is now given by

G(P1P2;P3P4) = ig2

[
1

1 + (λ/2π)[B(s,M2)−B(µ2,M2)]

+
1

1 + (λ/2π)[B(u,M2)−B(µ2,M2)]

]
(1.28)

where B is essentially the massive fermion loop of Fig. 1.4

B(s,M2) =

(
s+ 4M2

s

)1/2

ln

(
(s+ 4M2)1/2 +

√
s

(s+ 4M2)1/2 −
√
s

)
(1.29)

From this equation we can see that B(s,M2) is monotonically increasing function of

s or the momentum whose minimum value is at B(0,M2) = 2. Therefore, as long as
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Figure 1.4: self-energy of σ for massive fermion loop

M > 0, we do not expect any pole for space-like momentum (s > 0).

So, for no poles occurring under these conditions, the Green’s function must always

hold the inequality

λ

2π
<

1

B(µ2,M2)−B(0,M2)
(1.30)

as follows from equation (1.28). But if M is decreased, for fixed λ and µ, a bound-state

pole is developed whose mass decreases as M decreases. At the point when inequality

in Equation.(1.30) is just violated the bound-state mass is zero.

Just like the previous case, using Eq.(1.29) and Equation.(1.30) M2 is given by

M2 ≈ µ2exp(−2π/λ) (1.31)

for small λ .

From the above relation, it seems that zero-mass fermion-antifermion bound state

is formed when the mass is reduced below this critical value. When the mass is

decreased even further, the bound state would appear to become a tachyon which

is obtained before. However, when its mass vanishes, the vacuum can be unstable

tachyon. It is a consequence of constructing the amplitude by perturbing about an

unstable vacuum.

The Lσ Lagrangian is used to investigate the ”potential” as a function of the classical

g field, since σ is essentially equal to gψ̄ψ. However, this potential is not exactly

equal to the potential of the composite operator ψ̄ψ of the GN model. But they are

closely related.

The ground state must occur at a minimum of this potential, let us consider the
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following fact σc =< 0|σ|0 >=< 0|gψ̄ψ|0 >. Now the vacuum-to-vacuum amplitude

in the presence of an external source coupled to σ is given by

exp(iW (J)) ≡
∫
dψdψ̄dσexp

(
i
[
Lσ(σ, ψ̄, ψ) + Jσ

])
(1.32)

W(J) is the generator of the connected Green’s functions of the σ field. σc is related

to W(J) by

σc(x) =
δW

δJ(x)

= < 0|σ(x)|0 >J (1.33)

Doing Legendre transformation of W(J),

Γ(σc) =

∫
d4xσc(x)J(x)−W (J) (1.34)

Again from the above equation

Γ =

∫
d4xV (σc) (1.35)

So, for the equilibrium point where energy will be minimum, the following conditions

are satisfied

∂V

∂σc
= 0

∂2V

∂2σc
> 0. (1.36)

Spontaneous symmetry breaking will occur if this two conditions boils down to give

a non-zero expectation value of σ. Γ is the generating functional of the one-particle

irreducible (1PI) n-point functions of the σ field. So V(σ) is given by

V (σc) =
∑ 1

n!
(σc)

nΓ(0, ...., 0) (1.37)

where Γ(0, ...., 0) is the sum of all 1PI Green’s functions with n external σ lines

carrying zero four -momentum.

So the tree level diagram will contribute to this potential as

V (σc) =
σc

2

2
(1.38)
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For the tree level approximation, the minimum expectation value of the potential is

at σc =< 0|σ|0 >.

So, essentially there are other contributions to V. In fact the leading terms in V

for large N are given by the tree graphs plus all one-loop graphs given in Fig. 1.5.

Summing over all the one-loop graphs with an ultraviolet cut-off Λ, the potential is

Figure 1.5: Feynman Graphs contributes to V(σ)

given by

V =
σc

2

2
−Ni

∑∫ Λ d2k

(2π)2

1

2n

(g2σc
2)n

k2

=
σc

2

2
− λ

4π
σc

2[ln Λ2 + 1− ln(g2σc
2)] (1.39)

For the above calculation (see reference [13]). This potential V must be renormalised

now, which can be performed by using Coleman and Weinberg treatment (see refer-

ence [4]), by subtracting (1.39) at some value,σ0, of the classical field. If we define

(∂2V/∂σ2)|σ=0 = 1 it is equivalent to subtracting the σ propagator at zero momen-

tum. That in turn will give inferred divergences at zero momentum, or zero fields.

Therefore the renormalisation is done by following Coleman and Weinberg method

and by demanding that

(∂2V/∂σ2)|σ=σ0 = 1 (1.40)

We then have

V (σc, σ0, g) =
σc

2

2
+

λ

4π
σc

2

[
ln

(
σc
σ0

)2

− 3

]
(1.41)

The potential V obeys the renormalisation-group equation[
σ0

∂

∂σ0

+ β̄(g)
∂

∂g
− γ̄(g)σc

∂

∂σc

]
V (σc, σ0, g) = 0 (1.42)
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Since this renormalisation procedure followed in this process is different from the

previous method; β(g) and γ(g) will be different from the previous values. Therefore,

β(g) = gγ̄(g)

= − λg/2π

1 + (λ/2π)
(1.43)

It is now seen that the symmetric point, σ =0, is not a minimum of the potential.

The true potential is given by Fig. 1.6. The one-loop corrections give rise to a

Figure 1.6: Form of V(σ) to the leading order in 1/N)

negative term which dominates, for small σc. For large σc , the potential is positive

and increasing, and thus the theory is stable. The minimum of the potential occurs

at σc = σM where

V ′(σM , σ0, g) =
∂V

∂σ
= 0

σM

[
1 +

λ

2π

[
ln

(
σM
σ0

)2

− 2

]]
= 0 (1.44)

and

V ′′(σM , σ0, g) = 1 +
λ

2π
ln

(
σM
σ0

)2

=
λ

π
(1.45)

i.e., when

|σM | = σ0exp
(

1− π

λ

)
(1.46)
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Now it can clearly be seen that why a tachyon pole was found previously, because we

were perturbing about a local minima of the potential. In the true ground state σ has

a non-vanishing vacuum expectation value. By shifting the σ field to its true ground

state and then carrying out perturbation theory about the asymmetric vacuum gives

us right result. Essentially by choosing |σM | = σ0exp(1− π
λ
), the discrete symmetry

σ → −σ and chiral symmetry are broken and the fermion acquires a mass

MF = gσ0exp
(

1− π

λ

)
(1.47)

1.2.5 Dynamical Higgs Mechanism

In this section, we will show that if a Lagrangian involving gauge mesons, is chosen in

such a way, that it is invariant under a specific choice of gauge group, the dynamical

symmetry breaking gives the gauge meson a mass. The chiral symmetry will be true

for this choice of Lagrangian. The gauge invariant Lagrangian with the addition of

gauge fields is given by

L = ψ̄ (i∂/+ eB/γ5)ψ +
g2

2

[(
ψ̄ψ
)2 −

(
ψ̄γ5ψ

)2
]

+
1

4
(∂µBν − ∂νBµ)2 (1.48)

Here, B is our gauge field. One can rewrite this Lagrangian in terms of σ and π fields,

where π is an auxiliary field. By writing it in terms of σ and π fields, the dynamical

mass generation of B-field can be shown. The equivalent Lagrangian of Eq.(1.48) is

thus given by

Lσ = ψ̄(i∂/+ eB/γ5)ψ +
1

4
(∂µBν − ∂νBµ)2 − 1

2
(σ2 + π2) + gψ̄(σ + iγ5π)ψ (1.49)

Notice that this transformation is similar to the transformation performed previously

for the NJL model in section 1.1, but here we have the gauge terms.

In 1+1 dimensions the coupling constant e has the dimension of mass. This e is

defined as the finite bare coupling constant.So, there will not be any effect on the

asymptotic freedom and the renormalisation-group properties of the theory.

The model is studied in large N limit. The σ potential is unaffected by the new
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interaction terms. So, as it is discussed in the previous section, σ acquires a vacuum

expectation value, similarly fermion mass is generated. We now focus into the Bµ

and π fields and rewrite the Lagrangian (1.49) in terms of these fields.

The one loop graphs are given in Fig.1.7. Here the self-energy of B-field, B-π inter-

Figure 1.7: The Feynman graphs that contribute to the vector-meson and

pseudoscalar-meson self-energies

action and π-field self-energy Feynman Diagrams are shown. Now one can write the

effective Lagrangian in terms of the bilinear products in limit N →∞ as

Leff (Bµ, π) = −1

2
BµP

2Bµ +BµPµBνPν +
α

2π
Bµ

2 +
α

2π
Bµ

PµPν
P 2

Bν

+ αBµM
2U
PµPν
P 2

Bν + igemNπUPµBµ +
1

4
απP 2Uπ (1.50)

where

U =
1

π[P 2(P 2 − 4M2
F )]1/2

ln
(−P 2 + 4M2

F )1/2 − (−P 2)1/2

(−P 2 + 4M2
F )1/2 + (−P 2)1/2

(1.51)

As previously stated that this effective Lagrangian contains only bilinear forms of

the fields. Here Bµ and Pµ are the fields and α is a constant with dimensions of

mass. Also it is interesting to note that this Lagrangian is not chiral-invariant by

itself. This is why, the symmetry of the theory is broken and the mass for the meson

field is generated. It is still necessary to introduce a gauge-fixing term. We make the

convenient choice

Lc =
1

2

[
(P µBµ)

(
1− α

πP 2
− 2αM2U

P 2

)1/2

− iegNU(
1− α

πP 2 − 2αM2U
P 2

)]2

(1.52)

which diagonalizes the Bµ and π propagators. With this choice the propagators are

defined as

Bµ propagator :
−igµν

(P 2 + α/π)

π propagator :
4i

U(−P 2 + α/πP 2 − 2αUM2
F/P

2)
(1.53)
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Hence the vector meson has acquired a mass λ/π. From the effective Lagrangian it

is clearly observable.

The fact that π propagator is not present in Lc , tells that it is an auxiliary field.

Now we will discuss that by using this model, how some condensation can be ex-

plained. These discussions are found in the literature. Here we will discuss two cases,

one related to fermion-fermion and fermion-anti fermion pairing giving explanations

to Cooper pair formation and another related to time-crystals.

1.3 Gross-Neveu model:Fermion-Fermion and

Fermion-AntiFermion pairing

The massless Gross-Neveu and chiral Gross-Neveu models are well known examples

of integrable quantum field theories in 1+1 dimensions. But whether integrability is

preserved if one either replaces the four-fermion interaction in fermion-antifermion

channels by a dual interaction in fermion-fermion channels, or if one adds such a dual

interaction to an existing integrable model. The relativistic Hartree-Fock-Bogoliubov

approach is adequate to deal with the large N limit of such models. In this way, con-

struction and solution of three integrable models with Cooper pairing is performed.

This type of field theories can serve as exactly solvable toy models for color super-

conductivity in quantum chromodynamics. So far, from our discussion, it is already

known about the Gross-Neveu Model; it is the simplest interacting, fermionic field

theory. The model is given by

LGN = ψ̄i∂/ψ +
g2

2
(ψ̄ψ)2. (1.54)

On the other hand the Nambu-Jona-Lasinio model is given by

LNJL = ψ̄i∂/ψ +
g2

2
[(ψ̄ψ)2 + (ψ̄iγ5ψ)2]. (1.55)

The main motivation of this section is to see whether there is any integrable four-

fermion model other than the known ones.
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This is not an easy question. Two main ingredients have proven helpful in the search

for integrability: The first one is related to symmetries, the second one to the concept

of duality between fermion-fermion and fermion-antifermion pairing.

From the symmetry conditions, if one wishes to generalize an integrable model by

making it more complicated without losing its integrability, it helps if the symmetry

of the starting model gets enhanced in this process. Thus for instance, adding a mass

term to the GN Lagrangian breaks the discrete chiral symmetry and makes the model

non-integrable. On the other hand switching on an interaction enhances the chiral

symmetry and maintains integrability. Notice also that the known integrable models

have only one coupling constant. It is hard to imagine that integrability can be kept

if one adds more interactions with arbitrary coupling constants.

Now coming back to duality, the duality transformation discussed here consists in re-

placing fields by their complex conjugates, separately for left-handed and right-handed

fermions. This is very different from charge conjugation. After this transformation,

one can relate the transformed models with fermion-antifermion pairing, i.e. chiral

symmetry breaking and fermion-fermion pairing, i.e. superconductivity.

So starting with a free, massless fermions and performing the Pauli-Gürsey symme-

try operation to 1+1 dimensions, the duality transformation is applied to GN model.

This yields two distinct integrable models related to Cooper pairing. The concept of

”self-dual” field theories are then introduced. So the GN model is casted into self-dual

form.

1.3.1 Pauli-Gürsey symmetry in 1+1 dimensions

The Pauli-Gürsey symmetry is a symmetry group of massless Dirac fermions. It com-

bines the chiral transformations and charge conjugation. For GN model Lagrangian

we only need the special case of Pauli-Gürsey symmetry in 1+1 dimensions. The
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following chiral representation of the Dirac matrices are used

γ0 = σ1 =

 0 1

1 0


γ1 = iσ2 =

 0 1

−1 0


γ5 = γ0γ1 = −σ3 =

 −1 0

0 1

 (1.56)

The upper and lower components of the Dirac spinor are defined as

ψ =

 ψL

ψR

 =

 ψ1

ψ2

 . (1.57)

The light cone coordinates in the following convention is used in this work

z = x− t, z̄ = x+ t, ∂0 = ∂̄ − ∂, ∂1 = ∂̄ + ∂ , (1.58)

so that the free, massless Dirac Lagrangian becomes

L0 = ψ̄i∂/ψ = −2iψ∗1∂ψ1 + 2iψ∗2∂̄ψ2 . (1.59)

So the Pauli-Gürsey group in 1+1 dimensions can be generated by four basic (canon-

ical) transformations,

ψ1 → eiαψ1 ,

ψ2 → eiβψ2 ,

ψ1 → ψ∗1 ,

ψ2 → ψ∗2 . (1.60)

The first two lines are essentially the chiral transformations and the last two lines

are discrete transformations which are not a symmetry of the classical action. The

charge conjugation of this convention is given by

ψc = γ5ψ
∗ =

 −ψ∗1
ψ∗2

 (1.61)
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So, as a conclusion one can say that the discrete Pauli-Gürsey transformations can

be thought of as combinations of chiral transformations and charge conjugation.

The group structure behind Eq(58) is O(2)R⊗O(2)L, if we decompose ψ1, ψ2 into

real and imaginary parts, an extension of the chiral symmetry group is given by

SO(2)R⊗SO(2)L.

1.3.2 Canonical transformation of GN and NJL models

Let us consider the original GN model with discrete chiral symmetry first. Performing

the transformation given by Equation (1.60), we obtain

LGN = −2iψ∗1∂ψ1 + 2iψ∗2 ∂̄ψ2 +
g2

2
(ψ∗1ψ2 + ψ∗2ψ1)2 . (1.62)

So we can see that the conservation of fermion number, the Z2 chiral subgroup (ψ1 →

±ψ1, ψ2 → ±ψ2) and charge conjugation are unbroken by the interaction term. If

we perform the canonical transformation ψ1 → ψ∗1 which leaves only the free part

of the Lagrangian invariant, we generate a new interacting theory which will also be

integrable. Under thesr transformation the Lagrangian of Eq.(1.62) thus becomes

L̃GN = −2iψ∗1∂ψ1 + 2iψ∗2 ∂̄ψ2 +
g2

2
(ψ∗1ψ

∗
2 + ψ2ψ1)2 . (1.63)

One can easily see from this Lagrangian that it gives rise to fermion-fermion pairing

instead of fermion-antifermion pairing, i.e., the feature resembling superconductivity

rather than chiral symmetry breaking. The residual Pauli-Gürsey symmetries are now

U(1)A (conservation of axial charge), Z2 chiral symmetry, and charge conjugation.

The Cooper pair condensate in this model is real. Previously in GN model it was the

chiral condensation. Now from the NJL model, the continuous chiral symmetry of

the Pauli-Gürsey group holds true, so by performing the transformation discussed in

the previous subsection, on the NJL Lagrangian, it takes the form

LNJL = −2iψ
(1)∗
1 ∂ψ

(1)
1 + 2iψ

(1)∗
2 ∂̄ψ

(1)
2 + 2g2

(
ψ

(1)∗
1 ψ

(1)
2

)(
ψ

(2)∗
2 ψ

(2)
1

)
. (1.64)
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The discrete part of the Pauli-Gürsey group breaks down to charge conjugation.

Applying the duality transformation to this Lagrangian yields the following four-

fermion theory,

L̃NJL = −2iψ
(1)∗
1 ∂ψ

(1)
1 + 2iψ

(1)∗
2 ∂̄ψ

(1)
2 + 2g2

(
ψ

(1)∗
1 ψ

(1)∗
2

)(
ψ

(2)
2 ψ

(2)
1

)
. (1.65)

where 1 and 2 in the superscript stands for the fact that they are different fermionic

components.

This is yet another field theory with fermion-fermion pairing, with U(1)A symmetry.

It is in fact identical to the Cooper pair Lagrangian proposed by Chodos, Minakata

and Cooper (CMC),

LCMC = ψ̄(i)i∂/ψ(i) + 2G2
(
ψ̄(i)γ5ψ

(j)
) (
ψ̄(i)γ5ψ

(j)
)
, (1.66)

for the choice g2 = 2G2. Since the duality transformation is a canonical transforma-

tion, there is no need to solve the Cooper pair model anew if the NJL model has been

solved already. All one has to do is translate the physical observables into the dual

language.

In the next section we will discuss about fermion-fermion and fermion-antifermion

pairing.

1.3.3 Self-dual GN model

Since the known GN model breaks the discrete part of the Pauli-Gürsey group down

to charge conjugation, it enables us to generate a new integrable model by applying

the transformation (ψ1 → ψ∗1) to the GN Lagrangian. We now try to construct

another integrable model by “self-dualizing” the GN Lagrangian. Note that in our

theory also we will try to construct the Lagrangian following these steps. This means

that we add the interaction term of the dual GN model to the GN model Lagrangian,

so that the full Lagrangian will have a part of the Pauli-Gürsey symmetry with the
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free, massless theory,

LsdGN = −2iψ∗1∂ψ1 + 2iψ∗2∂̄ψ2

+
g2

2

[
(ψ∗1ψ2 + ψ∗2ψ1)2 + (ψ∗1ψ

∗
2 + ψ2ψ1)2] . (1.67)

This is the self-dual Gross-Neveu (sdGN) model. The symmetries like U(1)V or U(1)A

symmetries are broken in this Lagrangian. It is interesting to note here that the in-

teraction terms can give rise to both fermion-fermion and fermion-antifermion pairing

and both condensation are real.

Now for the large N limit of this model, standard Hubbard-Stratonovich transfor-

mation(see reference [11],[12]) is performed on the sdGN Lagrangian(1.67). The La-

grangian is thus given by

L′sdGN = LsdGN −
1

2g2

[
S + g2 (ψ∗1ψ2 + ψ∗2ψ1)

]2
− 1

2g2

[
B + g2 (ψ∗1ψ

∗
2 + ψ2ψ1)

]2
. (1.68)

where S and B are the two real, scalar, flavor singlet fields. Now one can expand the

above Lagrangian to

L′sdGN = −2iψ∗1∂ψ1 + 2iψ∗2∂̄ψ2 − S (ψ∗1ψ2 + ψ∗2ψ1)

−B (ψ∗1ψ
∗
2 + ψ2ψ1)− 1

2g2

(
S2 + B2

)
. (1.69)

Now from the Euler-Lagrange equation, equations of motion for S and B equation of

motion can be obtained and they are given by

S = −g2 (ψ∗1ψ2 + ψ∗2ψ1) ,

B = −g2 (ψ∗1ψ
∗
2 + ψ2ψ1) . (1.70)

This shows that S and B are the auxiliary fields. In the large N limit, the auxiliary

fields can be replaced by their expectation values, according to the expectation values

of (1.70). Now for the canonical quantisation of this model the Hamiltonian density
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corresponding to L′sdGN is

H = iψ∗1∂1ψ1 − iψ(∗
2 ∂1ψ2 + S

(
ψ∗1ψ2 + ψ

(∗
2 ψ1

)
+B

(
ψ∗1ψ

(∗
2 + ψ2ψ1

)
+

1

2g2

(
S2 + B2

)
. (1.71)

This Hamiltonian can be written in the form given below

H =
1

2

∫
dx
(
ψ†1, ψ

†
2, ψ1, ψ2

)


i∂1 S 0 B

S −i∂1 −B 0

0 −B i∂1 −S

B 0 −S −i∂1




ψ1

ψ2

ψ†1

ψ†2


, (1.72)

This is our total Hamiltonian and the ψi’s are the different fermionic components.

The 4×4 matrix appearing in (1.72) is denoted as h afterwards.This is invariant

under charge conjugation. This transformation can be represented through a unitary

matrix,  ψ†

ψ


c

=

 0 γ5

γ5 0

 ψ†

ψ

 . (1.73)

From this unitary matrix Uc it is easy to verify that

h = UchU
†
c . (1.74)

The matrix h can be block-diagonalized by a constant, unitary transformation V ,

h = V †hbdV, hbd =

 hI 0

0 hII

 , (1.75)

with

V =
1√
2


1 0 1 0

0 1 0 −1

1 0 −1 0

0 1 0 1


, V V † = 1, hI,II =

 i∂1 SI,II

SI,II −i∂1

 , (1.76)
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and SI = S − B, SII = S + B. Now we plug (1.75) into (1.72) to obtain

H =
1

2

∫
dx
(
ψ†, ψ

)
V †hbdV

 ψ

ψ†

 =
1

2

∫
dxΨ†hbdΨ . (1.77)

In the last step unitarily transformed fermion field operators are introduced

Ψ = V

 ψ

ψ†

 =
1√
2


ψ1 + ψ†1

ψ2 − ψ†2
ψ1 − ψ†1
ψ2 + ψ†2


:=


χ1

iχ2

−iχ3

χ4


. (1.78)

Now one can clearly see that the things are written in terms of Majorana fields. Thus

block-diagonalization of the Hamiltonian matrix h reveals that the natural degrees

of freedom are four independent Majorana fields per flavor (χ†a = χa) obeying the

anticommutation relations

{χ(i)
a (x), χ

(j)
b (y)} = δabδijδ(x− y) . (1.79)

We can separate the components and rewrite the Hamiltonian into a sum of two

commuting Hamiltonians,

H = HI +HII , (1.80)

with

HI =
1

2

∫
dx (χ1, χ2)

 i∂1 iSI

−iSI −i∂1

 χ1

χ2

 ,

HII =
1

2

∫
dx (χ3, χ4)

 i∂1 iSII

−iSII −i∂1

 χ3

χ4

 . (1.81)

There is possibility that these two terms can be coupled via scalar field SI,II but it

is shown that this is not the case. The inverse relations to (1.78) are,

ψ1 =
1√
2

(χ1 − iχ3) ,

ψ2 =
1√
2

(χ4 + iχ2) , (1.82)
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Using this, we can write S,B in Eq. (1.70) in terms of Majorana fields,

S = −ig2 (χ3χ4 + χ1χ2) ,

B = −ig2 (χ3χ4 − χ1χ2) . (1.83)

Hence, in the large N limit,

SI = −2ig2〈χ1χ2〉 ,

SII = −2ig2〈χ3χ4〉 , (1.84)

As we have previously stated that in large N limit the auxiliary fields can be replaced

by their expectation values.

So the full problem now separates into two simpler, independent problems. As a

matter of fact, HI,II and the self-consistency conditions (1.84) are the same as in the

standard GN model, but with Majorana instead of Dirac fields (the O(N) symmetric

model, rather than the U(N) or O(2N) symmetric model with Dirac fermions). This

shows at once that the sdGN model is integrable and that its solution can be reduced

to solutions of the standard GN model.

We have dropped the purely bosonic part from the Hamiltonian, which contains the

coupling constant g2 of the sdGN model. This coupling constant does not have to

coincide with G2, the one of the pair of standard GN models. We shall determine G2

by demanding that the bosonic part of the Hamiltonian be also additive,

S2 + B2

2g2
=
S2
I + S2

II

2G2
, SI,II = S ∓ B . (1.85)

This fixes the GN coupling constant to the value G2 = 2g2. We will confirm this

choice via the self-consistency conditions of the GN and sdGN models below.

We are interested to see the same theory now in terms of Majorana fields and from

that we will show that it will indeed reduce into two independent models. Now let us

go back to the Lagrangian (1.67) and express the Dirac fields in terms of Majorana
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fields right away, using (1.82),

LsdGN = −iχ1∂χ1 + iχ2∂̄χ2 − g2 (χ1χ2)2

−iχ3∂χ3 + iχ4∂̄χ4 − g2 (χ3χ4)2 . (1.86)

This is indeed a sum of two independent O(N) GN Lagrangians. This simple exercise

shows that they have nothing to do with one another, but can be exposed already at

the level of the Lagrangian.

Thus the conclusion is that the O(N) symmetric GN model with N Majorana fields is

equivalent to the U(N/2) symmetric GN model with N/2 Dirac fields. The solutions

of the GN model are usually formulated for Dirac fields and one must transform

expressions (1.81,1.84) into Dirac language. By choice one can write

ψI,1 =
1√
2

(χ1 − iχ1) ,

ψI,2 =
1√
2

(χ2 + iχ2) ,

ψII,1 =
1√
2

(χ3 − iχ3) ,

ψII,2 =
1√
2

(χ4 + iχ4) , (1.87)

for i = 1, ..., N/2. Following the same formulation as before in the case of Dirac fields

HI =

∫
dx

N/2∑
i=1

(
ψ

(i)†
I,1 , ψ

(i)†
I,2

) i∂1 SI

SI −i∂1

 ψ
(i)
I,1

ψ
(i)
I,2

 , (1.88)

and a similar equation with all subscripts I replaced by II. The condensation op-

erators, assuming that the two standard GN models have coupling constant G2 are

given by

SI = −G2 (ψI,1 † ψI,2 + ψI,2 † ψI,1) = −iG2χ1χ2 ,

SII = −G2
(
ψII,1 † ψII,2 + ψ

(i)†
II,2ψII,1

)
= −iG2χ3χ4 , (1.89)

This agrees with (1.84) provided if we set G2 = 2g2. From the ’t Hooft condition

N

2
G2 = Ng2 = const. (1.90)

30



Thus the sdGN model with N Dirac flavors and coupling constant g2 is equivalent to

the two independent GN models with N/2 Dirac flavors for each one with coupling

constant 2g2. The value of the ’t Hooft coupling, Ng2, is the same in the sdGN model

and the two GN models.

Now to construct a self-consistent HFB solution of the sdGN model from any pair of

self-consistent HF solutions of the standard GN model, the time dependent Hartree-

Fock equations(TDHF) for the two independent GN models can be written into the

form 
2i∂ SI 0 0

SI −2i∂̄ 0 0

0 0 2i∂ SII

0 0 SII −2i∂̄




ϕI,1

ϕI,2

ϕII,1

ϕII,2


= 0 . (1.91)

Here, the spinors are solutions of the Dirac equation describing the single particle

levels. The self-consistency conditions are thus given by

SI = −Ng2

occ∑(
ϕ∗I,1ϕI,2 + ϕ∗I,2ϕI,1

)
,

SII = −Ng2

occ∑(
ϕ∗II,1ϕII,2 + ϕ∗II,2ϕII,1

)
, (1.92)

where the sum runs over all occupied states. The time-dependent Hartree-Fock-

Bogoliubov (TDHFB) equation for the sdGN model on the other hand can be written

as the following system of four coupled equations,
2i∂ S 0 B

S −2i∂̄ −B 0

0 −B 2i∂ −S

B 0 −S −2i∂̄




φ1

φ2

φ3

φ4


= 0 , (1.93)

supplemented by the self-consistency conditions

S = −Ng
2

2

occ∑
(φ∗1φ2 + φ∗2φ1 − φ∗4φ3 − φ∗3φ4) ,

B = −Ng
2

2

occ∑
(φ∗1φ4 + φ∗4φ1 − φ∗2φ3 − φ∗3φ2) . (1.94)
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The unitary transformation V , Eq. (1.76), transforms equations (1.93) into (1.91) and

the self-consistency condition (1.94) into (1.92), since SI,II = S ∓ B. So finally we

can relate this to
φ1

φ2

φ3

φ4


= V †


ϕI,1

ϕI,2

ϕII,1

ϕII,2


=

1√
2


ϕI,1 + ϕII,1

ϕI,2 + ϕII,2

ϕI,1 − ϕII,1

ϕII,2 − ϕI,2


. (1.95)

setting ϕII,1 = ϕII,2 = 0 gives the sdGN model spinors

ΦI =
1√
2


ϕI,1

ϕI,2

ϕI,1

−ϕI,2


. (1.96)

and also from the GN model labelled II corresponds to setting ϕI,1 = ϕI,2 = 0 in

(1.91) and consequently to the sdGN spinors

ΦII =
1√
2


ϕII,1

ϕII,2

−ϕII,1

ϕII,2


. (1.97)

The contribution to both S and B is SII/2, so that the relations SI,II = S ∓ B are

indeed satisfied. Notice also that the quasi-particle spinors ΦI,II are eigenstates of

the charge conjugation matrix Uc from Eq. (1.73),

UcΦI = −ΦI , UcΦII = ΦII . (1.98)

From the above calculation we can say that the energy is the sum of the energies of

both constituent solutions, since this also holds for the Hamiltonians. Since the mass-

less GN model is integrable and its complete large-N solution is known analytically,

the same is true for the self-dual variation of the GN model.
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In the last subsection of this Self-dual Model we will look into these solutions from

more physical point of view.

1) Vacua

The GN model with spontaneously broken Z2 chiral symmetry has two degenerate

vacua with S = ±m = ±1 (dynamical fermion mass in natural units), Consequently

there are four degenerate vacua in the self-dual GN model, (Fig 1.8) From the figure,

we see that there are four vacua. The ground state is either a superconductor (S =

0,B = ±1) or a chirally broken state (S = ±1,B = 0). All four states are physically

indistinguishable, as they differ only in the convention for the fermion operators.

Figure 1.8: Four Vacua of sdGN Model

2) Kinks

From the known GN model Lagrangian, the kink interpolates between the two

vacua with S = ±1. In the self-dual GN model there are six types of ”domain walls”

separating two out of the four vacua. We can get the kinks between two neighbouring

vacua (I and II, II and III, III and IV, IV and I),(Fig. 1.9) whose mass is half of
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Figure 1.9: Static kink joining vacua II and I

Figure 1.10: Static kink joining vacua III and I
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the mass of a GN kink with N Dirac flavors, N/2π. If we choose two kinks which

are shifted relative to each other, we can say that we are between two opposite vacua

(I and III, II and IV), (Fig. 1.10). Here, the mass is equal to the mass of the GN

kink with N Dirac flavors, N/π. The width of this kink can be made arbitrarily

large by pulling two of the constituent kinks apart. In the transition region, there is

a localized zone where the system is in the dual vacuum. This can be used for in-

stance to manufacture a domain wall between the B = 1 and B = −1 superconducting

vacua, separated by a normal (chirally broken) region — a kind of Josephson junction.

Multi-Kink

Dynamical solutions result if we choose time-dependent kink solutions of the GN

model as ingredients for S. A snapshot of such a solution may be described as an

arbitrary succession of regions of vacua I IV, separated by the kind of kinks described

before (Figs.1.9 and 1.10). Under time evolution, these domain walls move and collide,

the details depending on the input parameters. The only static kink solutions are the

single domain walls, like in the GN model.

Here we will stop discussing further about this model and pay attention to the work

conducted during the masters thesis. We will mainly focus on the construction of

the model by introducing interacting tensor fields of the fermions. Then following

the Gross-Neveu model we will see that it is chirally invariant. After that we will

write the model in terms of auxiliary field. Then by choosing the symmetric and

anti-symmetric form of the auxiliary field, we will show that in case of symmetric

form, it leads us to condensation of Gross-Neveu type. So, the symmetric model does

not give us any new result. In case of anti-symmetric form we do not find possible

condensation under certain assumptions.
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Figure 1.11: (S,B)-plot of static kink joining vacua III and I of the sdGN model.

From top to bottom: a = 2, 1, 0.5, 0, 0.5, 1, 2
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Chapter 2

My Work

The main aim of the project is to construct the form of a Lagrangian with quadratic

terms involving tensorial terms. One should essentially chose the Lagrangian such

that it is invariant under certain transformations. During this one year of the project

several kinds of the form of the Lagrangian were proposed. We start by a standard

form of the model involving gamma matrices. The model is explained briefly in 1+1

dimensions. But it is shown mathematically that it is reducing to the known Nambu-

Jona-Lasinio and Gross-Neveu form. So we looked at it in higher dimensions like

in 3+1 dimensions. We find that it is chirally symmetric. So our model has to be

massless. Then the form of auxiliary field is evaluated. These are discussed below.

2.1 The Proposed Model

Following the idea of Gross-Neveu Model, we attempted to write a Lagrangian of the

form given by

L = ψ̄i∂/ψ +
g2

2

(
ψ̄γµγνψ)(ψ̄γµγνψ

)
(2.1)

This is basically four-fermionic tensorial interactions. Let’s first study this model in

1+1 dimensions, since it is obvious from the previous discussions of GN model that

in 1+1 dimensions this model will be renormalisable.
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All these models include Four-Fermion interaction terms. The initial focus of the

work at first is to study them in 1+1 dimensions. We have chosen the Lagrangian to

be massless. We can also add mass terms. One can also think of a Lagrangian with

more than one coupling constant. However these approaches are not a part of the

current discussion.

In 1+1 dimensions if we look at the Lagrangian Eq.2.1, we note the following com-

mutation relations between gamma matrices

{γ0, γ1} = 0

[γ0, γ1] = 2γ5 (2.2)

Therefore, γ0, γ1 and γ5 = iγ0γ1 form a SU(2) algebra.

Using the above relations we find that our model yields nothing new but reduces to

the same model as before to the Gross-Neveu one by giving ψ̄ψ kind of condensation.

So one must go onto doing a higher dimensional theory in our model, especially in

3+1 dimensions.

We can look into the chiral symmetry of the model. It will indicate the masslessness

of the model. It is discussed below.

2.1.1 Chiral Symmetry of Lψ

Starting from the Lagrangian given by

Lψ = ψ̄i∂/ψ +
g2

2

(
ψ̄γµγνψ)(ψ̄γµγνψ

)
(2.3)

To check that if this Lagrangian is chiral symmetric or not we have to perform γ5

transformation. We will show that our Lagrangian Lψ is invariant under γ5 transfor-

mation. So performing the transformation

ψ → γ5ψ

and therefore

ψ̄ → −ψ̄γ5

38



So,

L′ψ = ψ̄γ5i∂/γ5ψ +
g2

2

(
−ψ̄γ5γ

µγνγ5ψ
) (
−ψ̄γ5γµγνγ5ψ

)
= −ψ̄γ5i∂µγ

µγ5ψ +
g2

2

(
−ψ̄γ5η

µργρη
νσγσγ5ψ

) (
−ψ̄γ5γµγνγ5ψ

)
= ψ̄γ5i∂µγ5γ

µψ +
g2

2

(
−ψ̄ηµργργ5

2ηνσγσψ
) (
−ψ̄γµγ5

2γνψ
)

= ψ̄i∂/ψ +
g2

2

(
ψ̄γµγνψ)(ψ̄γµγνψ

)
= Lψ (2.4)

where we have used the relations γ5
2 = 1, {γµ, γ5} = 0.

Hence, we conclude that Lψ is chiral symmetric. This means our Lagrangian 2.1 has

certain symmetry properties, i.e. it is invariant under chiral transformation. This

invariance helped the lack of mass terms in our model, since they generally break the

chiral symmetry.

2.2 Finding Fermionic Condensate

It is very useful to write our chosen Lagrangian Lψ in terms of auxiliary fields as it

will give us a hint to find the condensation. By following the Gross-Neveu model,

we see that the guessing of the form of the auxiliary scalar field and comparing the

Gross-Neveu Lagrangian with the Yukawa Lagrangian makes it easier to obtain the

condensation. It can be easily concluded that the condensate forms if the vacuum

expectation value of the auxiliary field is found to be non-zero. If the v-e-v of the

auxiliary field is found to be zero then it only means that we are already in the

vacuum state and no symmetry breaking is possible. So any kind of condensation is

unexpected. Now, let us begin with the standard Lagrangian and try to write it in

terms of auxiliary field

Lψ = ψ̄i∂/ψ +
g2

2

(
ψ̄γµγνψ)(ψ̄γµγνψ

)
(2.5)
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By modifying this Lagrangian, and introducing auxiliary field σµν one can write

Lσ = ψ̄i∂/ψ − 1

2
σµνσµν +

g

2

(
ψ̄γµγνψ

)
σµν +

g

2
σµν

(
ψ̄γµγνψ

)
(2.6)

Now, we should obtain the exact form of the auxiliary field σµν . Since σµν has no

kinetic energy part in the Lagrangian therefore, using the Lagrange’s equation of

motion for σµν , we have;

∂ζ

(
∂Lσ
∂ζσµν

)
−
(
∂Lσ
∂σµν

)
= 0

∂ζ

(
∂Lσ
∂ζσµν

)
−
(
∂Lσ
∂σµν

)
= 0 (2.7)

Putting Lσ from Equation (2.6) we obtain

σµν = g
(
ψ̄γµγνψ

)
and

σµν = g
(
ψ̄γµγνψ

)
(2.8)

2.3 Determination of the Solution of ψ consistent

with the ansatz chosen for σµν

So we have the form of the auxiliary field, but in terms of fermionic field itself. We

don’t exactly know the form of σµν . It can be either symmetric or anti-symmetric.

So in order to obtain the exact form of σµν we should solve the equation of motion for

ψ which in turn will be consistent with the form of auxiliary field. Let’s first proceed

with the general treatment of finding ψ.

2.3.1 Equation of motion for ψ

The equation of motion for ψ is given by

∂µ

(
∂Lσ
∂µψ̄

)
−
(
∂Lσ
∂ψ̄

)
= 0

or, (iγµ∂µ + gγµγνσµν)ψ = 0 (2.9)
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Equation (2.9) has translation symmetry, which means that if xµ → xµ + aµ then

∂µ → ∂µ. So, ψ can be simply written in the form of

ψ =

∫
dPu(P )eiP.x

So, Equation (2.9) becomes

(−γµPµ + gγµγνσµν)u(P ) = 0 (2.10)

Now from relativistic Schrodinger’s equation of motion we can also write the same

equation in the form (
~α. ~P − βgγµγνσµν

)
ψ = iβ

∂ψ

∂t

or,
(
~α. ~P − gγµγνσµν

)
ψ = Eψ (2.11)

where the same equation is written in Dirac representation and the definition of β

and α are given by

β =

 I 0

0 −I


(2.12)

and

α =

 0 ~σ

~σ 0

 (2.13)

The solution for ψ from Equation (2.11)can be obtained as follows

General Treatment to solve Equation (2.11) for ψ:-(
~α. ~P − gγµγνσµν

)
ψ = Eψ

(2.14)
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Thus writing this in 2*2 form and ψ =

 χ

ϕ

 we obtain

 −gγµγνσµν ~α. ~P

~α. ~P −gγµγνσµν

 χ

ϕ

 = E

 χ

ϕ


 E + gγµγνσµν −~α. ~P

~α. ~P E + gγµγνσµν

 χ

ϕ

 =

 0

0

 (2.15)

implies

(E + gγµγνσµν)χ−
(
~α. ~P

)
ϕ = 0 (2.16)

−
(
~α. ~P

)
χ+ (E + gγµγνσµν)ϕ = 0 (2.17)

From equation 2.17 we find

(E + gγµγνσµν)ϕ =
(
~α. ~P

)
χ

(E + gγµγνσµν)
−1 (E + gγµγνσµν)ϕ = (E + gγµγνσµν)

−1
(
~α. ~P

)
χ

ϕ = (E + gγµγνσµν)
−1
(
~α. ~P

)
χ

(2.18)

substituting ϕ into equation 2.16, we obtain

(E + gγµγνσµν)χ =
(
~α. ~P

)
(E + gγµγνσµν)

−1
(
~α. ~P

)
χ (2.19)

So, by solving Equations (2.18) and (2.19) the solution of ψ can be obtained.

We will follow these steps in order to solve for fermionic field ,but the form of auxiliary

field is completely unknown initially. However the solution for ψ and the form of σµν

must be consistent with each other. So we will start by specific choice of the auxiliary

field.

2.3.2 Choice of ansatz for σµν

In our work we have performed calculations with the symmetric and anti-symmetric

case of the auxiliary field. these are discussed below.

42



Symmetric form

Suppose we guess the the form of σµν to be symmetric and proportional to space-time

metric gµν like

σµν = cgµν

= c


1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1


(2.20)

Starting from the equation of motion for ψ(
~α. ~P − gγµγνσµν

)
ψ = Eψ (2.21)

Now,

gγµγνσµν = gc
{(
γ0
)2 −

(
γ1
)2 −

(
γ2
)2 −

(
γ3
)2
}

= 4gcI4×4 (2.22)

So the Equation (2.21) becomes(
~α. ~P − 4gcI4×4

)
ψ = Eψ (2.23)

 E + 4gc −~σ.~p

−~σ.~p E + 4gc

 χ

ϕ

 = 0 (2.24)

(E + 4gc)χ− (~σ.~p)ϕ = 0

− (~σ.~p)χ+ (E + 4gc)ϕ = 0 (2.25)

Following the similar procedure discussed in 2.3.1 to determine the solution of χ ; at

first, we obtain

ϕ = (E + 4gc)−1 (~σ.~p)χ

(E + 4gc)χ = (~σ.~p) (E + 4gc)−1 (~σ.~p)χ (2.26)
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For simplification, we replace E+4gc as E’ E ′ 0

0 E ′

χ =
1

E ′2
(~σ.~p)

 E ′ 0

0 E ′

 (~σ.~p)χ (2.27)

We choose χ =

 a

b

 where a, b are free parameters.

So, from Equation (2.27) we have E ′ 0

0 E ′

 a

b

 =
1

E ′2

 P3 P1 − iP2

P1 + iP2 −P3

 E ′ 0

0 E ′


×

 P3 P1 − iP2

P1 + iP2 −P3

 a

b


 E ′ 0

0 E ′

 a

b

 =
1

E ′2

 P3 P1 − iP2

P1 + iP2 −P3


×

 E ′P3 E ′(P1 − iP2)

E ′(P1 + iP2) −E ′P3

 a

b


 E ′ 0

0 E ′

 a

b

 =
1

E ′2

 E ′
(
P1

2 + P2
2 + P3

2
)

0

0 E ′
(
P1

2 + P2
2 + P3

2
)
 a

b


 E ′ − Pi

2

E′ 0

0 E ′ − Pi
2

E′

 a

b

 = 0 (2.28)

Now we will solve this equation for χ. Eigenvalue of the matrix is λ = E ′− Pi
2

E′ , E
′− Pi

2

E′

and (
E ′ − Pi

2

E ′

)
a = 0(

E ′ − Pi
2

E ′

)
b = 0 (2.29)
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From here we see that a and b are still free parameters and for a, b 6= 0 we have(
E ′ − Pi

2

E ′

)
= 0{

(E + 4gc)2 − Pi2
}

= 0

(E2 + 8gcE + 16g2c2 − Pi2) = 0

(8gcE + 16g2c2) = 0

E = −2gc (2.30)

This indicates that for positive energy solutions our chosen constant c should be

negative.

Now, since we have two arbitrary parameters a and b, so by choice we can define χ

and ϕ by using (2.16) and (2.17). Then we can replace the solution into our known

form of σµν (2.8) to check the consistency with the chosen ansatz of σµν (2.20).

Let the solutions of χ and ϕ be

χ =

 a

b

 , ϕ =
E ′

E ′2

(
~σ. ~P

) a

b

 (2.31)

and ψ =

 χ

ϕ


Therefore,

σµν = g
(
ψ̄γµγνψ

)
= g

(
χ† −ϕ†

)
γµγν

 χ

ϕ


= g

(
χ† −ϕ†

)
γµγν

 χ

ϕ

 (2.32)

Now in order to find a solution for χ and ϕ or a and b consistent with σµν(2.20), we

can look into the following conditions

σ00 = c, σ11 = σ22 = σ33 = −c, σ0i = 0 and σij = 0 where i, j = 1, 2, 3 i 6= j.
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Starting from σij = 0

σij = g
(
ψ̄γiγjψ

)
= g

(
χ† −ϕ†

)
γiγj

 χ

ϕ


= g

(
χ† −ϕ†

) 0 σi

−σi 0

 0 σj

−σj 0

 χ

ϕ


= g

(
ϕ†σi χ†σi

) σjϕ

−σjχ

 (2.33)

σij = g
(
ϕ†σiσjϕ− χ†σiσjχ

)
= g

(
1

E ′2
χ†
(
~σ. ~P

)
σiσj

(
~σ. ~P

)
χ− χ†σiσjχ

)
= ig

(
1

E ′2
χ†
(
~σ. ~P

)
σk

(
~σ. ~P

)
χ− χ†σkχ

)
+ g

(
1

E ′2
χ†
(
~σ. ~P

)2

χ− χ†χ
)

= ig

(
1

E ′2
χ†
(
~σ. ~P

)
σk

(
~σ. ~P

)
χ− χ†σkχ

)
+ g

(
3P 2

i

E ′2
χ†χ− χ†χ

)
(2.34)

Looks very complicated! Let’s then turn back to other components and evaluate them

first.

Now, when σoi = 0 we have

σ0i = g
(
ψ̄γ0γiψ

)
= g

(
χ† −ϕ†

)
γ0γi

 χ

ϕ


= g

(
χ† −ϕ†

) 1 0

0 −1

 0 σi

−σi 0

 χ

ϕ


= g

(
χ† −ϕ†

) σiϕ

σiχ


= g

(
χ†σiϕ− ϕ†σiχ

)
= g

[
χ†σi

1

E ′

(
~σ. ~P

)
χ− 1

E ′
χ†
(
~σ. ~P

)
σiχ

]
=

g

E ′
χ†
[
σi

(
~σ. ~P

)
−
(
~σ. ~P

)
σi

]
χ (2.35)
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This looks easier to handle and making it more simple by choosing ~P to be constant

P , we get

σ0i =
gP

E ′
χ† [σi (σ1 + σ2 + σ3)− (σ1 + σ2 + σ3)σi]χ (2.36)

and for one component of the tensor σ0i,where i = 1 σ01 = 0.

So,

σ01 =
gP

E ′
χ† [σ1 (σ1 + σ2 + σ3)− (σ1 + σ2 + σ3)σ1]χ

= 0

χ† (2iσ3 − 2iσ2)χ = 0 (2.37)

(
a† b†

) 1 i

−i −1

 a

b

 = 0

(
a† b†

) a+ ib

−ia− b

 = 0

a†a+ ia†b− iab† − bb† = 0(
a†a− bb†

)
+ i
(
a†b− ab†

)
= 0 (2.38)

This follows that

a†a = bb† (2.39)

a†b = ab† (2.40)

Now, from another component σ02 = 0 we have

χ† (−2iσ3 + 2iσ1)χ = 0(
a† b†

) −1 1

1 1

 a

b

 = 0

(
a† b†

) −a+ b

a+ b

 = 0

−a†a+ a†b+ ab† + bb† = 0

(2.41)
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Now, using 2.39, we get

a†b+ ab† = 0

a†b = −ab† (2.42)

Now, one can see that (2.40) and (2.42) are contradictory to each other. So the only

possible solution to a and b and hence χ or ϕ is null solution.

We do not get any possible result from this calculation. However if we look into the

form of σµν , we can directly see the following

σµν = g
(
ψ̄γµγνψ

)
σµν = g

[(
ψ̄2ηµνψ

)
−
(
ψ̄γνγµψ

)]
σµν = g

[
2ηµν

(
ψ̄ψ
)
− σνµ

]
(2.43)

by using the symmetric property of γµ and γν given by {γµ, γν} = 2ηµν . Again we see

from the symmetry property of σµν that σµν = σνµ.

So the equation (2.43) gives

σµν = g
[
2ηµν

(
ψ̄ψ
)
− σµν

]
σµν = gηµν

(
ψ̄ψ
)

(2.44)

We see that this is nothing but the scalar
(
ψ̄ψ
)

condensation like the Gross-Neveu

model. So, in case of a symmetric auxiliary field, our model reduces to Gross-Neveu

like model in 3+1 dimensions with a condensate.

Anti-Symmetric

Now, let’s start by an anti-symmetric case of the auxiliary field. Suppose we guess

the form of σµν to be anti-symmetric in the form given by

σµν =


0 l m n

−l 0 p q

−m −p 0 r

−n −q −r 0


(2.45)
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We see that there is a lot of free parameters in this form and it will be difficult to

compute the solution with it. So, for convenience we choose the form to be self-dual.

Then by self-dualizing σµν , i.e. by using the following relation

σµν =
∑
ρ

∑
η

1

2
εµνρησ

ρη (2.46)

We obtain σµν to be

σµν =


0 l m n

−l 0 n −m

−m −n 0 l

−n m −l 0


(2.47)

Starting from the equation of motion for ψ(
~α. ~P − gγµγνσµν

)
ψ = Eψ (2.48)

Now,

gγµγνσµν = 2g

 −(l +m+ n) lσ1 +mσ2 + nσ3

lσ1 +mσ2 + nσ3 −(l +m+ n)

 (2.49)

So the equation becomes (
~α. ~P − gγµγνσµν

)
ψ = Eψ (2.50)

Writing this equation in 2× 2 form, E − 2g(l +m+ n) 2g(lσ1 +mσ2 + nσ3)− ~σ. ~P

2g(lσ1 +mσ2 + nσ3)− ~σ. ~P E − 2g(l +m+ n)

 χ

ϕ

 = 0 (2.51)

So this equation gives us

{E − 2g(l +m+ n)}χ+
{

2g(lσ1 +mσ2 + nσ3)−
(
~σ. ~P

)}
ϕ = 0{

2g(lσ1 +mσ2 + nσ3)−
(
~σ. ~P

)}
χ+ {E − 2g(l +m+ n)}ϕ = 0 (2.52)
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Further we can simplify by writing the following substitutions E ′ = E−2g(l+m+n)

and B = −2g(lσ1 +mσ2 + nσ3) + ~σ. ~P . Following the similar procedure discussed in

2.3.1 to determine the solution of χ, we obtain

ϕ = (E)−1Bχ

(E ′)χ = B (E)−1Bχ

(E ′2 −B2)χ = 0 (2.53)

Now,

B = −2g(lσ1 +mσ2 + nσ3) +
(
~σ. ~P

)
B2 =

(
~σ. ~P

)2

− 4g2(lσ1 +mσ2 + nσ3)2

− 2g
(
~σ. ~P

)
(lσ1 +mσ2 + nσ3)− 2g(lσ1 +mσ2 + nσ3)

(
~σ. ~P

)
=

∑
Pi

2 − 4g2(l2 +m2 + n2)− 4g(P3n+ P2m+ P1l) (2.54)

Just like before we choose χ =

 a

b

 where a, b are free parameters.

So,

(E ′2 −B2)χ = 0

From this we get(
E2 + 4g2c2 − 2gcE − Pi2 + 4g2(l2 +m2 + n2) + 4g(P3n+ P2m+ P1l)

)
χ = 0(2.55)

Now, for the solution of χ to be not equal to zero; the condition has to be satisfied is

given by

E = 4g2c2 + 4g2(l2 +m2 + n2) + 4g(P3n+ P2m+ P1l) (2.56)

(where c = l + m+ n); a,b will remain free parameters.

Let the solution of χ and ϕ then be given by

χ =

 a

b

 , ϕ =
1

E ′
B

 a

b

 (2.57)
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So, ψ =

 χ

ϕ

.

Now from the condensation form

σµν = g
(
ψ̄γµγνψ

)
= g

(
χ† −ϕ†

)
γµγν

 χ

ϕ


= g

(
χ† −ϕ†

)
γµγν

 χ

ϕ

 (2.58)

In order to find a solution for χ and ϕ or a and b consistent with the anti-symmetric

form of the chosen auxiliary field σµν(2.47), we can look into the following conditions

σii = 0 (2.59)

σ01 = l = g
(
ψ̄γ0γ1ψ

)
(2.60)

σ02 = m = g
(
ψ̄γ0γ2ψ

)
(2.61)

σ03 = n = g
(
ψ̄γ0γ3ψ

)
(2.62)

σ12 = n = g
(
ψ̄γ1γ2ψ

)
(2.63)

σ23 = m = g
(
ψ̄γ2γ3ψ

)
(2.64)

σ31 = l = g
(
ψ̄γ3γ1ψ

)
(2.65)

From these set of equations we can obtain

χ†σ1ϕ− ϕ†σ1χ = l/g

χ†σ2ϕ− ϕ†σ2χ = m/g

χ†σ3ϕ− ϕ†σ3χ = n/g (2.66)

χσ1χ− ϕ†σ1ϕ = il/g

χ†σ2χ− ϕ†σ2ϕ = im/g

χ†σ3χ− ϕ†σ3ϕ = in/g (2.67)
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Now from equation (2.60), we get the following relation

(
a†a+ b†b

) (
1− (P 2

i /E
′2) + (4g2c2/E ′2)− (E/E ′2)

)
= 0

(2.68)

From, equation (2.61) we get the following relation

2i(P2 − 2gm)a†a+ 2(2gn− P3)a†b+ 2(P3 − 2gn)b†a− 2i(P2 − 2gm)b†b = E ′l/g

If we assume here that E’l/g is real then we get the relations

a†a = b†b

b†a− a†b =
E ′l

2g(P3 − 2gn)

So, by similar process from these set of equations (2.66) and (2.67) and by using

(2.57) we obtain the following relations between a and b

a†a = b†b (2.69)

a†b = −b†a (2.70)

and

b†a− a†b =
E ′l

2g(P3 − 2gn)
(2.71)

=
−E ′n

2g(P1 − 2gl)
(2.72)

=
E ′2l

g(2P1P2 − 4gmP1 − 4glP2 + 8g2lm)
(2.73)

=
E ′2m

g(P 2
2 − P 2

3 − P 2
1 − 4gmP2 + 4gnP3 + 4glP1 + 4g2m2 − 4g2n2 − 4g2l2)

(2.74)

=
E ′2n

g(2P3P2 − 4gmP3 − 4gnP2 + 8g2mn)
(2.75)

Under the following condition

E = 4g2c2 + 4g2(l2 +m2 + n2) + 4g(P3n+ P2m+ P1l) (2.76)
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(where c = l + m+ n)

and since a†a = b†b and a,b is not equal to zero , so from Equation (2.69) we obtain

1− (P 2
i /E

′2) + (4g2c2/E ′2)− (E/E ′2) = 0 (2.77)

We see that the equations here are quite complicated to solve. In order to obtain a

suitable solution for a and b, all these relations together, must hold.

If we try to solve for a and b from equations (2.69), (2.70) and (2.71), we find that

only null solution is possible from these equations, as E′l
2g(P3−2gn)

and the rest (Equation

(2.72) to (2.75)) are considered to be real. Hence, we say that the only possible

solution of ψ which is consistent with the auxiliary field is a null solution, provided

that all the parameters are real.

But if we say that E′l
2g(P3−2gn)

and all other equalities are purely imaginary, then by

solving (2.69)(2.70),(2.71) we may get acceptable solutions. So we conclude that if

we consider E ′l/g and other equalities to be purely imaginary then the solutions of a

and b may be possible.

We can show the same in a much neater way by choosing the Weyl representation.

In Weyl representation, we can write σµν =

 0 σµ

σ̄µ 0

 where σµ = (1, σi) and

σ̄µ = (1,−σi).

Now, the form of the condensation is given by

σµν = ψ̄γµγνψ

We note that the form of the auxiliary field is anti-symmetric. So we can write,

γ[µγν] =
1

2

 0 σµ

σ̄µ 0

 0 σν

σ̄ν 0

−
 0 σν

σ̄ν 0

 0 σµ

σ̄µ 0


=

1

2

 σµσ̄ν 0

0 σ̄µσν

−
 σν σ̄µ 0

0 σ̄νσµ


=

 σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

 (2.78)
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Since, ψ =

 χ

ϕ

 where χ, ϕ are two component spinors.

Thus

ψ̄ = ψ†γ0

=
(
χ† ϕ†

) 0 1

1 0


=

(
ϕ† χ†

)
(2.79)

Therefore,

σµν =
1

2

(
ϕ† χ†

) σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

 χ

ϕ


=

1

2

(
ϕ† χ†

) (σµσ̄ν − σν σ̄µ)χ

(σ̄µσν − σ̄νσµ)ϕ


So

σµν =
1

2

[
ϕ†(σµσ̄ν − σν σ̄µ)χ+ χ†(σ̄µσν − σ̄νσµ)ϕ

]
(2.80)

Therefore,

σ0i =
1

2

[
ϕ†(σ0σ̄i − σiσ̄0)χ+ χ†(σ̄0σi − σ̄iσ0)ϕ

]
=

[
−ϕ†σiχ+ χ†σiϕ

]
(2.81)

and

σij =
1

2

[
ϕ†(σiσ̄j − σjσ̄i)χ+ χ†(σ̄iσj − σ̄jσi)ϕ

]
=

1

2

[
−2iεijkϕ

†σkχ− 2iεijkχ
†σkϕ

]
= −iεijk

[
ϕ†σkχ+ χ†σkϕ

]
(2.82)

Now from the self duality condition(2.46)

σµν =
∑
ρ

∑
η

1

2
εµνρησρη
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Following this we obtain σ0i = ε0ijkσjk.

Let σ0i = Ki, then

σjk = εijkKi

Therefore,

Ki =
[
−ϕ†σiχ+ χ†σiϕ

]
= −i

[
ϕ†σiχ+ χ†σiϕ

]
, as χ†σiϕ = ϕ†σiχ. So we say that

Ki is purely imaginary number.

Hence, we conclude that the self-duality condition implies the condensation to be

imaginary, as found before.
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Chapter 3

Results and discussion

Starting from our four-fermionic interacting Lagrangian in tensor form, we found sev-

eral results and conclusions. This type of model is essentially discussed because of

its ability to explain color superconductivity in QCD or several other phase conden-

sations. The following important results are noted below.

Chiral Symmetry of the Theory

By noting the results got from 2.1.1, we see that under the transformation γ5, Lψ

is invariant. This is an important result since we know that such kind of symmetry

means the theory is more possible to be integrable. This also ensures the masslessness

of the theory. For instance, say that we add a mass term in the Lagrangian, it will

break the chiral symmetry of the model.

Tensor model reducing to Gross-Neveu model

By evaluating the interacting part of our model in 1+1 dimensions, we see that our

model is reducing to the known Gorss-Neveu Lagrangian. So, we conclude that no

new theory is expected from our model in 2 dimensions. It is easily understandable

since our model involves tensor kind of interactions, in 2 dimensions it will essentially

give us a scalar kind of interactions.

57



Now, as we have considered our model in two cases, one for the symmetric form of

the auxiliary field, and another for the anti-symmetric form. We see in section 2.3.1

and from equation (2.44) that for the symmetric case of the auxiliary field (2.20), the

model gives (ψ̄ψ) condensation back, which is nothing but the scalar condensation of

Gross-Neveu type in higher dimensions.

Results from anti-symmetric form of the auxiliary field

While working with the anti-symmetric form, at first we impose the condition of self-

duality (2.46) to the chosen auxiliary field, as it would then reduce the number of

free parameters from six to three. Then we see that, while working with the self-

dual form the only possible solution can be obtained only if the condensation takes

purely imaginary value. However it needs to be further explored if the condensation

formation occurs or not. Thus there is a possibility of condensate, which is purely

imaginary, but the confirmation requires further exploration.

58



Chapter 4

Conclusions and Scope for Future

Work

4.1 Conclusions

For many years, integrability of the massless Gross Neveu models seemed like a rather

academic issue. The derivation of hadron masses (mesons, baryons, multi-baryon

bound states) and of the phase diagrams could equally be done for the massive case

as found in some of the literature and as well as for the massless case even to a large

extent analytically, although only the massless models are integrable. The study of

time dependent problems shows that this perspective has changed in recent years.

The scattering of baryons for instance could only be solved in the massless Gross-

Neveu and Nambu-Jone-Lasinio models.

These findings in recent studies have incited us to think about other potentially

integrable four-fermion models. From the strong interaction physics point of view,

models giving rise to Cooper pairing are particularly interesting as toy models for color

superconductivity in QCD. Also the models involving fermion-fermion and fermion-

anti-fermion pairing give explanation to Cooper fair formation. For a long time,

people did not usually looked into a tensorial interacting field. In this work, we
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tried to reformulate the Gross-Neveu Lagrangian in tensor form. We started with a

tensorial interacting Lagrangian, and it is explicitly shown that it is invariant under

chiral transformation. We take it as a hint of masslessness of the quantum theory

as well. We find the solutions of the model in 2 dimensions, which is reduced to

known ones from the Gross-Neveu models. In higher dimensions like in 4 dimensions,

the symmetric form of the auxiliary field gave us scalar condensation back and the

anti-symmetric form depicts that the condensate solution must be purely imaginary.

This could indicate a new vacuum of our model. It remains to be seen whether

the methods developed for solving the Gross-Neveu model can be generalized to this

situation. Also, one needs to look at the loop level calculations of this theory since

it is known to us that in Gross-Neveu model, no condensation is found in tree level

approximation.

4.2 Scope for the Future Work

Stability about the condensation solution

In our calculations, we found a possible condensation in symmetric case. We obtained

imaginary solution of the condensate in our calculation, for the anti-symmetric case.

One can also choose anti self dual condition, or a more general form of the auxiliary

field without imposing any self-duality condition. After obtaining the condensation

from the model, one can proceed by looking at the stability of any new condensate

vacuum and its ground state energy. One can also see the fluctuations of the fermionic

field and can obtain equation of motion of the fluctuating field.

Loop correction of the model

In our project, time did not permit us to look into the loop level calculations of this

theory. We were restricted to the condensation solution. In order to perform one loop
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level calculations one can look into the graphs as given by

Figure 4.1: self-energy of σµν

By evaluating such graphs and performing functional calculations, following similar

procedure to the Gross-Neveu model, one can expect new theories from the model.
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