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PREFACE

This report on ’Design of Genetic Programming Algorithm with simultaneous
Feature Selection and its implementation for handling Big Data’ is prepared un-
der the supervision of Dr. Aruna Tiwari, Assistant Professor, Computer Science and
Engineering, IIT Indore.

Through this report, we have tried to provide a detailed description of the tech-
nologies that have been used to design and modify the Genetic Programming Al-
gorithm to produce an efficient novel algorithm for classification. We have tried
and tested the same on variable datasets of medical domain. Further, we have de-
signed the scalable novel algorithm corresponding to the same for handling big
data. We have also tried to implement this proposed algorithm to the best of our
abilities.

We have tried our best to explain the proposed algorithms in detail. The com-
parison of proposed algorithm with already existing models is also discussed.
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ABSTRACT

Genetic programming (GP) is an evolutionary optimisation method that produces
functional programs to solve a given task. It has seen various modifications over
its existence for a decade to decrease time taken for its working and to increase
accuracy. One such method is incorporation of feature selection for reducing size
of data and improving performance of machine learning algorithm.

The term ’big data’ has been the most popular topic in recent years in practice,
for realising the value and volume of data. These data sets are so large or com-
plex that traditional data processing applications are inadequate to deal with them.
Challenges include analysis, capture, data curation, search, sharing, storage, trans-
fer, visualisation, querying, updating and information privacy. Many information
technologies and software are proposed to deal with big data, such as Hadoop,
NoSQL databases, Apache Spark and cloud computing. Big data has been ex-
ploited to make it at use by various optimised algorithms and parallel computing
concepts. In healthcare industry, the demand for storage and maintenance of large
chunks of patients’ data is ever increasing due to rising population and technology
over the years which has resulted in the increase of details about clinical and lab-
oratory tests, imaging, prescription and medication. These data can be called ’big
data’, because of their size, complexity and diversity. Big data analytics can be tar-
geted to aim at improving patient care and identifying preventive measures proac-
tively to save lives and recommend lifestyle changes for a peaceful and healthier
life.

In our project, we have proposed a novel algorithm of genetic programming with
simultaneous feature selection.The results on testing over two datasets, namely
Parkinson Disease[2] and Diabetes Retinopathy[3], from UCI repository suggest
that the feature selection approach incorporated in the process of hybrid GP[1] is
more efficient and superior than regular hybrid GP. We also explore the problems
faced by GP when applied on bigger sets of data and optimize the novel GP algo-
rithm in such a way that it can be applied effectively to handle big data. We have
implemented it in Apache Spark 1.6.2 on the replicated big data sets on Microsoft
Azure clusters and recorded results. We are trying to optimize the implementation
further for reducing time, thereby increasing its usability.
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Chapter 1

Introduction

This chapter highlights the background and motivation for the project. The prob-
lem statement has been described of the project and the importance of the results
is also clearly portrayed. Towards the end, the objectives and expectations to solve
the problem statement as far as possible.

1.1 Background

Classifier is an important concept of machine learning which involve training of
the machine according to the data provided to it so that it can predict the nature of
datapoint given to it. Medical classification is the process of transforming descrip-
tions of medical diagnoses and procedures into machine classifier. The diagnoses
and procedures are usually taken from a variety of sources within the healthcare
record, such as the transcription of the physician’s notes, laboratory results, radi-
ologic results, and other sources and converted into useful dataset for training of
the machine to predict useful results efficiently.

The motivation behind this project lies in the health domain and the data collected
exponentially every coming day in this field. With the advancement of technology
in medical domain, artificial intelligence can help in increasing the lifespan of this
species by various ways and implementation. One such implementation is classifi-
cation of disease and testing people with the machines to analyse if they are prone
to disease or not. It is necessary as it can help to predict effectively the disease a
person may have and can take appropriate precautions. In broader aspect, it can
save the lives of many when implement for real time use. In this project, we try to
propose, implement and compare modified variations of machine learning algo-
rithm (evolutionary algorithm - Genetic Programming) to build a better classifier
that enables us to train and test the dataset for benefit and progress in health do-
main. We aim to implement our algorithm for Parkinson Disease (PD)[2] and also
for diabetes retinopathy[3] to classify whether a person is affected or not.

Genetic Programming is an evolutionary algorithm and if not optimised, takes
a considerable amount of time for implementation. Hence, it needs to be modified
and optimised to fully utilise its potential benefits of machine learning for big data
sets. Multi-objective GP is a more sophisticated technique which uses more than
one objectives for evaluating fitness function and henceforth, gives more accurate
and desired outcomes.

Feature selection is important while classification. There are standardly two types
of feature selection possible, namely wrapper method and filter method. To over-
come the disadvantages of both of the methods, a hybrid method for feature selec-
tion is proposed to increase the accuracy of the classifier. Feature selection decrease
the size of the data input in use and give a direction to the evolution of genetic pro-
gramming classifier. Thus, a novel generic multi-objective based hybrid genetic
programming algorithm is being proposed and implemented for small datasets
from UCI repositories.

1



2 Chapter 1. Introduction

With the advancement in living, a huge amount of data containing useful infor-
mation, called Big Data, is generated on a daily basis. Traditional machine learn-
ing has been largely concerned with developing techniques for small or modestly
sized datasets. These techniques fail to scale up well for large data, a situation be-
coming increasingly common in today’s world. ’Big data’ is gaining momentum
in every sense of the world. The term ’big data’ often refers simply to the use of
predictive analytics, user behaviour analytics, or certain other advanced data an-
alytics methods that extract value from data, and seldom to a particular size of
data set. In medical domain, the data collected from various clinics, hospitals and
laboratories is increasing exponentially. To make technology beneficial for medic-
inal field, these data are utilised through and through everywhere. Hence, it is
essential to introduce such algorithms that work aptly for big data. For processing
such tremendous volume of data, there is a need of Big Data frameworks such as
Hadoop MapReduce, Apache Spark etc. Among these, Apache Spark performs up
to 100 times faster than conventional frameworks like Hadoop MapReduce. For
the effective analysis and interpretation of this data, scalable Machine Learning
methods are required to overcome the space and time bottlenecks. Most of the
IT giants today are expanding their databases and using technologies to handle
big data requirements. For example, Walmart’s databases are estimated to contain
more than 2.5 petabytes of data, and Facebook stores more than 30 Petabytes of
user generated data[20]. This thesis introduces a technique to distribute GP over
Apache Spark cluster. For the efficient novel algorithm for small or modestly sized
datasets, we designed a distributed version of the same and tried implementing it
on Apache Spark Azure cluster. The dataset of UCI repository is replicated mani-
folds on the cluster itself produce a dataset big enough to be considered big data.

1.2 Objectives

The project is divided into two parts - one to increase the accuracy of the classifier,
and the other to handle the computational, storage, and communications bottle-
necks in big data. We stress on fixing the domain as healthcare because it is the
one where speed of the algorithm can be compromised but accuracy cannot be
compromised at any cost. Thus, we had the following objectives:

1. Propose a novel algorithm for Genetic Programming with simultaneous Fea-
ture Selection.

2. Implement this algorithm and exhaustively test on benchmark datasets.

3. Enhance this algorithm for handling and extracting knowledge from big data.

4. Finally, implement this scalable algorithm on real Apache Spark clusters for
handling Big Data.



Chapter 2

Literature Review

The problem statement and the objectives mentioned in chapter 1 are real life prob-
lems pertaining to classification. Accuracy and efficient classifier is very important
in many domains such as in medical domain. For example, with the advent of ma-
chine learning, early detection of a disease helps to control and cater to the disease
in a better and effective manner. Many classifiers have been designed and put to
implementation before for medical diagnosis which use genetic programming as
their base algorithm. Increasing the accuracy of the classifier has always been the
struggle. One of the approaches of machine learning is evolutionary approach. In
this chapter, basics of evolutionary algorithm are discussed, focusing on the ap-
proach used in this project - Genetic Programming. Further the chapter focuses on
big data concepts and how its handling is done.

2.1 Evolutionary Algorithm

In artificial intelligence, an evolutionary algorithm (EA) is a subset of evolutionary
computation, a generic population-based meta-heuristic optimization algorithm.
An EA uses mechanisms inspired by biological evolution, such as reproduction,
mutation, recombination, and selection. Candidate solutions to the optimization
problem play the role of individuals in a population, and the fitness function de-
termines the quality of the solutions. Evolution of the population then takes place
after the repeated application of the above operators. Evolutionary algorithms of-
ten perform well approximating solutions to all types of problems because they
ideally do not make any assumption about the underlying fitness landscape; this
generality is shown by success in fields as diverse as engineering, art, biology, eco-
nomics, marketing, genetics, operations research, robotics, social sciences, physics,
politics and chemistry.

In most real applications of EAs, computational complexity is a prohibiting fac-
tor. In fact, this computational complexity is due to fitness function evaluation.
Fitness approximation is one of the solutions to overcome this difficulty. However,
seemingly simple EA can solve complex problems; therefore, there may be no di-
rect link between algorithm complexity and problem complexity. In Figure 2.1, the
cycle of evolutionary algorithm is depicted which is iterated through every gener-
ation. In this thesis, Genetic Programming has been used and thus, in following
sections, the process undertaken in Genetic Programming is seen in detail along
with other related components.

3



4 Chapter 2. Literature Review

FIGURE 2.1: Evolutionary Algorithm Cycle

2.2 Genetic Programming

In artificial intelligence, Genetic Programming (GP) is a technique whereby com-
puter programs are treated as a set of genes that are then modified (evolved) using
an evolutionary algorithm. The result is a computer program able to perform well
in a predefined task. GP can indeed be seen as an application of evolutionary al-
gorithms to problems where each individual is a computer program. The methods
used to encode a computer program in an artificial chromosome and to evaluate
its fitness with respect to the predefined task are central in the GP technique and
still a subject of active research.

The executional steps of genetic programming[8] are as follows:

• Randomly create an initial population (generation 0) of individual computer
programs composed of the available functions and terminals.

• Iteratively perform the following sub-steps (called a generation) on the pop-
ulation until the termination criterion is satisfied:

1. Execute each program in the population and evaluate it’s fitness using
the problem’s fitness measure.

2. Select one or two individual program(s) from the population with a
probability based on fitness (with reselection allowed) to participate in
the genetic operations in (3).

3. Create new individual program(s) for the population by applying the
following genetic operations with specified probabilities:
(a) Reproduction: Copy the selected individual program to the new

population.
(b) Crossover Create new offspring program(s) for the new popula-

tion by recombining randomly chosen parts from two selected pro-
grams.

(c) Mutation: Create one new offspring program for the new popula-
tion by randomly mutating a randomly chosen part of the selected
program.

• After the termination criterion is satisfied, the single best program in the pop-
ulation produced during the run (the best-so-far individual) is harvested and
designated as the result of the run. If the run is successful, the result may be
a solution (or approximate solution) to the problem.



Chapter 2. Literature Review 5

2.2.1 Reproduction

This is one of the basic operators of genetic programming. In this, selected in-
dividuals copy themselves into the new population. It is effectively the same as
one individual surviving into the next generation. The best solutions are directly
passed on to the next generation, following the concept of Darwin’s survival of the
fittest.

2.2.2 Mutation

The mutation operator encourages genetic diversity amongst solutions and at-
tempts to prevent the genetic algorithm converging to a local minimum by stop-
ping the solutions becoming too close to one another. In mutating the current pool
of solutions, a given solution may change entirely from the previous solution. By
mutating the solutions, a genetic program can reach an improved solution solely
through the mutation operator. It, thus, adds diversity in the given population,
giving chances to the newer features and functions to find their place in the tree.

FIGURE 2.2: Tree Mutation

2.2.3 Crossover

Crossover is the process of taking more than one parent solutions (chromosomes)
and producing a child solution from them. By recombining portions of good so-
lutions, the genetic program is more likely to create a better solution. There are
a number of different methods for combining the parent solutions, including the
edge recombination operator (ERO) and the ’cut and splice crossover’ and ’uni-
form crossover’ methods. The crossover method is often chosen to closely match
the chromosome’s representation of the solution. Similarly, crossover methods
may be particularly suited to certain problems.Thus, we generate new offsprings
by exchanging features of two parents. This is applied on an individual by simply
switching one of its nodes with another node from another individual in the pop-
ulation. This is done to improve the quality of the trees in the given population
using the same function set and feature set as in the present trees. The different
types of crossover used in the project are as follows:

• Standard Crossover
Two new offsprings are generated from two parents by exchanging the sub-
trees at a random point and best two out of the four (parents+offsprings) are
passed on to next generation.

• Standard four-time Crossover
Four new offsprings are generated from two parents by exchanging the sub-
trees at a random point and best two out of the six (parents+offsprings) are
passed on to next generation.
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FIGURE 2.3: Tree Crossover

• Two point Crossover
In this, two random points are chosen of the two parents and the subtrees
from those two points are exchanged. Best two out of the four (parents+offsprings)
are passed on to the next generation.

• Hill Climbing Crossover
Hill climbing is an iterative algorithm that starts with an arbitrary solution to
a problem, then attempts to find a better solution by incrementally changing
a single element of the solution. If the change produces a better solution, an
incremental change is made to the new solution, repeating until no further
improvements can be found. In its application as crossover operator, off-
springs are generated by exchanging subtrees of two parents at one random
point iteratively till the child is no longer better than its immediate parent.

2.2.4 Expression Tree

An expression tree is a special kind of a binary tree used to represent expressions,
either algebraic or boolean, and may contain both unary and binary operators. In
this, each internal node corresponds to operator and each leaf node corresponds to
operand. In genetic programming, expression tree is used as a classifier to evaluate
the features of the dataset.

FIGURE 2.4: An Expression Tree: here, a tree (for a class) in a classifier
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2.2.5 Fitness Function

A fitness function is a particular type of objective function that is used to sum-
marise, as a single figure of merit, how close a given design solution is to achieving
the set aims. The fitness function takes a candidate solution to the problem as in-
put and produces as output of how ’fit’ or how ’good’ the solution is with respect
to the problem in consideration. Calculation of fitness value is done repeatedly in
GP and therefore it should be sufficiently fast. A slow computation of the fitness
value can adversely affect a GA and make it exceptionally slow. In most cases the
fitness function and the objective function are the same as the objective is to either
maximise or minimise the given objective function.

2.2.6 Intron Detection

In nature, introns denote DNA segments in genes with information that is not ex-
pressed in proteins[15]. In GP, introns are referred to the part of the binary expres-
sion tree that need optimisation and are uselessly calculated. For faster and easier
computations, these non optimised section must be reduced into simpler forms.
This increases the scope for better computation and more reliable features in the
classifier. This is one of the most important element in optimisation of trees in a
classifier for Genetic Programming.

FIGURE 2.5: Intron Detection and Elimination

2.3 Feature Selection

The process of selecting best features out of the feature set in the given database is
referred as feature selection. In machine learning and statistics, feature selection,
also known as variable selection, attribute selection or variable subset selection, is
the process of selecting a subset of relevant features (variables, predictors) for use
in model construction. Feature selection techniques are used for three reasons:

• Simplification of models to make them easier to interpret by researchers/users.

• Shorter training time.

• Enhanced generalization by reducing overfitting.

2.3.1 Filter Method

In this, the subset selection procedure is independent of the learning algorithm and
is generally a pre-processing step[16]. This leads to a faster learning pipeline but it
is possible for the criterion used in the pre-processing step to result in a subset that
may not work very well downstream in the learning algorithm. Thus, some use-
ful features might be eliminated during feature selection while some useless ones
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might be incorporated, destroying the dataset and hence, decreasing the efficiency
of classifier.

2.3.2 Wrapper Method

In this, the subset selection takes place based on the learning algorithm used to
train the model itself. The expression wrapper approach covers the category of
variable subset selection algorithms that apply a learning algorithm in order to
conduct the search for the optimal or a near-optimal subset[16]. Every subset that
is proposed by the subset selection measure is evaluated in the context of the learn-
ing algorithm. This means that computationally intensive learning algorithms can-
not be used as it may lead to overfitting of the machine learning to the training
database.

2.4 Preliminary of Multi-Objective

When an optimization problem involves more than one objective function, the
task of finding one or more optimum solutions is known as multi-objective op-
timization[11]. It is a more natural way of representation of real world scenarios.
The presence of multiple objectives (may or not be conflicting) is natural in many
real world cases. Since no one solution can be termed as an optimum solution to
multiple conflicting objectives, the resulting multi-objective resorts to a number of
trade-off optimal solutions. Conventional optimization methods can at best find
one solution in one simulation run, thereby making them inconvenient to solve
multi objective problems. Whereas, Evolutionary Algorithms (like Genetic Pro-
gramming) can find multiple optimal solutions in one single simulation run due
to its population approach. This makes EA the ideal candidates for solving multi-
objective problems.

For a nontrivial multi-objective optimization problem, there does not exist a single
solution that simultaneously optimizes each objective. In that case, the objective
functions are said to be conflicting, and there exists a (possibly infinite) number
of Pareto optimal solutions. A solution is called nondominated, Pareto optimal,
Pareto efficient or noninferior, if none of the objective functions can be improved
in value without degrading some of the other objective values. The goal may be to
find a representative set of Pareto optimal solutions, and/or quantify the trade-offs
in satisfying the different objectives, and/or finding a single solution that satisfies
the subjective preferences of a human decision maker (DM).

In the thesis, we use the concept of multi-objectivity in the sense that we find the
features or the attributes most useful for the classification and use these good fea-
ture dataset to further make modifications in the classifiers. This is done so that
we get better classifier as soon as possible. Also, it reduces the dataset size, thus,
exploiting the dataset, instead of simply exploring it throughout. Exploitation is
one of the most used ways of machine learning to get the best classifier in a given
surrounding.

2.5 Basics of Classification

In machine learning and statistics, classification is the problem of identifying to
which of a set of categories (sub-populations) a new observation belongs, on the
basis of a training set of data containing observations (or instances) whose cate-
gory membership is known. Classification is an example of pattern recognition.
In the terminology of machine learning, classification is considered an instance of
supervised learning, i.e. learning where a training set of correctly identified ob-
servations is available. The corresponding unsupervised procedure is known as
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clustering, and involves grouping data into categories based on some measure of
inherent similarity or distance. An algorithm that implements classification, espe-
cially in a concrete implementation, is known as a classifier. The term ’classifier’
sometimes also refers to the mathematical function, implemented by a classifica-
tion algorithm, that maps input data to a category. Example of classifications are:
text categorisation (e.g., spam filtering), fraud detection, optical character recogni-
tion, machine vision (e.g., face detection), natural-language processing (e.g., spo-
ken language understanding), market segmentation (e.g.: predict if customer will
respond to promotion), bioinformatics (e.g., classify proteins according to their
function), etc.[17]

FIGURE 2.6: Classification Flowchart

2.6 Survey on Big Data

Big data is a term that describes the large volume of data - both structured and
unstructured - that inundates a business on a day-to-day basis. But it’s not the
amount of data that’s important. It’s what organisations do with the data that mat-
ters. Big data can be analysed for insights that lead to better decisions and strate-
gic business moves. Industry analyst Doug Laney articulated the now-mainstream
definition of big data as the three Vs[18]:

1. Volume
Organizations collect data from a variety of sources, including business trans-
actions, social media and information from sensor or machine-to-machine
data. In the past, storing it would’ve been a problem - but new technologies
(such as Hadoop) have eased the burden.

2. Velocity
Data streams in at an unprecedented speed and must be dealt with in a timely
manner. RFID tags, sensors and smart metering are driving the need to deal
with torrents of data in near-real time.

3. Variety
Data comes in all types of formats - from structured, numeric data in tradi-
tional databases to unstructured text documents, email, video, audio, stock
ticker data and financial transactions.

We focus on two main topics of interest as enlisted below:

• Importance: The importance of big data doesn’t revolve around how much
data we have, but what we do with it. We can take data from any source and
analyse it to find answers that enable 1.) cost reduction; 2.) time reduction;
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3.) new product development and optimised offerings; 4.) smart decision
making. When we combine big data with high-powered analytics, we can
accomplish business-related tasks such as:

– Determining root causes of failures, issues and defects in near-real time.

– Generating coupons at the point of sale based on the customer’s buying
habits.

– Recalculating entire risk portfolios in minutes.

– Detecting fraudulent behaviour before it affects your organisation.

• Health Care: Patient records, treatment plans, prescription information and
other relevant information all collected together from various sources can
amount to large amount of data. When it comes to health care, everything
needs to be done quickly, accurately and, in some cases, with enough trans-
parency to satisfy stringent industry regulations. When big data is managed
effectively, health care providers can uncover hidden insights that improve
patient care. A number of use cases in healthcare are well suited for a big
data solution. Some academic or research focused healthcare institutions are
either experimenting with big data or using it in advanced research projects.
Those institutions draw upon data scientists, statisticians, graduate students,
and the like to wrangle the complexities of big data. This is done with the be-
lief that prevention is better than cure. Thus, analysis of big data is important
for making technology advancement worth it.

2.7 Big Data Handling Framework

2.7.1 Apache Spark

Apache Spark is an open source cluster computing framework. Originally devel-
oped at the University of California, Berkeley’s AMPLab, the Spark codebase was
later donated to the Apache Software Foundation, which has maintained it since.
Spark is optimised for iterative algorithms and interactive data analysis, which
perform cyclic operations on the same set of data. Spark provides an interface
for programming entire clusters with implicit data parallelism and fault-tolerance.
Apache Spark is a lightning-fast cluster computing designed for fast computation.
It was built on top of Hadoop MapReduce and it extends the MapReduce model to
efficiently use more types of computations which includes Interactive Queries and
Stream Processing. Languages supported by Apache Spark are Java, Scala, Python
and R. Operating system are Linux, Windows and OSX.

FIGURE 2.7: Components of Spark
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The Spark project stack currently is comprised of Spark Core and four libraries
that are optimized to address the requirements of four different use cases. Individ-
ual applications will typically require Spark Core and at least one of the libraries.
These libraries are:

• Spark SQL

• Spark Streaming

• MLlib

• GraphX

• Spark R

FIGURE 2.8: Apache Spark Architecture

Spark can run over a variety of cluster managers, a simple cluster manager in-
cluded in Spark itself known as Standalone Scheduler, on Hadoop YARN [6], or
on Apache Mesos [7]. Data can be stored in HDFS, HBase, and any Hadoop data
source. For the purpose of this thesis, we are using Spark on YARN and HDFS for
distributed data storage.

• Resilient Distributed Dataset
Resilient Distributed Dataset (RDD) is the primary data abstraction in Apache
Spark and the core of Spark (that many often refer to as Spark Core). A RDD
is a resilient and distributed collection of records. RDD is the bread and but-
ter of Spark, and mastering the concept is of utmost importance.With RDD,
the creators of Spark managed to hide data partitioning and so distribution
that in turn allowed them to design parallel computational framework with
a higher-level programming interface (API) for four mainstream program-
ming languages - Java, Scala, Python and R. RDD, by its name, implies the
following:

– Resilient
Fault-tolerant with the help of RDD lineage graph and so able to recom-
pute missing or damaged partitions due to node failures.

– Distributed
As data resides on multiple nodes in a cluster.

– Dataset
Collection of partitioned data with primitive values or values of values,
e.g. tuples or other objects (that represent records of the data you work
with).

There are two ways to create RDDs - parallelizing an existing collection in
your driver program, or referencing a dataset in an external storage system.
The Spark RDD API introduces few Transformations and few Actions to ma-
nipulate RDD.

– Transformation
This creates new RDD from existing RDD like map, reduceByKey and
filter. Transformation is executed on demand. That means they are com-
puted lazily.
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FIGURE 2.9: Apache Spark RDDs

– Action
Actions return final results of RDD computations. Actions triggers ex-
ecution using lineage graph to load the data into original RDD, carry
out all intermediate transformations and return final results to Driver
program or write it out to file system.

FIGURE 2.10: Apache Spark RDDs: Transformation and Action

In Spark RDD, data does not get loaded immediately, neither any of the trans-
formation actually get instantly computed, till you call an action like collect
or count or save output to file system. So, the data is not loaded until it is
necessary saving memory blocking in advance. Spark uses lazy evaluation
to reduce the number of passes it has to take over data by chaining operations
together.

• Interactive Operations on Spark RDD
Similarly, unlike as in Hadoop, if different queries are run on the same set of
data repeatedly, this particular data can be kept in memory for better execu-
tion times. By default, each transformed RDD may be recomputed each time
you run an action on it. However, you may also persist an RDD in memory,
in which case Spark will keep the elements around on the cluster for much
faster access, the next time you query it. There is also support for persisting
RDDs on disk, or replicated across multiple nodes.
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FIGURE 2.11: Interactive Operations on Spark

• Iterative Operations on Spark RDD
Unlike MapReduce in Hadoop as discussed in later section, the iterative op-
erations on Spark RDD will store intermediate results in a distributed mem-
ory instead of Stable storage (Disk) and make the system faster.

FIGURE 2.12: Iterative Operations on Spark

• Spark vs Hadoop
Spark uses Hadoop in two ways- one is storage and second is processing.

Since Spark has its own cluster management computation, it uses Hadoop
for storage purpose only. Salient features are as follows:

– Faster
Execute batch processing jobs , about 10 to 100 times faster than the
Hadoop MapReduce framework just by merely cutting down on the
number of reads and writes to the disc. MapReduce does not lever-
age the memory of the Hadoop cluster to the maximum. In Spark the
concept of RDDs (Resilient Distributed Datasets) lets you save data on
memory and preserve it to the disc if and only if it is required and as
well it does not have any kind of synchronization barriers that possi-
bly could slow down the process. Thus the general execution engine of
Spark is much faster than Hadoop MapReduce with the use of memory.

– Easy Management
With Hadoop, it is possible to perform Streaming, Batch Processing and
Machine Learning all in the same cluster. With Spark, it is possible to
control different kinds of workloads, so if there is an interaction between
various workloads in the same process it is easier to manage and secure
such workloads which come as a limitation with MapReduce.

– Spark Streaming- Real Time Method to Process Streams
In case of Hadoop MapReduce you just get to process a batch of stored
data but with Hadoop Spark it is as well possible to modify the data in
real time through Spark Streaming. Spark streaming is based on a paper
Discretized Streams, which proposes a new model for doing windowed
computations on streams using micro batches. Hadoop doesn’t support
this.

– Caching
Spark ensures lower latency computations by caching the partial results
across its memory of distributed workers unlike MapReduce which is
disk oriented completely.
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– Recovery
RDD is the main abstraction of spark. It allows recovery of failed nodes
by re-computation of the DAG while also supporting a more similar
recovery style to Hadoop by way of checkpointing, to reduce the de-
pendencies of an RDD. Storing a spark job in a DAG allows for lazy
computation of RDD’s and can also allow spark’s optimization engine
to schedule the flow in ways that make a big difference in performance.

– Spark API
Hadoop MapReduce has a very strict API that doesn’t allow for as much
versatility. Since spark abstracts away many of the low level details it
allows for more productivity. Also things like broadcast variables and
accumulators are much more versatile than DistributedCache and coun-
ters IMO.

– Scheduler
As a product of in memory computation spark sort of acts as it’s own
flow scheduler. Whereas with standard MR you need an external job
scheduler like Azkaban or Oozie to schedule complex flows.

– Iterative computations
Spark has the upper hand as long as we’re talking about iterative com-
putations that need to pass over the same data many times. But when
it comes to one-pass ETL-like jobs, for example, data transformation or
data integration, then MapReduce is the deal - this is what it was de-
signed for.

FIGURE 2.13: Working of MapReduce: Iterative

– Cost
The memory in the Spark cluster should be at least as large as the amount
of data you need to process, because the data has to fit into the mem-
ory for optimal performance. So, if you need to process really Big Data,
Hadoop will definitely be the cheaper option since hard disk space comes
at a much lower rate than memory space.
On the other hand, considering Spark’s benchmarks, it should be more
cost-effective since less hardware can perform the same tasks much faster,
especially on the cloud where compute power is paid per use.

– Failure Tolerance
Spark has retries per task and speculative execution - just like MapRe-
duce. If a process crashes in the middle of execution, it could continue
where it left off, whereas Spark will have to start processing from the
beginning.

– Security
Spark security is still in its infancy; Hadoop MapReduce has more secu-
rity features and projects like kerberos , sentry etc.

• Broadcast and Accumulator
Broadcast is part of Spark that is responsible for broadcasting information
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FIGURE 2.14: Working of MapReduce: Interactive

across nodes in a cluster. When you broadcast a value, it is copied to ex-
ecutors only once (while it is copied multiple times for tasks otherwise). It
means that broadcast can help to get your Spark application faster if you have
a large value to use in tasks or there are more tasks than executors. Broad-
cast variables allow the programmer to keep a read-only variable cached on
each machine rather than shipping a copy of it with tasks. Explicitly creating
broadcast variables is only useful when tasks across multiple stages need the
same data or when caching the data in deserialized form is important.

FIGURE 2.15: Broadcast working in master-worker Apache Spark

Accumulators are mutable variables that are only added through an associa-
tive and commutative operation and can therefore be efficiently supported
in parallel. They can be used to implement counters (as in MapReduce) or
sums. Spark natively supports accumulators of numeric types, and program-
mers can add support for new types. A numeric accumulator can be created
by calling SparkContext methods to accumulate values of type Long or Dou-
ble, as required. Tasks running on a cluster can then add to it using the add
method. However, they cannot read its value. Only the driver (master) pro-
gram can read the accumulator’s value, using its value method.

2.7.2 Cloud Platform : Microsoft Azure

Microsoft Azure is an open, flexible and user friendly cloud computing platform
and infrastructure created by Microsoft for building, deploying, and managing
applications and services through a global network of Microsoft-managed data
centers. It provides SaaS, PaaS and IaaS services and supports many different
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programming languages, tools and frameworks, including both Microsoft-specific
and third-party software and systems. Azure HDInsight is Microsoft’s managed
Hadoop and other Big Data solutions. Spark for Azure HDInsight offers an enterprise-
ready Spark solution that is fully managed, secured and highly available, made
simpler for users.

Like Microsoft Azure, there are various other Cloud Platforms available by differ-
ent IT giants such as IBM(Bluemix), Google(Cloud Dataproc), Amazon(Amazon
Web Services), etc.



Chapter 3

Analysis and Design

In this chapter, we will go through all the algorithms designed and implemented.
This includes the modified approach of feature selection for eliminating unneces-
sary attributes in datasets, followed by the three main algorithms that are com-
pared. Towards the end of the chapter, we discuss about the scalable version of the
best performing algorithm to handle big data efficiently.

3.1 Modified Feature Selection

Feature selection is a method of extracting important features that play significant
role in classification of the data. In this method, the features that play important
role to distinguish data into classes are being extracted so as to ease the further
training of the model. Figure 3.1 shows where feature selection is incorporated in
GP cycle.

FIGURE 3.1: Incorporation of Feature Selection in GP Cycle

Following steps were followed for feature selection:

1. Get average fitness of all the fitness calculated, classwise.

average_fitness[class_j] =
n∑

i=1

fitness_of_tree[j][i])
n

(3.1)

where,
’j’ represents class (1 ≤ j ≤ number of total classes = m)
’i’ represents classifier number (1 ≤ i ≤ number of classifiers in a generation =
n).
Example : In a vehicle dataset, there are 4 classes, and 18 attribute features,
and let there be 100 classifiers in each generation Each classifier will have 4
trees (for classifying the data among the four classes) therefore,

average_fitness[1] =
100∑
i=1

fitness_of_tree[1][i])
100

17
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average_fitness[2] =
100∑
i=1

fitness_of_tree[2][i])
100

average_fitness[3] =
100∑
i=1

fitness_of_tree[3][i])
100

average_fitness[4] =
100∑
i=1

fitness_of_tree[4][i])
100

2. Create a table as shown and assign weights as Wgt[j][k] = 0, where ‘k’ repre-
sents the feature/attribute number and (1 ≤ k ≤ total number of features).

FIGURE 3.2: 2-D Matrix for weight assignment

For all those trees for which,

fitness_of_tree[j][i] ≥ average_fitness[j] (3.2)

Assign weights as Wgt[j][k] = Wgt[j][k] + 1

3. Repeat till half of the generation.

4. Now, on reaching (half + 1)th generation, evaluate the average weight of the
features for each class as,

average_weight[j] =
100∑
k=1

wgt[j][k]

m
(3.3)

where,
‘j’ represents class (1 ≤ j ≤ number of total classes)
‘k’ represents the features number and (1 ≤ k ≤ number of total features.
For all those features, such that

wgt[j][k] ≥ average_weight[j] (3.4)

Store them as good features for each class.

5. Now, from (half + 1)th generation onwards, for mutation operator, use fea-
tures among these good features for the respective classes. This will help us
use the wanted and important features for each respective class instead of
total feature dataset.

3.2 Standard/Normal Feature Selection Algorithm

This section refers to one of the algorithm that was implemented and trained. It
is incorporation of modified fitness selection as described in section 3.1 to general
Genetic Programming algorithm. We will call it ‘Normal Feature Selection Algo-
rithm’ in the rest of the thesis. Following are the steps:

1. Initial Population of randomly generated trees is created. This is considered
as Generation 1. In this, total population of 100 classifiers are considered.
Each classifier has a tree corresponding to every class respectively.

2. The classifiers are sorted according to cumulative fitness of each classifier in
non increasing order.



Chapter 3. Analysis and Design 19

3. First 0.25 classifiers of total population undergo reproduction operation.

4. Next 0.25 classifiers of total population experience mutation operation at ran-
dom node of the trees in the respective classifier.

5. Last 0.5 classifiers of total population undergo crossover operation.

6. Apply modified feature selection as described in section 3.1 on this algo-
rithm.

7. At the termination point, the first classifier of the sorted array is considered
most efficient.

3.3 Hybrid Algorithm

This section refers to the second algorithm implemented for comparison used in
[1]. It is the brief description of the hybrid algorithm used. Please refer [1] for
details. The steps involved are as follows:

1. Initial Population of randomly generated trees is created. This is considered
as Generation 1. In this, total population of 100 classifiers are considered.
Each classifier has a tree corresponding to every class respectively.

2. The classifiers are sorted according to cumulative fitness of each classifier in
non increasing order.

3. During application of genetic programming operators, first the given popu-
lation is divided in the ratio of 2:8.
Reproduction operator is applied to the first 2x population and hybrid crossover
operator to the rest 8x.

FIGURE 3.3: Structure of a particular generation

4. Out of these 80%, apply two point crossover, as described in section 2.2.3
to half of the population. To the other half, apply standard crossover, as
described in section 2.2.3. Now, sort the parent classifier according to the
cumulative fitness of the children.

5. For A1: Divide the children of this in two equal parts.
Let us call them as A11 and A12.

6. For A11: Apply hill climbing, as in section 2.2.3 to the parents of children in
this group.
For A12: Apply standard crossover, as in section 2.2.3 to the parents of chil-
dren in this group.
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FIGURE 3.4: Distribution of Crossover and Mutation parts in a
generation

7. For A2: Use the parents for mutation.

8. At the termination point, the first classifier of the sorted array is considered
most efficient.

3.4 Hybrid Feature Selection Algorithm

This incorporates the benefits of both the hybrid version as well as the feature
selection. Thus, producing a better classifier, theoretically. We implemented this
theoretically better version as well to compare with the existing models of Genetic
Programming for producing classifier. The steps of hybrid model of GP was fol-
lowed as in section 3.3. The only change comes in the feature selection. The feature
selection concept as discussed in 3.1 is followed as well till half of the generation.
For the rest half generation, mutation is done based on the features present in the
good feature set, making the unnecessary features out of question. Theoretical im-
provement in results are guaranteed due to feature selection extraction during the
process of evolution. When implemented practically, we find the results that are
outstandingly better, as shown in chapter 5.

3.5 Scalable Algorithm for big data

Due to expansion of data exponentially in today’s time, it is next to impossible to
run such serializable iterative algorithms as mentioned in section 3.2, 3.3 and 3.4.
Genetic Programming, being iterative, is a slow process and system used might
crash while being implemented for big data. Thus, making the algorithm scalable
is of utmost importance. If we look at the algorithm carefully, we will be able
to understand that the processes followed at each step and how distributed cluster
setup can be put to use. Fitness calculation of each tree is most expensive operation
in this algorithm as each data point is passed to each tree for evaluation of the
fitness.

3.5.1 Steps Followed

It is not possible to load the complete data file in the memory of the system as
the memory doesn’t allow that much space, thus, making the algorithm useless.
Hence, we use Apache Spark cluster to resolve such issues. This will also reduce
the cost of machine learning and handling the big data appropriately. The steps
are as follows:

1. The data file is taken as input in the form of RDDs by the master. As Spark is
lazy, it is not directly loaded in the memory.
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2. Initial population of 100 classifiers is generated by the master itself. This
operation generates the trees randomly for each class in the classifiers and
hence, it isn’t a very costly operation. Thus, can be done in master node
itself.

3. For calculation of fitness value for each tree in the classifiers, each data point
must be evaluated by the expression tree. Thus, making it the most difficult
task. So, we broadcast[12] (refer chapter 2 of this thesis) the trees of each
classifier to worker nodes and pass RDD of data file to them. The implemen-
tation of passing RDDs has been done by 2 approaches described later.

4. The fitness of trees evaluated by workers are passed to the master and the
master adds up these to evaluate the cumulative fitness of respective classi-
fiers. The classifiers are then sorted in master node on the basis of the cumu-
lative fitness.

5. The operations of reproduction, mutation and crossover, as described in hy-
brid feature selection algorithm in previous section, are followed thereafter in
master node itself. For each of the operation, the calculation of fitness value
for each tree is done by the worker nodes in the distributed manner. Hence,
making these operations less expensive.

6. This is done till we reach termination stage. Thereafter, the first classifier
from the sorted array of classifiers is taken to be the best.

FIGURE 3.5: Flowchart of scalable algorithm of the hybrid feature
selection algorithm
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3.5.2 Approaches of passing RDDs to the Executors

Following are the two approaches implemented to pass the RDDs to the execu-
tors(worker nodes) for fitness value evaluation for each tree in a classifier:

• 1st Approach
The RDDs are passed as a single datapoint at a time, (line by line). This is
achieved by using ’foreach()’ Spark function. The accumulator, as described
in chapter 2, then increments itself as a part of fitness evaluation, and finally
the value is passed back to the master for further calculations.

• 2nd Approach
The RDDs are passed as fragments to the worker nodes. This is achieved by
using ’mapPartition()’ Spark function. The fitness values from all workers
are added up by using ’reduce()’ Spark function in the master, and further
calculations are performed.

3.5.3 Advantage

This algorithm helps in handling big data in many ways. Enlisted are a few:

• The distributive nature of this algorithm helps to calculate fitness values
more efficiently and thus, reducing the cost.

• The RDDs passed help to read large datafiles in the form of partitions, rather
than as a whole, which eases the handling of big data.

• The cache() function is used for RDDs. Spark supports pulling data sets into
a cluster-wide in-memory cache. This is very useful when data is accessed
repeatedly, such as when querying a small “hot” dataset or when running
an iterative algorithm. Also, when RDD is used in multiple loops, it is best
to keep it in cache. In the proposed algorithm, it is observed that the time
decreases to more than half the time when RDDs are accessed without using
cache(). Hence, keeping it in cache is a good option.

• The Broadcast() function is used to share immutable variables. Here, it is used
to share the trees of all the classifier in a generation to the workers or the
executors for evaluation of fitness. This helps the executors to access each
tree independently for its evaluation through elements of RDD. The details
about its working is described in chapter 2.

• The Accumulator() function is used to share mutable variables. Here, it is
used to find the number of elements that are fit for the tree in the classifier.
This keeps track of the results produced in all the workers or executors to
calculate the collective result. The details about accumulators are described
in chapter 2.



Chapter 4

Setup and Implementation

This chapter discusses about the two phases of the project namely- implementation
on benchmark dataset and implementation on Big dataset. The first section talks
about benchmark dataset whose results and comparative analysis are portrayed in
next chapter. The second section is about the implementation configuration of the
scalable algorithm on big data.

4.1 Benchmark dataset

The sequential implementation of the proposed algorithm as well as other algorithms-
hybrid algorithm, standard/normal with feature selection and Hybrid with feature
selection, as described in chapter 3, was done using following configurations:

• Dataset - UCI Repository : Parkinson Disease[2] as well as Diabetes Retinopa-
thy[3]. Refer Appendix A for Dataset details.

• Software specifications :

– Language used - Java

– IDE - Eclipse

• Code specifications :

– Number of Generations - 100

– Number of Total Population - 100

– Maximum Depth of trees in a classifier - 10

• Hardware Specifications :

– CPU specifications - 8GB RAM

The results were compared and analysis based on training and testing accuracies
and time taken for execution of the algorithms are discussed in chapter 5.

4.2 Big dataset

Cluster of master and worker nodes are used to put scalable algorithm as in chap-
ter 3 to use. Broad implementation details are as follows:

• Dataset - UCI Repository for Parkinson Disease[2] and Diabetes Retinopa-
thy[3] are replicated on the cluster itself for the execution of the algorithm to
generate big data file. The replication is done 50 times, 100 times, 500 times
and 1000 times. The generated data is again transferred to cluster storage.
Refer Appendix A for Dataset details and Appendix D for replication details.

• Language used - Java

• Cloud Platform - Microsoft Azure

• Cluster - real cluster of master-worker concept was setup using HDInsight
on Microsoft Azure. Refer Appendix B, C and D for further details.
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• Hardware details of machines in the cluster -

– Hardware virtual machine images running Ubuntu 14.04 LTS were used.

– Spark cluster was established using HDP(2.4) distribution comprising
of Spark 1.6.2 (HDI 3.4)[].

– The cluster comprised of 2 worker nodes and 1 master node.

– Specifications :

∗ 4 Cores
∗ 28GB RAM
∗ 8 Disks
∗ 200GB Local SSD
∗ 0.35 times faster CPU

• Code specifications :

– Number of Generations - 50

– Number of Total Population - 100

– Maximum Depth of trees in a classifier - 10

• Storage - Azure Blob Storage with HDFS interface.

• Livy - a REST interface for submitting jobs remotely to a Spark cluster



Chapter 5

Experimental Analysis and Results

In this chapter, we will analyse the results obtained from implementation of three
serialized algorithms discussed in chapter 3, namely hybrid algorithm, standard
/ normal with feature selection algorithm and hybrid with feature selection algo-
rithm. The testing was done for two types of dataset as written in chapter 4 and
discussed in Appendix A. For both of the datasets, the result were calculated tak-
ing training to testing ratio as 7 : 3 and 8 : 2. Also, the both approaches of scalable
algorithm were also implemented on the replicated dataset of Parkinson disease.

5.1 Hybrid Model for Genetic Programming Algorithm

• For Parkinson Disease dataset[2], the resultant tables, i.e., table 5.1 and table
5.2 are the following:

TABLE 5.1: Hybrid Model Result of Parkinson Disease Dataset[2]
7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 82.5 84 85 84.5
2 82 81 87 84
3 81 79 83 81
4 81 80 80 80
5 82.5 80 83 81.5

TABLE 5.2: Hybrid Model Result of Parkinson Disease Dataset[2]
8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 80 80 86 83
2 82 78 78 78
3 82 80 80 80
4 82.5 83 83 83
5 83.5 83 75 79

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 82.2 while for 8 : 2, we get 80.6. Also, the time taken is considerably
high because of the iterative nature of GP.
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• For Diabetes Retinopathy dataset[3], the resultant tables, i.e., table 5.3 and
table 5.4 are the following:

TABLE 5.3: Hybrid Model Result of Diabetes Retinopathy Dataset[3]
7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 71.5 73 76 74.5
2 73.5 70 69 69.5
3 71.5 71 71 71
4 74 70 68 69
5 72.5 74 69 71.5

TABLE 5.4: Hybrid Model Result of Diabetes Retinopathy Dataset[3]
8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 73 72 69 70.5
2 72 70 70 70
3 71.5 70 70 70
4 72 75 72 73.5
5 71 70 71 70.5

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 71.1 while for 8 : 2, we get 70.9. Also, the time taken is considerably
high because of the iterative nature of GP.

5.2 Standard/Normal Feature Selection Algorithm

• For Parkinson Disease dataset[2], the resultant tables are the following:

TABLE 5.5: Standard/Normal Feature Selection Model Result of
Parkinson Disease Dataset[2]

7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 83 80 83 81.5
2 83 78 78 78
3 80 85 85 85
4 82.5 87 82 84.5
5 84 78 82 80
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TABLE 5.6: Standard/Normal Feature Selection Model Result of
Parkinson Disease Dataset[2]

8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 82 85 83 84
2 82.5 91 88 89
3 82 81 81 81
4 83 86 81 83.5
5 83.5 72 75 73.5

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 81.8 while for 8 : 2, we get 82.2. Also, the time taken is considerably
high because of the iterative nature of GP.

• For Diabetes Retinopathy dataset[3], the resultant tables are the following:

TABLE 5.7: Standard/Normal Feature Selection Model Result of Dia-
betes Retinopathy Dataset[3]

7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 72.5 76 69 72.5
2 74 72 72 72
3 74 70 71 70.5
4 74 71 72 71.5
5 73 74 72 73

TABLE 5.8: Standard/Normal Feature Selection Model Result of Dia-
betes Retinopathy Dataset[3]

8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 72.5 72 78 75
2 73 70 70 70
3 72 70 72 71
4 73.5 74 71 72.5
5 71 71 72 71.5

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 71.9 while for 8 : 2, we get 72. Also, the time taken is considerably
high because of the iterative nature of GP.
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5.3 Hybrid with Feature Selection Algorithm

• For Parkinson Disease dataset[2], the resultant tables are the following:

TABLE 5.9: Hybrid with Feature Selection Model Result of Parkinson
Disease Dataset[2]
7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 83 78 87 82.5
2 81 84 81 82.5
3 81.5 92 81 86.5
4 83.5 84 85 84.5
5 81 83 90 86.5

TABLE 5.10: Hybrid with Feature Selection Model Result of Parkin-
son Disease Dataset[2]

8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 82 81 83 82
2 82 85 83 84
3 82 81 89 85
4 80 88 81 84.5
5 79.5 89 88 89.5

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 84.5 while for 8 : 2, we get 85. Also, the time taken is considerably
high because of the iterative nature of GP.

• For Diabetes Retinopathy dataset[3], the resultant tables are the following:

TABLE 5.11: Hybrid with Feature Selection Model Result of Diabetes
Retinopathy Dataset[3]

7 : 3 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 71.5 71 74 72.5
2 72.5 71 70 70.5
3 71 75 72 73.5
4 73 74 74 74
5 73 75 73 74
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TABLE 5.12: Hybrid with Feature Selection Model Result of Diabetes
Retinopathy Dataset[3]

8 : 2 - Train : Test

S.No. Train Fitness Tree 1 Fitness Tree 2 Fitness Test Fitness
1 72 72 76 74
2 73 74 73 73.5
3 72 74 71 72.5
4 72 74 72 73
5 72.5 74 68 71.5

Taking the average, we get that for 7 : 3 type of data split-up give the test
fitness = 72.9 while for 8 : 2, we get 72.8. Also, the time taken is considerably
high because of the iterative nature of GP.

5.4 Comparative Study

For Parkinson Disease dataset[2], the resultant tables are the following:

FIGURE 5.1: Statistics of Parkinson Disease

Clearly, the results of both types of train : test ratio show that accuracy is more in
case of hybrid + feature selection algorithm as proposed in section 3.4 of this thesis.



30 Chapter 5. Experimental Analysis and Results

While normal + feature selection algorithm also produced good results, best were
exhibited by hybrid + feature selection algorithm.

• On comparison of ’Hybrid+Feature Selection’ with ’Hybrid’ model, the ac-
curacy increased by 2.3% in case of 7 : 3 train : test ratio and 4.4% in case of
8 : 2.

• On comparison of ’Hybrid+Feature Selection’ with ’Normal+Feature Selec-
tion’ model, the accuracy increased by 2.7% in case of 7 : 3 train : test ratio
and 2.8% in case of 8 : 2.

Thus, not only theoretically is the algorithm more efficient, even its implementa-
tion shows the same for Parkinson Dataset.

For Diabetes Retinopathy dataset[3], the resultant tables are the following:

FIGURE 5.2: Statistics of Diabetes Retinopathy

Clearly, the results of both types of train:test ratio show that accuracy is more in
case of hybrid + feature selection algorithm as proposed in section 3.4 of this thesis.

• On comparison of ’Hybrid+Feature Selection’ with ’Hybrid’ model, the ac-
curacy increased by 1.8% in case of 7 : 3 train : test ratio and 1.9% in case of
8 : 2.

• On comparison of ’Hybrid+Feature Selection’ with ’Normal+Feature Selec-
tion’ model, the accuracy increased by 1.0% in case of 7 : 3 train : test ratio
and 0.8% in case of 8 : 2.

Thus, not only theoretically is the algorithm more efficient, even its implementa-
tion shows the same for Diabetes Retinopathy Dataset.
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5.5 Scalable Hybrid Feature Selection Algorithm

The two approaches implemented for scalable hybrid feature selection algorithm
had comparable accuracy. But the time difference turned out to be significant. In
2nd approach, the time taken was reduced to half. This is due to the network la-
tency as the 2nd approach passes fragments of data from the master to worker at
a time whereas 1st approach passes each element(datapoint) of dataset at a time.
This was done in distributed cluster using scalable algorithm because the file size
became larger than the buffer size of the machine used for serialised algorithm.

Following is the table that shows the :

TABLE 5.13: 1st Approach vs 2nd Approach
Time comparison

S.No. Replication Total instances Time taken by
1st Approach

Time taken by
2nd Approach

1 50 9,750 04:27:03 02:44:46
2 100 19,500 07:38:38 04:22:51
3 500 97,500 13:46:11 09:03:09

Clearly, from the above table, we observed that the time taken was sufficiently
large in case of 1st approach in comparison to 2nd approach though both are per-
forming the same algorithm.

The results from 2nd approach are recorded in the following table:

TABLE 5.14: Scalable Hybrid Feature Selection Algorithm:
2nd Approach

S.No. Replication Toatal
In-

stances

Train
Fitness

Tree 1
Fitness

Tree 2
Fitness

Test
Fitness

Time
Taken

1 50 9,750 82.198 81.335 82.287 81.811 02:44:46
2 100 19,500 82.375 81.424 82.881 82.153 04:22:51
3 500 97,500 83.345 85.095 81.519 83.307 09:03:09

The above algorithm ran for 50 generations whereas the serialized versions were
run for 100 generation. We can conclude from the above table that scalable algo-
rithm can also produce similar results as serialized version and thus can be used
to handle big data. Further optimization can be applied to the scalable version for
reduction in time as described in the next chapter.





Chapter 6

Conclusion and Future Scope

In this chapter, we will discuss about what we conclude from our thesis, what
more can be done and how one must take this research future to real time use for
the betterment of the society. In simple words, the purpose of this project is to get
the better classifier than the already existing. The serialized version using small
data might generate a good classifier but at a slower rate. The time constraint is
overcome here by using distributed concept of Apache Spark. Also, Big data anal-
ysis has been done so as to train the model well and hence get a good classifier that
could classify the data with good accuracy.

As shown in results in chapter 5, it is clearly evident that feature selection in hy-
brid GP model has produced a little better results. Every bit percent of accuracy in
medical domain is important and hence, this is a significant progress. For big data
too, theoretically, we can expect better trees as the classifier will be trained with
more amount of data.

As of now, the proposed scalable algorithm only incorporates the distributed na-
ture of Apache Spark cluster. The points listed below can expand the scope of this
research manifolds:

1. Parallelization over the cores in individual machines of the cluster can be
done to further decrease the time taken by the algorithm to run.

2. In Apache Spark, we use the concept of RDDs. In recent times, Apache Spark
has come up with Spark SQL which works on the concept of dataframes[21],
which are built on top of RDD. This further speeds up the process of extract-
ing information from the datafile.

3. This proposed algorithm can be implemented on Ignite framework, instead
of Apache Spark framework. Ignite is an in-memory computing system, e.g.
the one that treats RAM as the primary storage facility. Whereas others, in-
cluding Spark, only use RAM for processing.

4. The proposed algorithm can be used for real time applications to generate
a classifier at a faster rate by using the available big data, and thus, using
that generated classifier to test the other real-time data. Thus, the classifier
generated can be used in IoT devices and provide near real-time solutions.
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Appendix A

Datasets

A.1 Parkinsons Disease Data Set

TABLE A.1: Parkinson Dataset Description

Data Set Characteristics: Multivariate
Number of Instances: 195

Area: Life
Attribute Characteristics: Real

Number of Attributes: 22
Number of Classes: 2

A.2 Diabetes Retinopathy Dataset

TABLE A.2: Diabetes Retinopathy Dataset

Data Set Characteristics: Multivariate
Number of Instances: 1151

Area: Life
Attribute Characteristics: Integer, Real

Number of Attributes: 18
Number of Classes: 2
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Appendix B

Installation of Azure CLI

Install the Azure Command-Line Interface (Azure CLI) to use a set of open-source
shell-based commands for creating and managing resources in Microsoft Azure.
There are several options to install these cross-platform tools on the computer:

• npm package
Run npm (the package manager for JavaScript) to install the latest Azure CLI
package on your Linux distribution or OS. Requires node.js and npm on your
computer.

• Installer
Download an installer for easy installation on Mac or Windows.

• Docker container
Start using the latest CLI in a ready-to-run Docker container. Requires Docker
host on your computer.

B.1 npm Package

To install the CLI from an npm package, make sure you have downloaded and
installed the latest Node.js, curl and npm. Then, run npm install to install the
azure-cli package:

sudo npm i n s t a l l −g azure−c l i

B.2 Run Azure CLI

After the Azure CLI is installed, run the azure command from your command-line
user interface (Bash, Terminal, Command prompt, and so on).

To see the version of the Azure CLI you installed, type the following:

azure −−vers ion

To update CLI, type the following:

npm update −g azure−c l i
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Appendix C

Cluster configuration and
Initialisation for Microsoft Azure

C.1 Prerequisites

• An Azure subscription.

• A modern web browser. The Azure portal uses HTML5 and Javascript, and
may not function correctly in older web browsers.

C.2 Create Cluster

The Azure portal exposes most of the cluster properties. Using Azure Resource
Manager template, you can hide a lot of details.

• Sign in to the Azure portal.

• Click NEW, Click Data Analytics, and then click HDInsight.

FIGURE C.1: Process of Cluster Creation

• Enter Cluster Name: This name must be globally unique.

• Click Cluster configuration, and then select:
Cluster Type: Spark
Operating System: Linux
Version: Spark 1.6.2 (HDI 3.4)
Cluster Tier: Standard

• Click Credentials, and enter Cluster Login Username, Cluster Login Pass-
word, SSH Username and SSH Password.

• Click Data Source. In the following menu, enter storage account, container
and Location.

• Click Pricing, select the Number of Worker nodes, Worker node size and
Head node size.

• Lastly, select Resource Group for the cluster.

The cluster usually takes about 20 minutes to be deployed along with all the
changes applied appropriately.
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Appendix D

Testing with Azure HDInsight
Apache Spark Cluster

After installing the Azure Command-Line Interface (Azure CLI) you need to fol-
low steps to to upload the test files, submit the jobs and get results.

D.1 Using Azure CLI with Azure Storage

To get started with the Azure, follow the below steps:

• Login to Azure

$ azure log in

• Connect to Azure storage account:

$ export AZURE_STORAGE_ACCOUNT=<account−name>
$ export AZURE_STORAGE_ACCESS_KEY=<key>

• Another way to set default storage account:

$ azure s torage account c o n n e c t i o n s t r i n g show <account−name>

copy the output connection string to the following:

$ export AZURE_STORAGE_CONNECTION_STRING=<connec t ions t r ing >

D.2 Uploading files to storage blob

To upload blobs(jars, csv, txt, etc) in to a container, you can use the Azure Storage
blob upload:

$ azure s torage blob upload ’~/ job/Hello . j a r ’ mycontainer myBlob

D.3 Replicating Data on master node

Replication of dataset to convert it into Big Data which can further be used to
perform Big Data jobs.

• ssh to cluster

$ ssh <username>@<clustername >−ssh . azurehdinsight . net

This will give access to master node’s terminal.

• Copy files from storage

$ hadoop f s −copyToLocal ~/myfi le . t x t
$ hadoop f s −copyToLocal ~/ r e p l i c a t e . j ava

• run the replication code to create Big Data file on master node and then copy
this file to the storage.

$ hadoop f s −copyFromLocal bigdata . t x t ~/bigdata . t x t
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D.4 Submitting Spark Jobs

Spark jobs are submitted through Livy Server that runs on the Master node. Curl
commands are used for that.

• Submit Batch Job

$ c u r l −k −−user "< hdins ight user >: < user password >" −v −H
<content−type > −X POST −d ’ { " f i l e " : " < path to a p p l i c a t i o n j a r >" ,
" className " : " < classname in j a r >" } ’ ’ h t tps ://< spark_cluster_name >.
azurehdinsight . net/ l i v y /batches ’

• Getting information of running batches

$ c u r l −k −−user "< hdins ight user >: < user password >" −v −X GET
" ht tps ://< spark_cluster_name >. azurehdinsight . net/ l i v y /batches "

• Delete a batch job

$ c u r l −k −−user "< hdins ight user >: < user password >" −v −X DELETE
" ht tps ://< spark_cluster_name >. azurehdinsight . net/ l i v y /batches /{ Id } "

D.5 Accessing logs

To access logs:
Goto->Azure Portal->’mycluster’->Cluster Dashboard->YARN
All application of the cluster will be enlisted.
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