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Preface

This report on ‘‘Object Detection in Real-Time Systems using Convolutional

Neural Networks with Deep Learning’’ is prepared under the guidance of Dr. Aruna

Tiwari and Dr. Kapil Ahuja at IIT Indore during the Autumn Semester of academic

year 2016-17.

Through this report we have tried to present a detailed research and analysis

of Convolutional Neural Networks and their application in Object Detection which

might be useful in detecting suspicious activity in videos.

We have tried to the best of our abilities and knowledge to explain the content in

a cogent manner. We have added visual content in an attempt to make the report

more illustrative and understandable.

Parinita Dudhagundi

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore
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Abstract

In daily loops of life, for the purpose of safety and security, surveillance cameras

have proven to be useful. The scenario, when looked from a practical point of view

requires a person to monitor the feed and look for suspicious activity. Through this

report we have tried to present our experiments in designing a system which helps

at reducing the effort of monitoring the surveillance separately.

In the area of Machine Learning, since we have to work on videos i.e., images,

Convolutional Neural Networks (CNNs) have proved to be very useful in that area.

We have used the concept and structure of CNNs to use it for object detection,

starting with images and eventually to videos. Exploiting the idea that a video is a

set of frames, we have attempted at scaling the object detection system from images

to videos.

We have used CNNs and designed a network, training it on a CPU as well as

a high-end GPU and coming to the conclusion that using a GPU saves time on

training. Using high end architecture to save time, the algorithm has been trained

to give dependable results, taking considerable less time. Having realized that a

high-end architecture saves times on training, the network has been expanded and

then implemented to detect objects in a video. Taking frames at regular intervals

and feeding to the trained network gave us prominent results. Since the algorithm

doesn’t need much computation after training, the future idea of implementation in

a real-time system can be made a reality.
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1
Introduction

1.1 Background and Recent Research

Surveillance cameras are video cameras used for the purpose of observing an

area. They are often connected to a recording device, and may be monitored by a

law enforcement officer or a security guard. Cameras and recording equipment are

relatively expensive and usually require human personnel to monitor camera footage

to detect any unusual activity or malpractice.

Governments around the world are known to have developed and actively deployed

highly trained programs for intrusion detection [16]. A majority of such programs are

inaccessible to the wider public, are exclusively proprietary and have an ostensibly

large financial dependency [15]. Our approach would be using significantly lesser

resources and would be open-sourced.

We intend to develop a system which captures the environment through a video

camera, detects any unwanted and malicious activities and alerts personnel thereby

reducing the effort and cost required to constantly monitor footage.

1



CHAPTER 1. INTRODUCTION

1.2 Literature Survey

Convolutional Neural Networks (CNNs) [14] have been demonstrated as an

effective class of models for understanding image content [6, 9, 13]. Compared to

images, there has been little work on application of CNNs to videos because of (a)

the non-availability of large-scale video data sets required for training [2, 3] and (b)

the high computational resource requirement for processing videos.

Most of the object detection using CNNs has been made possible due to the

extended use of large scale public image repositories like ImageNet [7], and high

performance computing architectures like GPUs. Multiple case studies highlight the

innovative CNN models developed fairly recently to compete in the ImageNet Large

Scale Visual Recognition Competition (ILSVRC) [18]. These widely varying models

borrow from each other to improve accuracy.

The AlexNet [13] model (runner-up, ILSVRC 2012) is a derivative of the more

rudimentary LeNet [14] architecture, in that it made use of more convolutional

(CONV) layers and introduced the concept of extended hyper parameters. The VG-

GNet [23] model (runner-up, ILSVRC 2014) focuses on the importance of increasing

the number of CONV layers for achieving better accuracy at the cost of additional

memory and significantly larger set of parameters.

CNNs have not been extensively applied to videos, and the training done for

images has traditionally required the use of very large datasets. We intend to

compare a CNN model’s computation on a CPU and the GPU. Additionally, we

intend to start training with a comparatively small dataset to assess the applicability

of our model to videos in general, and later in real-time environments. Our model

uses concepts borrows from VGGNet and AlexNet. Our network has smaller depth

in order to reduce computation time with hyper parameters associated with each

CONV layer.

2



2
Convolutional Neural

Networks

2.1 Design

An Artificial Neural Network is a network inspired by biological neural networks.

It is capable of learning particular aspects of the input for predictions after being

trained for datasets specific to requirements. Convolutional Neural Networks are

a class of ANNs specifically designed for processing an image because of the high

computational complexity involved.

We feed test images to a CNN as input, and the network ‘learns’ the weights

of its neurons accordingly, thus becoming better equipped at testing samples of

videos with every additional test input. This is called training and testing. The

intermediate layers in the network adjust their neuron weights to reflect a better

prediction for a future input. Each layer is comprised of a two dimensional array of

neurons that we call a depth slice.

A CNN transforms the original image, layer by layer from original pixel values

3



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

Figure 2.1: Comparison of a regular ANN and a Convolutional NN [1]

to final class values. The input is considered to be three dimensional, so the colors

(RGB) represent a new third dimension in addition to the width and the height of

the image [19].

2.2 Layers

2.2.1 Convolutional Layer

A CONV layer has a three-dimensional structure, i.e., the neurons in the CONV

layer are arranged in three dimensions : width, height and depth. It accepts a 3D

input volume and transforms it to a 3D output volume using an activation function.

The CONV layer has filters that look at certain regions of the input, the sum of

which make up the input. Each filter is convolved across the width and height of the

input volume, computing the dot product between the entries of the filter(weights)

and the input and producing a 2-dimensional activation map.

4



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

The CONV Layer ensures that the learned filters produce the strongest response

to a spatially local input pattern.

The CONV layer makes use of the following parameters:

• Width (W) : The Width of the 3D volume of the CONV layer.

• Height (H) : The height of the 3D volume of the CONV layer. The width and

height of the CONV layer are usually equal.

• Depth (D) : The third dimension of the CONV layer, i.e., the number of filters

to be used. Each filter corresponds to, and activates on, the presence of a

particular feature of interest (horizontal lines, blobs of color, etc.). The 3D

CONV layer can be divided into D depth slices having dimensions W and H.

The depth assumed for the input is 3, since there are three channels: R, G and

B to the image. Generally, the D¿3 for CONV layers.

• Filter / Receptive Field Size(F) : The spatial extent of connectivity of each

neuron to the input volume, or, more simply, the size of the moving filter.

• Stride (S) : The number of pixels skipped when a filter slides over the input.

The stride is usually 2, 3 or similar.

• Zero-padding (P) : The number of zero values to add around the border of the

input volume. This padding is done to preserve the spatial size of the output

volume.

In general, the zero padding is set to:

(F − 1)
2

The spatial size of the output volume can be seen as a relationship between input

volume size (W), receptive field size (F), stride (S) and zero-padding (P) which turns

out to be equivalent to:
(W − F + 2P )

S
+ 1

5



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

For example, for a 7x7 input and a 3x3 filter size, with S=1 and P=0 gives the

output volume to be 5x5.

Use of zero padding can be demonstrated by another example: say the input

dimension is 5, and we need the output dimension to be equal to the imput dimension.

In this case, the absence of zero padding gives the output dimension as 3 (keeping

all other parameters same). Therefore, using a padding of 1 ensures the output

dimension is 5.

Care should be taken that the padding value should not be such that the output

volume dimension calculated manually turns out to be a fractional value.

Suppose we have a convolutional layer of size with WxH as 40x40 and depth

as 50 and the filter size is 3x3. For an input image each neuron has 3*3*3=27

weights (assuming filter size is 3x3) and one bias and the total number of neurons are

40*40*50=80,000. Together the number of parameters add up to 80,000*27=2,160,000,

which is just for one CONV layer. This number is really high since we have to deal

with more layers like this.

We can reduce the amount of parameters by making one reasonable assumption:

That if one feature is used to compute at some position (x,y), then it should also

be useful to compute at a different position (w,z). Therefore denoting a single

2-dimensional slice of depth as a depth slice (e.g. from our previous example the

volume of size [40x40x50] has 50 depth slices, each of size [40x40]), we are going to

constrain the neurons in each depth slice to use the same weights and bias. With

this parameter sharing scheme, all 40*40 neurons in each depth slice will be using

the same parameters, thus saving on the variables.

2.2.2 Pooling Layer

A pooling layer reduces the spatial size of the input 3D volume, using a function

(MAX, MIN, AVG) operating on every 2D region in a depth slice of the input. This

reduces the amount of parameters and computation in the network, and ultimately

6



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

1 1 2 4

3 2 1 0

5 7 6 8

4 3 2 1

AVG pooled with filter size 2,

stride 2

MIN pooled with filter size 2,

stride 2

MAX pooled with filter size 2,

stride 2

Single Depth

Slice

7

3

8

4

3

1

1

0

5

2

4

2

Figure 2.2: Pooling : MAX, MIN, AVG

helps control overfitting. The pooling layer performs a joining operation using MAX,

MIN or AVG function on each depth slice, reducing its spatial dimensions.

Types of pooling:

• Max Pooling : Function for reduction is MAX. The maximum of all values is

set as the representative of these values.

• Min Pooling : Function for reduction is MIN. The minimum of all values is

set as the representative of these values.

• Average Pooling : Function for reduction is AVG. The average of all values is

set as the representative of these values.

• Overlapping Pooling : The stride of the filter motion is less than the complete

pooling window.

7



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

2.2.3 Rectified Linear Unit (ReLU) Layer

A Rectified Linear Unit or ReLU layer applies an elementwise activation function,

like

max(0, x)

Other functions that can be used are sigmoid and tanh functions. The MAX function

is found to be considerably faster for training purposes [13].

2.2.4 Fully Connected (Dense) Layer

The FC layer in which all neurons are connected to every input activation such

that applying simple matrix multiplication gives a numeric score array as output.

This layer is almost identical to those in a regular neural network. The high level

reasoning is done via this layer, which decides the class scores for an input. The

class scores are the numeric identities associated with the classes that the network is

being trained to learn.

This layer requires the use of the following parameters:

• Dense : The number of neurons in the FC layer. These are typically equal

either to powers of 2 or the number of classes for better computation.

• Activation function : Softmax is usually used as the activation function for the

dense layer. Softmax function is used to normalize data in the interval [0,1]
which is defined as

σ(z)j =
ezj

∑K
k=1 e

zk
for j = 1, ...,K

All the above mentioned hyper parameters are subject to additional modifications.

The performance measures for the ConvNet model are: time taken for the algorithm

to self minimize error using back propagation for stabilizing neuron weights, storage

space required for weights and the final output size.

8



CHAPTER 2. CONVOLUTIONAL NEURAL NETWORKS

The various features of the network such as number of hidden layers, number

of inputs, convolution dimension, max-pooling layers, etc. can be optimized to

maximize the efficiency of the training phase. Additionally, optimization algorithms

can be applied for selection of frames from the video for testing their quality and

color [11].

The CNN is thus trained to ‘learn’ the features marked in the training images to

give a desired output, in our case, the presence of a suspicious object, when run in

real-time [20].

Flow of Data

Conv1 Conv2 Conv3 Conv4 Conv5

dense

FC1 FC2

Fully Connected

dense

Input Frame

100

ReLU1 ReLU2 ReLU3 ReLU4

Figure 2.3: Convolutional Neural Network : A Closer Look

Figure 2.3 gives a clearer picture as to how a complete network containing

convolutional layers can be visualized.

9



3
CNN for Images

3.1 AlexNet

AlexNet is the first work to popularize CNNs in Computer Vision developed by

Alex Krizhevsky, Ilya Sutskever and Geoff Hinton [13]. The AlexNet was the runner-

up in the ImageNet ILSVRC challenge 2012. The network featured Convolutional

Layers stacked on top of each other (The conventional method was to have single

CONV layer followed by POOL layer).

AlexNet introduces us to ideas like the usage of Rectified Linear Units (ReLUs)

as activation functions for faster training, training on mutiple GPUs, overlapping

pooling and concept of dropout to reduce overfitting.

3.2 VGGNet

VGGNet is the network designed by Karen Simonyan and Andrew Zisserman [23],

which was the runner-up in ILSVRC 2014. The main contribution of the network

was in showing that good performance succeeds with the depth of the network as a

10
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CHAPTER 3. CNN FOR IMAGES

critical component. VGGNet has been trained and tested with increasing number of

layers and has shown that state-of-the-art accuracy can be obtained by increasing

depth of the network.

Figure 3.1: A quantified comparison : AlexNet and VGGNet

Figure 3.1 shows the difference between AlexNet and VGGNet in terms of their

respective sizes; it can be seen that AlexNet has applied the idea of stacking CONV

layers in the first section of the network, and VGGNet has an expanded structure

by the increased depth of the network.

3.3 Proposed Model

Our model borrows the idea of hyperparameters from AlexNet and the concept

of depth as an important aspect from VGGNet to first create a small network to

be run on a CPU and then expanding on a high-end GPU which would be later

implemented for videos by exploiting the idea that a video can be treated as a set

of frames. The implementation and experimentation will be discussed in further

chapters.

11



4
Analysis

4.1 Problem

Identifying every other object in every frame of a video is a huge task in practicality,

usually requiring an exceptionally large dataset. Therefore we would be confining

our scope to a controlled environment where specificity is paramount, thus helping

us focus on a much clearer target. The controlled environment [17] may be an indoor

surveillance area, like a parking lot, or a bank office or an outdoor location, like a

protected forest area, or a state highway. Thus, by narrowing our scope we save

on computation by training our algorithm for only those objects that can pose an

immediate threat to the surroundings.

We would begin by training a small network on an established dataset. Compar-

isons would be done with respect to time in case of CPU and a high-end architecture.

Subsequently the size of the network would be increased and then determined whether

the network could be scaled to videos and finally in real-time surveillance.

12



CHAPTER 4. ANALYSIS

4.2 Objectives

We have achieved the following by the end of our project:

• Studied the different layers and parameters involved in designing a convo-

lutional neural network such as convolution layer, max-pooling layer, fully

connected layer, dropout, activation function, etc.

• Designed an algorithm to detect objects in images by choosing the optimal

parameter values and number of layers in order to maximize accuracy and

minimize loss.

• Collected the dataset of images required for training and testing the algorithm.

• Compared the execution time of the model on CPU and a high-end GPU.

• Trained and tested the algorithm on GPUs to compare its real-time perfor-

mance.

• Extended the designed algorithm to videos by exploiting its characteristic that

it is made up of sequential collection of frames.

13



5
Design

The basic structure of feature training for images from the dataset follows the

cycle represented in Figure 5.1.

Input Image
from Dataset

Flatten RGB image
as a matrix row

Add to Data Matrix
for complete Dataset

Split Dataset:
80% Training,
20% Validation

Train Network

Compute Accu-
racy and Losses

End Start

All images
processed?

Epochs
done?

Yes

Backpropogate

Yes

No

No

Figure 5.1: Image Training Flow

For all images represented in numerical form, a matrix with the row length of

14



CHAPTER 5. DESIGN

WxHx3 and column length as NumberofInputImages assuming the images are in

RGB format will be created and in case of dataset like CIFAR-10, would be pickled

along with the labels associated with every page. The pickled data would then be

extracted for training purposes in run-time.

• Use Datasets

• Save weights to
.h5 file

• Use ffmpeg

• Pick images
from video to
test

• Use saved
weights

• Run through
network • Identify guns,

fire, etc.

• Output using
labels

Train Network

Frame Extraction

Input to network

Output

1

2

3

4

Weights to network

Frames to network

Test network

Figure 5.2: Flow Diagram

Figure 5.2 shows the complete flow of our algorithm. The flow is as follows:

1. The network is trained using image datasets and the weights thus learned in

the process are saved in a .h5 file.

2. Using the system call of the ffmpeg library, frames are extracted from the

video.

3. Extracted frames are then fed into the network which has now the weights

received from the .h5 file.

4. The images/frames are tested for objects among the classes if present and the

output is generated.
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6
Implementation

We started our implementation on two systems with given architectures:

Old Workstation specifications:

• Processor: Intel Core i5-4200U CPU @ 1.6GHz

• RAM: 6 GB

• System Type: Windows x64 based

• GPU: Intel HD 4000 Family

On the old system with the above specifications, the following Software and

Libraries were installed for the successful implementation of the code :

Python v2.7 — Anaconda v4.1.11 — Spyder v2.0 — Keras v1.0.8 — Theano

v0.9.0

New Workstation specifications:

• Processor: Intel Xeon(R) CPU E5-1620 v3 @3.50GHz x8

• RAM: 64 GB

16



CHAPTER 6. IMPLEMENTATION

• System Type: Ubuntu 14.04

• GPU: NVIDIA GTX 970

We have implemented our algorithm in Python using Theano and Keras deep

learning libraries. The software specifications are given below:

• Anaconda 4.1.11 - It is the leading open data science platform powered

by Python. The open source version of Anaconda is a high performance

distribution of Python and R and includes over 100 of the most popular

Python, R and Scala packages for data science.

• Theano 0.9.0 - It is a deep learning Python library that allows you to evaluate,

optimize, and define mathematical expressions involving multi-dimensional

arrays efficiently. Theano features tight integration with NumPy, efficient sym-

bolic differentiation, transparent use of a GPU, speed and stability optimization,

dynamic C code generation and extensive unit-testing and self-verification.

• Keras 1.0.8 - It is a minimalist, highly modular neural networks library,

written in Python and capable of running on top of either Theano. It enables

fast experimentation, allows for easy and fast prototyping and runs seamlessly

on CPU and GPU.

On the new systems, after acquiring the GPU, it became possible for us to use

the libraries which can be used with the GPU, the following Softwares and Libraries

were installed for the implementation of the code :

Python v2.7 — Anaconda v4.1.11 — Spyder v2.0 — Keras v1.0.8 — Theano

v0.9.0 — CUDA v8.0 — CuDNN v5.1 for CUDA.

6.1 Implementation Level Details

Using the above libraries, the main part of implementation comprises of the

following functions:
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model.add() : This function helps in adding a layer using keras and theano

libraries. Following layers can be created-

1. Convolutional Layer (depth, filter size, strides)

2. Pooling Layer (type, filter size, stride)

3. Dense (FC) Layer (Neurons, activation function)

Various other parameters like ReLU activation, ZeroPadding, Dropout and Softmax

can be written and thereby implemented in the above function.

extractFramesFromVideo() : This function helps in extracting individual

frames, given the number of frames to pick at equal intervals.

resizeImages() : Takes in path of the input image and resizes the image as per

the given parameters.
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7
Experimentation and

Results

7.1 Dataset

The dataset we have used as input is the CIFAR-10 dataset which consists of

60,000 32x32 color images labeled with 10 classes, with 6,000 images per class.There

are a total of 50,000 training images and 10,000 test images. The classes used for

labeling are: airplane, automobile, bird, cat, deer, dog, frog, horse, ship,

truck The above classes are completely mutually exclusive, there is no overlap

between any label.

The data set for python is a ‘pickled’ object produced using a program called

cPickle. The data is stored in a numpy array. Each row of the array stores a 32x32

color image. The first 1024 entries have red channel values, the next 1024, the green

and the final 1024 are the blue in row major order.

The labels are in a list of 10,000 numbers ranging from 0–9. The number at index

i indicates the lable of the ith image in the array data [12].
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7.2 First Approach

We started our implementation with a basic convolutional network. The following

code describes the structure of the complete network.

#Create the model

model = Sequent i a l ( )

model . add ( ZeroPadding2D ( ( 1 , 1 ) , input shape =(3 ,32 ,32) ) )

model . add ( Convolution2D (32 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (32 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (MaxPooling2D ( ( 2 , 2 ) , s t r i d e s =(2 ,2) ) )

model . add ( Flat ten ( ) )

model . add (Dense (32 , a c t i v a t i o n=’ r e l u ’ , W constraint=maxnorm(3) ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Dense ( num classes , a c t i v a t i o n=’ softmax ’ ) )

#End o f model

Listing 7.1: First Model

The model is composed of 2 Convolutional, 2 Padding, 1 Pooling, 2 Dense and 1

Dropout. We use the hyperparameters for padding, pooling, and dropout [3].

We vary the density of the final fully connected layer and the number of epochs

to run the network and obtain results for comparison.

7.2.1 Computing with CPU

Working on the CPU with the given architecture, the testing accuracy was found

to be dependent on the density of the final fully connected layer of the network

and directly proportional to the number of epochs up to the bottleneck limit. The

following tables demonstrate our results on the CPU.
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Run Epoch Dense Accuracy Time(s)
1 7 64 61.31% 1737
2 15 64 67.85% 6606
3 25 64 69.05% 8497

Table 7.1: Working with CPU - Dense 64

Run Epoch Dense Accuracy Time(s)
1 7 32 58.29% 2593
2 15 32 63.99% 5879
3 25 32 66.89% 6542

Table 7.2: Working with CPU - Dense 32

It is evident from our observations that the time taken and the corresponding

accuracy for a particular final dense layer increases with increase in number of epochs.

The time taken by the algorithm is noticeably high.

7.2.2 Computing with GPU

The same model was run on the new architecture, this time with the GPU. The

code required considerably less amount of time to execute than on the CPU. On

comparison, the algorithm took 20x less time on an average to give almost the same,

if not higher accuracy rates.

Tables 7.3,7.4 shows the time required for the first model to run on the GPU

with Dense 32 and 64.
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Run Epoch Dense Accuracy Time(s)
1 7 64 61.31% 107
2 15 64 67.85% 224
3 25 64 69.05% 371

Table 7.3: Working with GPU - Dense 64

Run Epoch Dense Accuracy Time(s)
1 7 32 58.29% 104
2 15 32 63.99% 217
3 25 32 66.89% 361

Table 7.4: Working with GPU - Dense 32
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Figure 7.1: Accuracy Comparison: CPU vs. GPU
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This led to the conclusion that if we intend to save time then for a specific

architecture, we have to compromise on accuracy and in order to increase the

accuracy, the depth of the network needs to be increased [23], which would mean

the time taken by the algorithm would increase. Since we have saved a lot of time

using GPU, this leads us to our next approach.

7.3 Second Approach

We increased the depth of our network to 10 Convolutional Layers, 8 Padding, 3

Pooling, 3 Dense and 2 Dropout Layers. The network model is as follows.

#Create the model

model = Sequent i a l ( )

model . add ( ZeroPadding2D ( ( 1 , 1 ) , input shape =(3 , 32 , 32) ) )

model . add ( Convolution2D (32 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (32 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (MaxPooling2D ( ( 2 , 2 ) , s t r i d e s =(2 ,2) ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (64 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (64 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (MaxPooling2D ( ( 2 , 2 ) , s t r i d e s =(2 ,2) ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (128 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (128 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (MaxPooling2D ( ( 2 , 2 ) , s t r i d e s =(2 ,2) ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (256 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )
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model . add ( Convolution2D (256 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (256 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add ( ZeroPadding2D ( ( 1 , 1 ) ) )

model . add ( Convolution2D (256 , 3 , 3 , a c t i v a t i o n=’ r e l u ’ ) )

model . add (MaxPooling2D ( ( 2 , 2 ) , s t r i d e s =(2 ,2) ) )

model . add ( Flat ten ( ) )

model . add (Dense (512 , a c t i v a t i o n=’ r e l u ’ , W constraint=maxnorm(3) ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Dense (512 , a c t i v a t i o n=’ r e l u ’ , W constraint=maxnorm(3) ) )

model . add (Dropout ( 0 . 5 ) )

model . add (Dense (10 , a c t i v a t i o n=’ softmax ’ ) )

#End o f model

Listing 7.2: Current Model

7.3.1 Working with GPU

We trained this network on the GPU for 25 epochs. We have been able to achieve

a testing accuracy of 77%. This is a significant improvement over our first approach

which gave a testing accuracy of about 66%.

The observation that GPUs require less time for computation than CPUs is

attributed to the fact that GPUs are better equipped at processing and carrying out

complex computation on images in comparison to CPUs.

In the next chapter, we discuss our results on working with the algorithm with

frames extracted from videos.

24



8
CNN for Videos

Ideally, the input video for our problem is from surveillance camera footage which

is stationary. Such a camera may have a low resolution or gray scale recording.

However, since a robust amount of content needs to be extracted in form of frames,

we use short video clips containing any of the 10 CIFAR-10 classes to test. We

tested our algorithm for 2:30 minute videos each containing pictures of automobiles

and airplanes. Our algorithm extracted 16 frames from each video and successfully

identified them in all but 4 frames.

We use the versatile ffmpeg library for extracting frames from video. The

optimal number of frames is decided based on the following factors:

• Video Resolution

• Video length

• Video frame rate

The higher the above parameters, the more processing is required for frame

extraction. The images are extracted in the form of video frames at optimal intervals
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based on the above factors. They are then fed to the neural network to test and

finally display the labels of the objects recognized.

t ry :

f f . extractFramesFromVideo ( pathToVideo , pathToFrames , framesToPick ,

everySecond )

p r i n t ”Extracted frames ”

except :

p r i n t ”Couldn ’ t ex t r a c t frames ”

try :

os . chd i r ( folderToFrames ) ##to s e t

f o r f i l e in g lob . g lob ( ” ∗ . jpg ” ) :

pathToFile = folderToFrames + ”/” + f i l e

image = Image . open ( pathToFile )

r e s u l t = f f . runModel ( pathToFile , we i ghtF i l e )

p r i n t r e s u l t

except :

p r i n t ”Error in r e t r i e v i n g r e s u l t ”

Listing 8.1: Final Code for Video

Following screenshots will show the results aqcquired after feeding the video

frames to the code, they contain one false detection and three correct detections of

the class airplane and automobile respectively.
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Figure 8.1: Detect Class : Airplane

Figure 8.2: Detect Class : Airplane

Figures 8.1 and 8.2 contain the frames containing airplanes that were extracted

from the video and fed to the network. Attributing to the accuracy and lack of an

exhaustible dataset, not every frame has detected an airplane.
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Figure 8.3: Detect Class : Automobile

Figure 8.4: Detect Class : Automobile

Figure 8.3 and 8.4 contains the frames containing cars extracted from the video

and fed to the network. Considering accuracy and lack of an exhaustible dataset,

one of the frames showing a false result is also shown.
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9
Conclusion

By the observations recorded, the usage of GPU helped in reducing the time

needed to train the network. In comparison to processing on the CPU, our model is

guaranteed to be trained on the GPU more than twenty times faster on an average.

This leads us to conclude that the CNN can be further expanded with its complexity

and its training dataset, thereby improving the results of the code and competing

with the accuracy of well established networks like AlexNet, VGGNet and LeNet.

Once the network is trained, the established data file containing the weight

parameters is used for detection in Videos. Testing is considerably less computa-

tionally intensive—the detection can be performed in an architecture with lower

specifications—leading to the conclusion that the algorithm can be embedded in

hardware of the surveillance equipment for application in real-time environments.
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Future Work

10.1 Training

Our network has only been trained for 60,000 CIFAR-10 images to give a

respectable accuracy of 77%. In the future, this network can be trained for 1.5

million to 10 million distinct images divided into 10,000 classes available for research

purposes from the ImageNet database [12].

Furthermore, a multiple GPU architecture may be utilized to efficiently divide

the intensive computation, thereby allowing for an even deeper convolutional neural

network to be deployed. Such an architecture would require an NVIDIA Scalable

Link Interface or an AMD Crossfire bridge to connect the GPUs in parallel in order

to increase performance.

We unsuccessfully tried to run our algorithm for a self-compiled dataset. Using

RGB images from ImageNet and Caltech 101 repositories we scaled them to a

224x224 size and labeled them into 8 classes: airgun, automatic-weapon, fire,

gun, machine-gun, notgun, setgun and weaponsys. Future work may include

building on our existing model for better results with this custom dataset.
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Additionally, the detection of environments can also be made possible by adapting

the algorithm to simulatneously learn the features of streets, offices, open spaces,

monuments, parks, etc. from datasets like the LabelMe dataset.

10.2 Algorithm design

The efficacy of the algorithm can be improved for video input by using multiple

optical flow algorithms that have been implemented in the past [24, 21, 10]. The use

of motion tracking using ‘tracklets’ and action recognition in video can also enhance

the process of object detection in videos [5].

Four dimensional CNNs using spatio-temporal computation can be used to

innovatively process and recognize objects in video frames [11]. Dual stream spatio-

temporal CNNs with class score fusion using SVM or averaging have also been

proposed [5, 22]. Modeling temporal motion locally (using 3D CNN) or globally

(using LSTM/RNN) or a fusion of both may also have scope for implementation

[4, 25, 8, 3].

10.3 Scope for applications

The proposed system can be employed in a variety of public environments such

as schools, hospitals, railway stations, airports, traffic signals, protected reserves

and national parks, and in private environments like banks, police stations. It can

be attached to any surveillance camera by training the algorithm with the objects

entirely specific to the environment.

It can also be embedded into an instrument to use it as a security alert for blind

people. Further, it can also be used as an efficient means for detecting barriers,

humans and animals and appropriately apply brakes in self-driven vehicles.
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Appendix

10.4 Installation Procedure

The installation of GPU is followed by setting up the environment for implementation

of algorithm involving installation of NVIDIA, Python and deep learning libraries.

10.4.1 Anaconda

It is an open source distribution of the Python and R programming languages for

large-scale data processing, predictive analytics, and scientific computing, that aims

to simplify package management and deployment. Its package management system

is conda. Open source packages and their dependencies can be installed with a simple

conda i n s t a l l <packagename>

10.4.2 CUDA

CUDA is a parallel computing platform and application programming interface

(API) model created by Nvidia which allows us to use a CUDA-enabled graphics

processing unit (GPU) for general purpose processing – an approach termed GPGPU

(General-Purpose computing on Graphics Processing Units). The CUDA platform

is a software layer that gives direct access to the GPU’s virtual instruction set

and parallel computational elements, for the execution of compute kernels. It
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can installed by retrieving the CUDA repository package for Ubuntu 14.04 from

the CUDA download site https://developer.nvidia.com/cuda-downloads and

installing it in a terminal.

10.4.3 Theano

Theano is a Python library that allows you to define, optimize, and evaluate mathe-

matical expressions involving multi-dimensional arrays efficiently. It can be installed

in terminal.

conda i n s t a l l −c trung theano =0 .8 . 2 . 7

10.4.4 Keras

Keras is a high-level neural networks library, written in Python and capable of

running on top of either TensorFlow or Theano. It can be installed in a terminal

using the following in terminal.

conda i n s t a l l −c conda− f o r g e keras =1.0.7

10.4.5 CuDNN

The NVIDIA CUDA Deep Neural Network library (cuDNN) is a GPU-accelerated

library of primitives for deep neural networks. cuDNN provides highly tuned

implementations for standard routines such as forward and backward convolution,

pooling, normalization, and activation layers. It can be downloaded by registering

on https://developer.nvidia.com/cudnn.

10.5 Resize Images

Every image is resized into 32x32 before being fed to the algorithm. This is achieved

in by using the opencv function in python.

r e s i z e ( src , d s i z e [ , dst [ , fx [ , fy [ , i n t e r p o l a t i o n ] ] ] ] )
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10.6 Extract Frames

In order to detect objects in videos, frames are extracted at fixed intervals by making

a system call as

f fmpeg − i <pathToVideo> −r <framesToPick>/<everySecond> <pathToFrames>

where pathToVideo is path to video, framesToPick is number of frames to pick at

the moment, everySecond is the number of seconds after which the specified number

of frames are picked and pathToFrames is the destination to store the frames.
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