
A Framework For
Secure Auditing Of

Cloud

A PROJECT REPORT

Submitted in partial fulfillment of the
requirements for the award of the degree

of
BACHELOR OF TECHNOLOGY

in
COMPUTER SCIENCE AND ENGINEERING

Submitted by:
Himanshu Dogra, Sudhakar Verma

130001015, 130001035

Guided by:
Dr. Neminath Hubballi

INDIAN INSTITUTE OF TECHNOLOGY INDORE
November 2016

CANDIDATES’ DECLARATION

We hereby declare that the project entitled "A Framework For Secure Auditing Of
Cloud" submitted in partial fulfillment for the award of the degree of Bachelor of
Technology in Computer Science and Engineering is an authentic work.

The project was supervised by Dr. Neminath Hubballi, Assistant Professor,
Computer Science and Engineering, IIT Indore.

Further, we declare that we have not submitted this work for the award of any
other degree elsewhere.

Himanshu Dogra, Sudhakar Verma
Date: 30 November 2016

iii

CERTIFICATE
by BTP Guide

It is certified that the declaration made by the students is correct to the best of my
knowledge and belief.

Dr. Neminath Hubballi,
Assistant Professor,
Discipline of Computer Science and Engineering,
IIT Indore

v

PREFACE

Through this report, we have tried to give the detailed design on the architec-
ture and implementation techniques of a Framework that would help Cloud Users
to Securely Audit their Cloud Applications and therefore trust the Cloud Service
Provider.

We have proposed a list of Service Level Agreements that would help a user ensure
the Security and Integrity of his data and ensure Reliability on the Cloud Service
Provider. We have also proposed a method to extend this trust to the hardware
level with the use of Trusted Platform Module.

We have put our best efforts to explain the proposed framework in a lucid manner.
We have also added the figures and screenshots to make setup, implementation
and testing of the architecture more illustrative.

Himanshu Dogra, Sudhakar Verma

vii

ACKNOWLEDGEMENTS

We would like to express our gratitude towards Dr. Neminath Hubballi for con-
stantly supporting and motivating us throughout the project and for always giving
us new ideas and guiding us in the right direction.

We would also like to thank our families and friends for always being there with
us and for being a constant source of motivation.

At last, we would like to thank all the contributors to The Xen Project and Linux
Kernel, without whom this project would not have been possible.

Himanshu Dogra, Sudhakar Verma
B.Tech IV Year
Discipline of Computer Science and Engineering
Indian Institute of Technology Indore

ix

ABSTRACT

Using Cloud Services, users can remotely store their data and deploy applica-
tions and services on machines having superior resources as connectivity, storage
or performance, without the hassle of local data storage and maintenance. This
helps user reduce the cost on actual hardware and the costs that come on mainte-
nance. However, since the users no longer have physical access of the hardware
media containing the data makes data integrity and security a growing concern
in Cloud Computing, especially for users with limited computing resources and
knowledge of the cloud structure.

Ideally users should be able to use their data as if its is managed locally and
should not waste much resources on regularly verifying the integrity. So a trusted
Third Party Auditor(TPA) is required in order to maintain the Service Level Agree-
ments (SLAs) agreed upon by the user and regularly apply them to the stored data
in the cloud, such as the integrity is never tampered with. Introducing the third
party between the user and the Cloud Service Provider (CSP) should bring in no
new vulnerabilities towards user data security and privacy, and produce no addi-
tional online burden to user in terms of data handling or costs.

In this project, we propose a secure third party system supporting auditing.
We propose a set of SLAs agreed upon by the User and the CSPs. We go on by
discussing the methods in which these SLAs can be measured. We then show that
these methods can be implemented as Daemons on the CSP and TPA side and the
chain of trust of a running application in a Virtual Machine can be extended to the
hardware level by the use of TPM module.

xi

Contents

Candidates’ Declaration iii

Certificate by BTP Guide v

Preface vii

Acknowledgements ix

Abstract xi

1 Introduction 1

2 Problem Statement and Design Goals 3

3 Background 5
3.1 Hypervisor . 5
3.2 Trusted Platform Module . 6
3.3 Virtual Trusted Platform Module (vTPM) 7

4 Architecture of the Framework 9
4.1 Process Overview . 9
4.2 Trusting AIK . 9
4.3 Attestation . 10
4.4 Service Level Agreements . 11

5 Implementation and Testing 13
5.1 Attestation . 13
5.2 SLA Daemons . 14

6 Conclusion and Future Scope 15

Bibliography 17

Appendices 21

A Installing and Configuring vTPM with Xen Hypervisor 21
A.1 Enable TPM in BIOS . 21
A.2 Install a host operating system -Dom0 21
A.3 Install Xen hypervisor . 21
A.4 Build Dom0 kernel . 22
A.5 Build kernel and filesystem for DomU 23
A.6 Configure vTPM manager and vTPM 24
A.7 Boot DomU . 25

B Code Constructs and Development 27
B.1 Connecting to the TPM . 28
B.2 Generate and Publish an AIK . 28
B.3 Challenging and response for AIK verification 29
B.4 Quoting and response for PCR verification 29

C Logging and processing 31

xiii

List of Figures

3.1 Xen Hypervisor Architecture . 5
3.2 vtpmmgr and vTPM interaction . 7
3.3 Certifying vTPM EK using TPM AIK 7

4.1 Framework Architecture consisting of a Third Party 9
4.2 Trusting AIK . 10
4.3 Attestation . 10

5.1 Trusting AIK: Left side is the verifier and right one is the CSP 13
5.2 Example of Attestation: Left side is the verifier and right one is the

CSP . 14

xv

Chapter 1

Introduction

Cloud Computing is being widely used by the enterprises and single users alike.
It has a long list of unprecedented advantages in the IT history: on-demand self-
service, universal network access, location independent resource pooling, rapid
resource elasticity, usage-based pricing and transference of risk. As a disruptive
technology with vast implications, Cloud Computing is transforming the very na-
ture of how businesses use information technology. The data is being centralized
or outsourced to the Cloud. Storing the data remotely to the cloud is beneficial to
both the user and the IT enterprises by relieving off the burden for storage manage-
ment, universal data access with independent geographical locations, and reduc-
tion of capital expenditure on hardware, software, and personnel maintenances,
etc.
While this technology is very convenient to the users, it has some serious concerns
over the users’ outsourced data. Since the Cloud Service Providers (CSP) are to-
tally different entities with users having little or no control over them, the fate of
the users’ privacy depends on the trust between the two parties. This puts the
security and the integrity of the user data at risk as explained in the following
paragraphs. Even though the machines in the cloud are usually much more pow-
erful than personal computing devices, they still face threats same as that of other
devices both internal and external for data integrity and security.
A CSP may be motivated to to behave unfaithfully towards the cloud users regard-
ing the status of their outsourced data. For example, CSP might reclaim storage
for monetary reasons by discarding data that has not been or is rarely accessed,
or even go to the extent of hiding this data loss so as to maintain a reputation.
Also CSP might move the allocated machine to smaller machine if it sees the com-
puting resources are rarely used for monetary gains. Thus, although outsourcing
data to the cloud is economically attractive for long-term large-scale data storage,
it does not immediately offer any guarantee on data integrity and availability. This
problem, if not properly addressed, may impede the successful deployment of the
cloud architecture.
Our Project aims at developing a framework for auditing the Cloud Data and Ser-
vices that will ensure the integrity of the outsourced data. We propose a mecha-
nism to measure Integrity, Security and Availability, and subsequently implement
the required policies and protocols in the form of Service Level Agreements (SLAs)
which are discussed in the later chapters of this report. We then extend the chain
of trust of the running applications to the hardware level using Trusted Platform
Module (TPM).

1

Chapter 2

Problem Statement and Design Goals

We consider a cloud data storage service involving three different parties: the
cloud user or application master, who has data files to be stored in the cloud and
subsequent applications to run in the cloud; the cloud server, which is managed
by the Cloud Service Provider (CSP) to provide data storage service and has sig-
nificant storage space and computation resources; the Third Party Auditor (TPA),
who has expertise and capabilities that cloud users do not have and is trusted
to assess the cloud storage service reliability on behalf of the user upon request.
Users rely on the CSP for cloud data storage and maintenance. They may also
dynamically interact with the CSP to access and update their stored data for vari-
ous application purposes. To save the computation resource as well as the online
burden, cloud users may resort to TPA for ensuring the storage integrity of their
outsourced data, while hoping to keep their data private from TPA.

We consider the existence of a semi-trusted CSP. Namely, in most of time it behaves
properly and does not deviate from the prescribed protocol of execution. However,
for their own benefits the CSP might neglect to keep or deliberately delete rarely
accessed data files which belong to ordinary cloud users. Moreover, the CSP may
decide to hide the data corruptions caused by server hacks or hardware failures
to maintain reputation. We assume the TPA, who is in the business of auditing, is
reliable and independent, and thus has no incentive to collude with either the CSP
or the users during the auditing process. However, it harms the user if the TPA
could learn the outsourced data after the audit.

To answer the SLAs posed by the user and not affect the privacy and security of
the data stored by the user in the cloud our architecture design should achieve the
following security and performance guarantees:

1. To allow TPA to verify the correctness/integrity of the cloud data on demand
without retrieving a copy of the whole data or introducing additional online
burden to the cloud users.

2. To allow the TPA to detect the breach of trust and hence check if the platform
is trusted for customer applications or data.

3. To allow TPA to collect data from the CSP in order to produce sufficient
data points and subsequently cater to cloud users’ SLAs on integrity, secu-
rity, availability and consistency.

3

Chapter 3

Background

A typical Cloud Server infrastructure consists of a Physical Server running a Hy-
pervisor with one or more instances of Virtual Machines running on top of it.
Along with these, there may be a Trusted Platform Module which is physically
available as hardware chip on the motherboard, which forms the root of trust at a
hardware level. Some servers may use the virtual implementation of such chips in
the form of vTPMs. The following sub-sections discuss each of these components
in detail.

3.1 Hypervisor

A Hypervisor is a software component running directly or indirectly on top of
the hardware. It is responsible for the management of different Virtual Machines
running on a single Physical Machine. Broadly, the Hypervisors can be classified
into the following categories:

1. Native or bare-metal Hypervisors are the ones that directly run on the hard-
ware. Some examples include Xen and Oracle VM Server.

2. Hosted Hypervisors are the ones that run inside an Operating System as a
Process. VMware Workstation, QEMU are the common examples.

For this project we have chosen Xen Hypervisor because of its immense popularity
as an Open Source Bare-Metal Hypervisor with wide availability of documentation
and support.

FIGURE 3.1: Xen Hypervisor Architecture

Figure 3.1 describes the architectures of Xen Hypervisor. It directly runs on the
hardware and is responsible for handling CPU, Memory and interrupts. Various
Virtual Machines(VMs)/domains run directly on top of Xen. The host domain
(Dom0) consists all the device drivers and a control stack to manage other do-
mains. Other domains (Guests) are denoted as DomU(s). Appendix A discusses
the steps involved in setting up the Hyperviser and VMs.

5

6 Chapter 3. Background

3.2 Trusted Platform Module

A Trusted Platform Module (TPM) is a computer chip that is used to securely
store artifacts to authenticate the platform (PC or laptop). It has the capability to
store keys, certificates involved in integrity measurement of a machine at the time
of boot. Along with this, it also provides some primitive cryptographic operations
like random number generation, RSA key-pair generation and store hashes of the
applications in a number of Platform Configuration Registers (PCRs). The only
two operations supported on a PCR are Extend operation and Clear operation (on
PCRs 16 to 23, used to reset the PCR value). Cryptographically, Extending a PCR
P with a value v is defined in 3.1.

Extend(P, v) = SHA1(P ‖ v) (3.1)

where ‖ operation represents a concatenation of two byte arrays.

PCR extensions are used during the platform boot process and start within early-
executed code in the Basic Input/Output System (BIOS) that is referred to as the
Core Root of Trust for Measurement (CRTM).

Every TPM chip is uniquely identified by a built-in key, the Endorsement Key
(EK), which is certified by the Device Manufacturer and stands for the validity of
a TPM. Related to the EK are Attestation Identity Keys (AIKs). An AIK is created
by the TPM and linked to the local platform through a certificate for that AIK. This
certificate is created and signed by a certificate authority (CA). In particular, a pri-
vacy CA allows a platform to present different AIKs to different remote parties, so
that it is impossible for these parties to determine that the AIKs are coming from
the same platform. AIKs are primarily used during quote operations to provide a
signature over a subset of PCRs as well as a 160-bit nonce. Quotes are delivered to
remote parties to enable them to verify properties of the platform.

Once enabled in the BIOS, the host provides support for the TPM chip (eg. Kernel
modules in Linux OS). One can interact with the TPM chip using the commands
from tpm-tools or can use Trousers library to programmatically interact with the
chip.

Chapter 3. Background 7

3.3 Virtual Trusted Platform Module (vTPM)

A vTPM is a user-mode process which provides TPM support to a running VM.
The VM interacts with this vTPM in a same way it would with a hardware TPM.
Multiple instances of vTPMs can exist on a Physical Machine with a single hard-
ware TPM, thus providing each Guest VM with its own vTPM that it can use.

FIGURE 3.2: vtpmmgr and vTPM interaction

FIGURE 3.3: Certifying vTPM EK using TPM AIK

8 Chapter 3. Background

A vtpmmgr process acts as a server receiving requests from the vTPMs. This man-
ager is responsible to directly talk to the hardware TPM chip. This interaction is
shown in Figure 3.2. Trust establishment in a vTPM is done by certifying the EK of
a vTPM with an AIK of the TPM as described in the Figure 3.3.

Chapter 4

Architecture of the Framework

This chapter discusses the proposed architecture involving a Cloud Service Provider
(CSP), Cloud User and a trusted Third Party Authority (TPA) as shown in Figure
4.1. We start by discussing the mechanism through which the root of trust of any
running application can be extended to the hardware. We then go on to propose
various Service Level Agreements and ways in which they can be measured.

FIGURE 4.1: Framework Architecture consisting of a Third Party

4.1 Process Overview

We design our solution as a collection of Daemons that work on the Cloud Server,
securely collecting the data needed to answer a consumer’s SLAs. This process
periodically collects logs, signatures, and their corresponding timestamps which is
then transmitted to the Third Party Auditor for secure storage and processing. The
TPA stack consists of signature verification scheme, decrypting data and further
processing into a format that can be shown to the User.

4.2 Trusting AIK

The cloud user specifies the data to be attested but the actual attestation is done by
the TPA, thus reducing the load on the user side. On the server side, we extract the
EK certificate which is used to generate a new AIK. First, we generate a proof file
containing the public part of AIK, EK cert and other intermediate certificates. This
is the file which is published and sent to TPA that will claim that the platform is
trusted. TPA will generate a nonce which will be encrypted and whose successful
decryption at server side will prove the validity. We validate the AIK proof file
testing the cert chain for proper root of trust.

In case of successful completion of the test, we generate a challenge file which
is decrypted on the server side and sent back to the challenger to compare it with
the secret. The verifier then knows that the platform is in a trusted state.

9

10 Chapter 4. Architecture of the Framework

FIGURE 4.2: Trusting AIK

4.3 Attestation

To attest an application, TPA requests for a set of PCRs and sends a nonce. The
CSP will request the TPM to sign the PCRs and nonce with AIK. The CSP sends
this data to the TPA which then knows that the PCRs are valid (as they are signed
by a key lying in the chain of trust).

FIGURE 4.3: Attestation

The TPA will check for AIK signatures and compare the PCRs to the known state.

Chapter 4. Architecture of the Framework 11

4.4 Service Level Agreements

There can be various SLAs that act as questions that a Cloud User can ask the CSP
at any point in time. These SLAs act as a pre-defined agreement between the two
parties whose answers will reflect whether or not the CSP fulfills its promises to
the User.

Here is a list of some sample SLAs along with the method by which they can
be measured:

Availability SLA

SLA Method

Availability of a service Monitored by periodically pinging the service

Security SLAs

SLA Method

Logged in users Reading /var/log/auth.log

User login time Monitored periodically

Processes spawned during the
session

Periodically check for processes associated with
Users.

Privileges changed PID associated with processes changing privi-
leges in auth.log

Files accessed Using auditd daemon, reading /var/log/au-
dit/audit.log

Integrity SLAs

New programs installed Changes made to $PATH during a session

FDs associated with the pro-
cesses

Monitored periodically from /proc/<pid>/fd

Files modified/corrupted Checksum

Backup frequency User Decided

Chapter 5

Implementation and Testing

Implementation and testing of the framework was done on a system containing a
TPM chip running Xen 4.7. We enabled Xen Security Modules to get vTPM support
for the DomU instance. The detailed setup procedure is described in Appendix 1.
Linux Kernel 3.13.0 was used as the Dom0 and 3.9.1 as DomU.

5.1 Attestation

We used our Laptop as a verifier (TPA) for the attestation purposes. The attestation
programs were written in C Language which were further automated using Bash
Scripts. Three different attestation scripts were written namely, Publish, Challenge
and Respond as shown in Figure 5.1. Each of their working is as follows:

1. Publish script runs on the CSP containing the TPM chip. It will publish a
proof file of AIK for the verifier to read.

2. Challenge script is run by the verifier over the published proof and a secret.
This will encrypt the secret using the AIK proof file which is sent back to the
CSP.

3. Response script is then run on the CSP side which reads the encrypted chal-
lenge and tries to decrypt it using the private AIK. This decrypted challenge
is sent back to the verifier to check for the validity.

FIGURE 5.1: Trusting AIK: Left side is the verifier and right one is the
CSP

13

14 Chapter 5. Implementation and Testing

Once the AIK is trusted, actual attestation is done as follows:

1. Verifier supplies a hash value along with the PCRs it wants to read.

2. Use TPM’s Quote functionality to sign the extended PCRs using the AIK and
sent to the verifier.

3. Since the AIK is controlled by the TPM, it will only sign the correct PCRs.

An example of one such attestation for PCR 10 is shown in Figure 5.2.

FIGURE 5.2: Example of Attestation: Left side is the verifier and right
one is the CSP

5.2 SLA Daemons

Processes are running in two different contexts. One on the CSP and one on the
TPA.
On the CSP stack:

1. Setup rules for auditd to look for events. For every event encountered it gen-
erates records for the event.

2. A separate process checks the log location for generated logs in realtime, pro-
cesses them for particular rules and extracts meaning ful information in JSON
format to be exported to the software stack on TPA with proper encrypted
channels.

On the TPA stack:

1. A controller listens in the channel for the logs.

2. Over time it decrypts and processes the logs for events and records. Rules are
implemented in the process to verify all SLA.

3. On user intervention it can generate a short as well as detailed report of
events and SLAs.

Chapter 6

Conclusion and Future Scope

Due to various reasons which may be advantageous to the Cloud Service Provider,
the CSP may deviate from its normal behavior and in the process, may violate cer-
tain promises it must fulfill. Thus, concerning about security is an important factor
in Cloud Computing. We described and analyzed the design of protocols for the
integrity measurement in the Cloud Platform by constructing a set of SLAs along
with the ways in which they can be answered. To reduce the resource utilization
on the user machine, we introduce a trusted Third Party Auditor in order to an-
swer the SLAs. Our framework runs on both the CSP side as Daemons to collect
and format the logs and on the TPA side to periodically receive the logs from the
CSP and parse them into a user-understandable format.

We extend the root of trust of the running applications to the hardware and
thus to a Certificate Authority by the means of Trusted Platform Modules (and
vTPM for Virtual Machines). A verifier can then measure the integrity of a running
application by retrieving a number of PCRs from the CSP and comparing them to
a known state. The PCR values are trusted as they are signed by the AIK which is
signed by a Certificate Authority.

However for a complete end-product, many of these protocols must be imple-
mented on the hypervisor level. vTPM migration in Xen on remote hosts will allow
much more independence to the CSP to use this framework.

15

Bibliography

[1] The Xen Project: https://www.xenproject.org/.

[2] The Linux Kernel Arhcives: https://www.kernel.org/.

[3] Trusted Computing Group: https://www.trustedcomputinggroup.org/.

[4] Attestation and Authentication Protocols Using the TPM:
https://www.cylab.cmu.edu/tiw/slides/segall-attestation.pdf.

[5] Danev, Boris and Masti, Ramya Jayaram and Karame, Ghassan O. and Cap-
kun, Srdjan. Enabling Secure VM-vTPM Migration in Private Clouds. In Pro-
ceedings of the 27th Annual Computer Security Applications Conference (ACSAC
’11). ACM, New York, NY, USA, 187-196.

[6] Stefan Berger, Ramón Cáceres, Kenneth A. Goldman, Ronald Perez, Reiner
Sailer, and Leendert van Doorn. 2006. vTPM: virtualizing the trusted platform
module. In Proceedings of the 15th conference on USENIX Security Symposium -
Volume 15 (USENIX-SS’06), Vol. 15. USENIX Association, Berkeley, CA, USA.

[7] Peter M. Mell and Timothy Grance. 2011. SP 800-145. the NIST Definition of
Cloud Computing. Technical Report. NIST, Gaithersburg, MD, United States.

[8] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D. Joseph, Randy
Katz, Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica,
and Matei Zaharia. 2010. A view of cloud computing. Commun. ACM 53, 4
(April 2010), 50-58.

[9] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kiss-
ner, Zachary Peterson, and Dawn Song. 2007. Provable data possession at
untrusted stores. In Proceedings of the 14th ACM conference on Computer and
communications security (CCS ’07). ACM, New York, NY, USA, 598-609.

[10] Qian Wang, Cong Wang, Jin Li, Kui Ren, and Wenjing Lou. 2009. Enabling
public verifiability and data dynamics for storage security in cloud comput-
ing. In Proceedings of the 14th European conference on Research in computer security
(ESORICS’09), Michael Backes and Peng Ning (Eds.). Springer-Verlag, Berlin,
Heidelberg, 355-370.

[11] Shucheng Yu, Cong Wang, Kui Ren, and Wenjing Lou. 2010. Achieving secure,
scalable, and fine-grained data access control in cloud computing. In Proceed-
ings of the 29th conference on Information communications (INFOCOM’10). IEEE
Press, Piscataway, NJ, USA, 534-542.

[12] Configuring Virtual TPM (vTPM) for Xen 4.3 Guest Virtual Machines:
https://mhsamsal.wordpress.com/2013/12/05/configuring-virtual-tpm-vtpm-for-
xen-4-3-guest-virtual-machines/.

17

Appendices

19

Appendix A

Installing and Configuring vTPM
with Xen Hypervisor

With these basic steps we can have the vTPM installed for our guest (DomU)

1. Enable TPM in BIOS

2. Install a host operating system -Dom0

3. Install Xen hypervisor

4. Build Dom0 kernel

5. Build kernel and filesystem for DomU

6. Configure vTPM manager and vTPM

7. Boot DomU

A.1 Enable TPM in BIOS

Clear all the keys and enable TPM from the BIOS.

A.2 Install a host operating system -Dom0

Download and install latest stable release of Ubuntu from https://www.ubuntu.com/download.
We used Ubuntu 14.04

A.3 Install Xen hypervisor

To enable vTPM default installation from apt won’t work. Build it from the source
instead.
Install build dependencies from apt-get.

apt−g e t i n s t a l l b r i d g e−u t i l s b u i l d−e s s e n t i a l l i b n c u r s e s−
dev python−dev uuid uuid−dev l i b g l i b 2 .0− dev l i b y a j l −dev
b c c gcc−m u l t i l i b i a s l l i b p c i −dev m e r c u r i a l f l e x b i s o n
l i b a i o −dev b u i l d−e s s e n t i a l g e t t e x t l i bp ixman−1−dev b in86
gawk b r i d g e−u t i l s i p r o u t e l i b c u r l 3 l i b c u r l 4 −o p e n s s l−dev
b z i p 2 module−i n i t−t o o l s t r a n s f i g t g i f t e x i n f o t e x l i v e −
l a t e x−b a s e t e x l i v e −l a t e x−recommended t e x l i v e −f o n t s−e x t r a
t e x l i v e −f o n t s−recommended p c i u t i l s −dev m e r c u r i a l make gcc

l i b c 6−dev z l i b 1 g−dev python python−dev python−t w i s t e d
l i b n c u r s e s 5−dev p a t c h l i b v n c s e r v e r −dev l i b s d l −dev l i b b z 2−
dev e 2 f s l i b s −dev g i t−c o r e uuid−dev ocaml ocaml− f i n d l i b
l i b x 1 1−dev b i s o n f l e x xz−u t i l s l i b y a j l −dev

Download xen latest source code release. We used Xen 4.7.

21

22 Appendix A. Installing and Configuring vTPM with Xen Hypervisor

$ wget ht tp :// b i t s . xensource . com/oss−xen/ r e l e a s e /4 .7 .0/ xen −4 . 7 . 0 . t a r . gz

Extract and add the following line to Config.mk

XSM_ENABLE ?=y

In the xen source directory now configure

. / c o n f i g u r e −−e n a b l e−vtpm−stubdom −−e n a b l e−vtpmmgr−stubdom

If any package is missing then install them from apt-get and continue.

make a l l
make i n s t a l l

On successful build and installation you can find xen images in /boot. Also check
for vtpmmgr-stubdom.gz and vtpm-stubdom.gz in lib of xen.

A.4 Build Dom0 kernel

After installing Xen change kernel of Dom0 in order to disable direct TPM access
from Dom0 and enable Xen in the kernel. For compatibility reasons choose the
same kernel as the one already installed.
Download from https://www.kernel.org/. We used Linux 3.13.0

$ wget ht tps ://www. kernel . org/pub/l inux/kernel/v3 .0/ linux −3 .13 . t a r . gz

Extract and configure

$ t a r xf l inux −3 .13 . t a r . gz
$ cd l inux −3 .13 . t a r . gz/
$ sudo make menuconfig

Disable TPM Hardware Support in Character Devices of Device Drivers. Add the fol-
lowing lines in .config after successful menuconfig.

CONFIG_ACPI_PROCFS=y
CONFIG_XEN=y
CONFIG_XEN_MAX_DOMAIN_MEMORY=32
CONFIG_XEN_SAVE_RESTORE=y
CONFIG_XEN_DOM0=y
CONFIG_XEN_PRIVILEGED_GUEST=y
CONFIG_XEN_PCI=y
CONFIG_PCI_XEN=y
CONFIG_XEN_BLKDEV_FRONTEND=y
CONFIG_XEN_NETDEV_FRONTEND=y
CONFIG_XEN_KBDDEV_FRONTEND=y
CONFIG_HVC_XEN=y
CONFIG_XEN_FBDEV_FRONTEND=y
CONFIG_XEN_BALLOON=y
CONFIG_XEN_SCRUB_PAGES=y
CONFIG_XEN_DEV_EVTCHN=y
CONFIG_XEN_GNTDEV=y
CONFIG_XEN_BACKEND=y
CONFIG_XEN_BLKDEV_BACKEND=y
CONFIG_XEN_NETDEV_BACKEND=y
CONFIG_XENFS=y
CONFIG_XEN_COMPAT_XENFS=y
CONFIG_XEN_XENBUS_FRONTEND=y
CONFIG_XEN_PCIDEV_FRONTEND=y

Appendix A. Installing and Configuring vTPM with Xen Hypervisor 23

Build and install the images and modules.

$ sudo make modules_prepare
$ sudo make
$ sudo make modules_ ins ta l l
$ sudo make i n s t a l l
$ sudo cd /boot
$ sudo mkinitramfs −o i n i t r d . img−3 .13 .0 3 . 1 3 . 0
$ sudo update−grub

This should install all the modules and new kernel. Reboot and choose the newly
installed kernel in GRUB. Newer kernels don’t disable the tpm_tis driver even
when configured in .config. To get past this add the following line in /etc/mod-
probe.d/blacklist.conf.

b l a c k l i s t tpm_tis

This is absolutely necessary that no driver or program should access the hardware
TPM from Dom0 while booting guest machines or vTPM manager.

A.5 Build kernel and filesystem for DomU

Most mainline linux kernels don’t support vTPM. Download modified kernel source
tree from https://github.com/virt-cloud/domuKernel Make menuconfig and enable In-
tegrity Measurement Architecture(IMA) and TPM in menu.
Also add the following lines in .config

CONFIG_XEN=y
CONFIG_PARAVIRT_GUEST=y
CONFIG_PARAVIRT=y
CONFIG_XEN_PVHVM=y
CONFIG_XEN_MAX_DOMAIN_MEMORY=128
CONFIG_XEN_SAVE_RESTORE=y
CONFIG_PCI_XEN=y
CONFIG_XEN_PCIDEV_FRONTEND=y
CONFIG_XEN_BLKDEV_FRONTEND=y
CONFIG_XEN_NETDEV_FRONTEND=y
CONFIG_INPUT_XEN_KBDDEV_FRONTEND=y
CONFIG_HVC_XEN=y
CONFIG_XEN_FBDEV_FRONTEND=y
CONFIG_XEN_DEV_EVTCHN=y
CONFIG_XEN_XENBUS_FRONTEND=y
CONFIG_TCG_TPM=y
CONFIG_TCG_XEN=y

and then build

$ sudo make

Build a filesystem using debootstrap. First build an empty disk and mount it.

$ sudo dd i f =/dev/zero of=domu . img bs =1024K count =10240
$ sudo /sbin/mkfs . ext4 domu . img
$ sudo mount −o loop domu . img /mnt/

Install a base system.

$ sudo debootstrap −−arch amd64 j e s s i e /mnt/

Depending on the filesystem you might have to uninstall systemd. Add hvc0 as a
tty in the newly built filesystem so that it is spawned at boot time. Also configure

24 Appendix A. Installing and Configuring vTPM with Xen Hypervisor

credentials for users, network and filesystem according to your preferences.
Now build the kernel modules in this filesystem and generate initial ram disk.

$ cd linux −3 .9 .1
$ sudo make modules_ ins ta l l INSTALL_MOD_PATH=/mnt
$ sudo cp . conf ig /mnt/boot/config −3 .9 .1
$ sudo chroot /mnt
$ apt−get i n s t a l l in i t ramfs−t o o l s
$ mkinitramfs −o i n i t r d . img−3.9.1−domU 3 . 9 . 1

A.6 Configure vTPM manager and vTPM

vTPM manager is a domain by itself which stores and manages the sessions for
vTPM of guest machines. So it requires a hard disk image and configuration. Also
it should be the first domain to boot up after Dom0.

$ sudo dd i f =/dev/zero of=/var/vtpmmgr−stubdom . img bs=16M count=1

Verify the presence of /usr/local/lib/xen/boot/vtpmmgr-stubdom.gz and save the fol-
lowing config file to /var/vtpmmgr.cfg. If /usr/local/lib/xen/boot/vtpmmgr-stubdom.gz
is located someplace else change the config to reflect that.

kernel ="/ usr/ l o c a l / l i b /xen/boot/vtpmmgr−stubdom . gz "
memory=16
disk =[" f i l e :/ var/vtpmmgr−stubdom . img , hda ,w"]
name="vtpmmgr"
iomem=[" fed40 , 5 "]

Now we create a vTPM. Like vTPM manager this too requires a hard disk image
and config file. This should be booted before its respective DomU.

$ sudo dd i f =/dev/zero of=/var/vtpm . img bs=8M count=1

Verify the presence of /usr/local/lib/xen/boot/vtpm-stubdom.gz and save the following
config file to /var/vtpm-DomU.cfg. If /usr/local/lib/xen/boot/vtpm-stubdom.gz is located
someplace else change the config to reflect that.

kernel ="/ usr/ l o c a l / l i b /xen/boot/vtpm−stubdom . gz "
memory=8
disk =[" f i l e :/ var/vtpm−DomU. img , hda ,w"]
name="domu−vtpm"
vtpm =[" backend=vtpmmgr , uuid=<Use uuidgen to generate a new

UUID>"]

Appendix A. Installing and Configuring vTPM with Xen Hypervisor 25

A.7 Boot DomU

Create a DomU config file in /var/DomU.cfg

kernel = <Locat ion of your vmlinux f i l e from DomU kernel >
ramdisk = <Locat ion of the i n i t r d . img created e a r l i e r >
vcpus = ’1 ’
memory = ’1024 ’
root = ’/dev/xvda1 ro ’
disk =[’ tap : a io :<< Locat ion of the domu . img created e a r l i e r >>,

xvda1 ,w’]
name = <Name>
v i f = [’ ’ , ’ bridge=xenbr0 ’]
dhcp = " dhcp "
on_poweroff = ’ destroy ’
on_reboot = ’ r e s t a r t ’
on_crash = ’ r e s t a r t ’
e x t r a = ’ console=hvc0 xencons=t ty ’
vtpm =[" backend=domu−vtpm "]

With all the configuration done, start the vtpmmgr

$ sudo x l c r e a t e −c /var/vtpmmgr . c fg

Start the vTPM

$ sudo x l c r e a t e −c /var/vtpm−DomU. cfg

Start DomU

$ sudo x l c r e a t e −c /var/DomU. cfg

This should boot up DomU. To check successful vTPM deployment in DomU do

$ sudo apt−get i n s t a l l tpm−t o o l s t r o u s e r s
$ sudo tcsd
$ sudo tpm_version

would result apt output about the vTPM.

Appendix B

Code Constructs and Development

To set up the development environment for TPM and its libraries.

$ sudo apt−get i n s t a l l tpm−t o o l s t r o u s e r s l i b t s p i−dev gcc

Start up tcsd

$ sudo modprobe tpm_tis
$ sudo tcsd s t a r t

To verify proper setup run tpm_getpubek from tpm-tools. After this take ownership
of the TPM. For development and ease using Well Known Secret is recommended.
It is just 20 bytes of zeroes.

$ tpm_takeownership −z

Include libraries

include < t s s / t s s _ e r r o r . h>
include < t s s /platform . h>
include < t s s / t s s _ d e f i n e s . h>
include < t s s /t s s _ t y p e d e f . h>
include < t s s / t s s _ s t r u c t s . h>
include < t s s / t s p i . h>
include < t r o u s e r s / t r o u s e r s . h>

GCC flags for tss is -ltspi . This flag should be added for proper linking.

27

28 Appendix B. Code Constructs and Development

B.1 Connecting to the TPM

This has to be done in every program before doing anything

TSS_HCONTEXT hContext =0;
TSS_HTPM hTPM = 0 ;
TSS_RESULT r e s u l t ;
TSS_HKEY hSRK = 0 ;
TSS_HPOLICY hSRKPolicy =0;
TSS_UUID SRK_UUID = TSS_UUID_SRK ;
BYTE wks [2 0] = TSS_WELL_KNOWN_SECRET; / / P l a c e t o put t h e

w e l l known s e c r e t
/ / P i c k t h e TPM you a r e t a l k i n g t o in t h i s c a s e t h e sys t em

TPM (which you c o n n e c t t o wi th NULL)
r e s u l t =Tspi_Context_Create (&hContext) ;
r e s u l t =Tspi_Context_Connect (hContext , NULL) ;
/ / Get t h e TPM h a n d l e
r e s u l t =Tspi_Context_GetTpmObject (hContext , &hTPM) ;
/ / Get t h e SRK h a n d l e
r e s u l t =Tspi_Context_LoadKeyByUUID (hContext ,

TSS_PS_TYPE_SYSTEM , SRK_UUID, &hSRK) ;
/ / Get t h e SRK p o l i c y
r e s u l t =Tspi_GetPol icyObjec t (hSRK , TSS_POLICY_USAGE , &

hSRKPolicy) ;
/ / Then we s e t t h e SRK p o l i c y t o be t h e w e l l known s e c r e t
r e s u l t = T s p i _ P o l i c y _ S e t S e c r e t (hSRKPolicy , TSS_SECRET_MODE_SHA1

, 2 0 , wks) ;

B.2 Generate and Publish an AIK

To prove that a system has a valid AIK we assume that it also has an EK certificate.
This EK certificate must have a certificate chain which ends in a root certification
key issued by an controlled by a Globally trusted CA.

TSS_HKEY hPCA;
/∗ C r e a t e dummy PCA key ∗ /
r e s u l t = Tspi_Context_CreateObject (hContext ,

TSS_OBJECT_TYPE_RSAKEY , TSS_KEY_TYPE_LEGACY|
TSS_KEY_SIZE_2048 ,&hPCA) ;

memset (n , 0 x f f , s i ze of (n)) ;
r e s u l t = Tspi_SetAt t r ibData (hPCA, TSS_TSPATTRIB_RSAKEY_INFO

, TSS_TSPATTRIB_KEYINFO_RSA_MODULUS, s i ze of (n) , n) ;
TSS_HKEY hAIK ;
/∗ C r e a t e AIK o b j e c t ∗ /
i n i t F l a g s = TSS_KEY_TYPE_IDENTITY | TSS_KEY_SIZE_2048 ;
BYTE ∗blob ;
UINT32 blobLen ;
r e s u l t = Tspi_TPM_CollateIdenti tyRequest (hTPM, hSRK , hPCA,

0 , " " ,hAIK , TSS_ALG_AES,&blobLen ,& blob) ;
Tspi_Context_FreeMemory (hContext , blob) ;

/∗ Output f i l e wi th AIK pub key and c e r t s , p r e c e d e d by 4−
b y t e l e n g t h s ∗ /

r e s u l t = Tspi_GetAttr ibData (hAIK , TSS_TSPATTRIB_KEY_BLOB ,
TSS_TSPATTRIB_KEYBLOB_PUBLIC_KEY , &blobLen , &blob) ;

Appendix B. Code Constructs and Development 29

B.3 Challenging and response for AIK verification

Once the CSP publishes its AIK claim, the TPA can then verify the certificate chain
by itself and encrypt some secret data with the AIK published. The system that cre-
ated the AIK takes the encrypted challenge, load the AIK using Tspi_Context_LoadKeyByBlob
and the decrypt using Tspi_TPM_ActivateIdentity
A properly decrypted response can be verified by the TPA for authenticity of the
AIK and its platform.

B.4 Quoting and response for PCR verification

If the system has booted to a known state, the state of PCRs is same. This can be
verified by the TPA using quote from the CSP. The TPA can specify the list of PCRs
it wants to verify and a nonce for freshness. Quote operation gives out an response
of the PCRs signed with the previously published AIK.

r e s u l t = Tspi_Context_LoadKeyByBlob (hContext , hSRK , bufLen ,
buf , &hAIK) ; CKERR;

f r e e (buf) ;

i f (pass) {
r e s u l t = Tspi_Context_CreateObject (hContext ,

TSS_OBJECT_TYPE_POLICY ,
TSS_POLICY_USAGE , &hAIKPolicy) ; CKERR;
r e s u l t = Tspi_Pol icy_AssignToObject (hAIKPolicy , hAIK) ;
r e s u l t = T s p i _ P o l i c y _ S e t S e c r e t (hAIKPolicy ,

TSS_SECRET_MODE_PLAIN,
s t r l e n (pass) +1 , pass) ; CKERR;
}

/∗ C r e a t e PCR l i s t t o be q u o t e d ∗ /
tpmProp = TSS_TPMCAP_PROP_PCR ;
r e s u l t = Tspi_TPM_GetCapability (hTPM, TSS_TPMCAP_PROPERTY,
s i ze of (tpmProp) , (BYTE ∗)&tpmProp , &tmpbufLen , &tmpbuf) ;

CKERR;
npcrMax = ∗ (UINT32 ∗) tmpbuf ;
Tspi_Context_FreeMemory (hContext , tmpbuf) ;
npcrBytes = (npcrMax + 7) / 8 ;
r e s u l t = Tspi_Context_CreateObject (hContext ,

TSS_OBJECT_TYPE_PCRS ,
TSS_PCRS_STRUCT_INFO , &hPCRs) ; CKERR;

/∗ Also PCR b u f f e r ∗ /
buf = malloc (2 + npcrBytes + 4 + 20 ∗ npcrMax) ;
∗ (UINT16 ∗) buf = htons (npcrBytes) ;
for (i =0 ; i <npcrBytes ; i ++)
buf [2+ i] = 0 ;

for (i =2 ; i <ac−1; i ++) {
char ∗endptr ;
long pcr = s t r t o l (av [i] , &endptr , 10) ;
i f (pcr < 0 || pcr > npcrMax || ∗av [i] == 0 || ∗endptr != 0)

{
f p r i n t f (s tderr , " I l l e g a l PCR value %s\n" , av [i]) ;
e x i t (1) ;
}
r e s u l t = Tspi_PcrComposite_SelectPcrIndex (hPCRs , pcr) ; CKERR

;

30 Appendix B. Code Constructs and Development

++npcrs ;
buf [2 + (pcr /8)] |= 1 << (pcr%8) ;
}

/∗ C r e a t e TSS_VALIDATION s t r u c t f o r Quote ∗ /
val id . ulExternalDataLength = s i ze of (chalmd) ;
va l id . rgbExternalData = chalmd ;

/∗ Per form Quote ∗ /
r e s u l t = Tspi_TPM_Quote (hTPM, hAIK , hPCRs , &val id) ; CKERR;
quoteInfo = (TPM_QUOTE_INFO ∗) va l id . rgbData ;

Once the quote file generated, the TPA can then verifiy the correct signature and
values of the PCRs by the public part of AIK published earlier.

Appendix C

Logging and processing

Logging and auditing is based on auditd. A daemon runs on the CSP to process the
logs generated for events. A sample code to export the logs

import auparse
import audit
import j son
def walk_log (au) :

event_cnt = 1
au . r e s e t ()
while True :

i f not au . f i r s t _ r e c o r d () :
print " E r r o r _ g e t t i n g _ f i r s t _ r e c o r d "
sys . e x i t (1)

o u t _ d i c t = { }
o u t _ d i c t [’ record_count ’] = au . get_num_records ()
o u t _ d i c t [’ records ’] = []
record_cnt = 1
while True :

record = { }
record [’ type ’] = ’%d(%s) ’ % (au . get_type () ,

audit . audit_msg_type_to_name (au . get_type ()))
record [’ f i e l d _ c o u n t ’] = au . get_num_fields ()
record [’ l i n e ’] = au . get_line_number ()
record [’ f i l e ’] = au . get_f i lename ()
event = au . get_timestamp ()
i f event i s None :

print " Error_get t ing_t imestamp_abort ing "
sys . e x i t (1)

record [’ time ’] = "%d.%d:%d" % (event . sec , event .
m i l l i , event . s e r i a l)

record [’ host ’] = none_to_null (event . host)
au . f i r s t _ f i e l d ()
record [’ event ’] = { }
while True :

record [’ event ’] [au . get_f ie ld_name ()] = au .
g e t _ f i e l d _ s t r () , au . i n t e r p r e t _ f i e l d ()

i f not au . n e x t _ f i e l d () : break
o u t _ d i c t [’ records ’] . append (record)
record_cnt += 1
i f not au . next_record () : break

print j son . dumps(o u t _ d i c t)
event_cnt += 1
i f not au . parse_next_event () : break

au = auparse . AuParser (auparse . AUSOURCE_FILE, ’/var/log/audit/
audit . log ’)

31

32 Appendix C. Logging and processing

This will generate a JSON dump of logs.

{ " records " :
[{ " f i e l d _ c o u n t " : 12 , " host " : " (n u l l) " , " f i l e " : "/ var

/log/audit/audit . log " , " time " :
" 1 4 7 9 2 9 5 2 0 1 . 4 3 : 8 4 " , " l i n e " : 17 , " type " : " 1 1 0 1 (
USER_ACCT) " , " event " : { " auid " : [" 4 2 9 4 9 6 7 2 9 5 " , "
unset "] , " exe " : ["\"/ usr/sbin/cron \ " " , "/ usr/sbin
/cron "] , " ses " : [" 4 2 9 4 9 6 7 2 9 5 " , " unset "] , " uid " :
[" 0 " , " root "] , " re s " : [" success " , " success "] , "
hostname " : [" ? " , " ? "] , " pid " : [" 7 8 1 9 " , " 7 8 1 9 "] , "
terminal " : [" cron " , " cron "] , " addr " : [" ? " , " ? "] ,
" a c c t " : [" \ " btp \ " " , " btp "] , " type " : ["USER_ACCT" ,

"USER_ACCT"] , " op " : ["PAM: accounting " , "PAM:
accounting "] } }] ,

" record_count " :
1 }

Depending on the event type and rules set these JSON objects can be parsed using
even the simple libraries.

	Candidates' Declaration
	Certificate by BTP Guide
	Preface
	Acknowledgements
	Abstract
	Introduction
	Problem Statement and Design Goals
	Background
	Hypervisor
	Trusted Platform Module
	Virtual Trusted Platform Module (vTPM)

	Architecture of the Framework
	Process Overview
	Trusting AIK
	Attestation
	Service Level Agreements

	Implementation and Testing
	Attestation
	SLA Daemons

	Conclusion and Future Scope
	Bibliography
	Appendices
	Installing and Configuring vTPM with Xen Hypervisor
	Enable TPM in BIOS
	Install a host operating system -Dom0
	Install Xen hypervisor
	Build Dom0 kernel
	Build kernel and filesystem for DomU
	Configure vTPM manager and vTPM
	Boot DomU

	Code Constructs and Development
	Connecting to the TPM
	Generate and Publish an AIK
	Challenging and response for AIK verification
	Quoting and response for PCR verification

	Logging and processing

