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Chapter 1

Introduction

The ultimate building blocks of the matter as well as their interaction mechanisms has

been always a quest for knowledge for human beings. The fundamental particles quarks

and leptons along with their anti-particles form the composite objects. The interactions

among these fundamental particles are mediated by gauge-bosons e.g., photons (γ), glu-

ons (g), W±, Z0, and gravitons (G). Quarks (anti-quarks) exist in six different flavors

and similarly there are six different types of leptons (anti-leptons) as well : electron

(positron), muon (anti-muon), tau (anti-tau) lepton, and the corresponding three neu-

trinos (anti-neutrinos). Each quark (anti-quark) can exist in three possible colours e.g.

red (anti-red), blue (anti-blue) and green (anti-green). These colour charges generate

strong interactions among the quarks (anti-quarks). Quarks and anti-quarks form two

different type of colour neutral bound states named as baryons (three quark states) and

mesons (quark-antiquark states). Gluons that mediate the strong interactions between

quarks, are bi-coloured vector particles and exist in eight possible kinds. Further, glu-

ons have zero rest mass and spin 1. The theory which deals with quarks and gluons and

their associated dynamics is known as Quantum Chromodynamics (QCD). This is sim-

ilar to the interactions between two electrically charged particles (i.e. electromagnetic

interaction), which is governed by Quantum Electrodynamics (QED). However, QCD

is a non-abelian gauge theory in contrast to QED, which is an abelian gauge theory.

The non-abelian nature of the QCD arises since the gluons carry colour charges and

hence are self-interacting, while photons are electrically neutral particles and hence do

not possess self-interactions. Two basic properties of the theory of QCD are:
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• Asymptotic freedom and

• Color confinement.

The strong interaction between quarks and gluons at large distances (gives con-

finement) and asymptotic freedom at short distance are the two remarkable features of

QCD, discovered by Gross, Politzer and Wilczek in 1973 [1]. According to the behavior

of short and large distance, the static QCD potential can suitably be described as:

Vs = −4

3
× αs

r
+ k × r, (1.1)

where the first term dominates at small distance, arising from a single-gluon exchange,

similar to the Coulomb potential between two charges in QED, while the second term is

presumably linked to the confinement of quarks and gluons inside hadrons and is called

string tension form.

The re-normalized effective QCD coupling αs(µ) = g2
s/4π depends on the re-

normalization scale (running coupling), similar to that in QED. However, the QED

running coupling increases with energy scale, while the gluon self-interactions lead to a

completely different behavior in QCD.

The running coupling constant αs in QCD (at one loop) can be expressed in

terms of a squared four momentum transfer Q2, the number of quark flavors Nf , and

the typical QCD scale ΛQCD ≈ 0.2 GeV [2, 3]:

αs(Q
2) =

g2
s

4π
=

12π

(33− 2Nf ) ln( Q2

Λ2
QCD

)
. (1.2)

The running of αs is confirmed precisely by experimental results as shown in

Fig. 1.1 [4]. From Eq. (1.2), it is clear that αs → ∞ when Q2 = Λ2
QCD, and αs → 0

when Q2 →∞. Thus the QCD scale parameter determines the strength of the coupling

constant.
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Figure 1.1: The running coupling constant, αs as a function of energy scale Q, measured
in different experiments and compared with theoretical calculations [5].

The infinite value of the running coupling constant when Q2 = Λ2
QCD (i.e, the

large distance limit) gives the “quark confinement” property of the QCD whereas zero

value of the running coupling constant when Q2 → ∞ (i.e, the short distance limit)

is referred to as the “asymptotic freedom”. Consequently, at very large temperatures

and/or densities usually achieved in heavy ion collision, the interactions which confine

quarks and gluons inside hadrons should become sufficiently weak to realize the partons

(quarks and gluons) as free particle in a nuclear dimension. The phase in which quarks

and gluons are deconfined is termed as Quark Gluon Plasma (QGP) [6]. In QGP
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, a long range colour force is Debye screened due to collective effects similar to the

case of electromagnetic plasma [7]. Thus, in QGP volume the quarks interact via a

short range, weak potential and consequently they tend to behave as almost free and

deconfined particles after a critical value of temperature and /or density is achieved.

The transition from colour insulating hadronic matter to colour conducting QGP is a

new kind of phase transition since these two states of matter are very much different in

nature.

On the other hand, when Q2 →∞, QCD can be calculated perturbatively in high

momentum transfer or short distance approach (pQCD) while for Q2 = Λ2
QCD, QCD

is non-perturbative. In the strong coupling case, pQCD doesn’t apply and some other

methods may become essential, like Lattice QCD [8, 9] to describe the QCD dynamics.

1.1 Quark Gluon Plasma and Heavy Ion Collisions

QCD predicts that the quarks and gluons are confined in the hadrons in the normal

conditions while a new form of matter, the quark-gluon plasma (QGP), dominated

by quark and gluon degrees of freedom can be formed by heating and/or compressing

normal nuclear matter. The QGP exists in early Universe, when the universe was only

a few tens of microseconds old. On the other hand, a compact star, such as neutron

star, is much cooler than the QGP, but it is compressed by its own weight to such

high densities that it is reasonable to imagine that quark matter can again exist in the

core. Experimentally, QGP can be created by “heating”, i.e. by depositing energy into

the colliding system. A unique experimental tool to reproduce the similar environment

is to collide two heavy ions at very high energy. One expects to create matter under

conditions that are sufficient for deconfinement. The heavy ions are accelerated and

collided in the relativistic heavy ion collider, that are designed to search for the new

form of matter i.e. QGP. By colliding two nuclei at different energies, we can produce

hot dense nuclear matter at various temperatures (T) and baryon chemical potential
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(µB). Hence, it allows us to access the different regions of the QCD phase diagram in

order to search for the QCD critical point and to map the first order phase transition

boundary. Initially in 70s and early 80s some accelerators used for particle physics

were converted to accelerate heavy ions such as Bevatron at the Berkeley Lab. At the

same time the energies of the accelerators used for nuclear research increased, such as

in NSCL/MSU and GSI in Darmstadt. By the mid 80’s the heavy ions were injected

into some of the highest energy proton accelerators also, i.e. Alternating Gradient

Synchrotron (AGS) at Brookhaven National Laboratory (BNL), and the Super Proton

Synchrotron (SPS) at the European Center for Nuclear Research (CERN). By the early

90s the injection of the heavy ions was at the planning phase of new accelerators, like

Relativistic Heavy Ion Collider (RHIC) at BNL and Large Hadron Collider (LHC) at

CERN. RHIC has successfully performed Au+Au and Cu+Cu collisions at
√
sNN =

200 GeV, which is the designed top energy for heavy ion collisions at RHIC. In 2010,

Pb+Pb head on collisions at
√
sNN= 2.76 TeV were performed by LHC at CERN.

Fig. 1.2 shows a space-time evolution of the matter formed in a relativistic heavy

ion collisions. Because of the Lorentz contraction effect in the moving direction, two

nuclei can be seen as two thin disks approaching each other at high velocity. The energy

density estimated with the Bjorken approximation for Au+Au central collision at RHIC

top energy (∼ 5 GeV/fm3) is much higher than the energy density expected for the

formation of QGP from the Lattice QCD calculation (∼ 1 GeV/fm3) [44].

The physics processes at the initial stage (∼ 1fm/c) are dominated by hard

scatterings, such as quark pair production, jet production and fragmentation. During

the initial stage of the collisions, heavy ions deposit their energy into the collision region

and hadrons “melt” into quarks and gluons to form QGP. The subsequent processes are

the expansion and hadronization of QGP, when the fireball cools down and partons are

hadronized into hadrons (1 ∼ 10 fm/c) also. Then, the system reaches a stage called

the chemical freeze-out, where the abundance of hadrons are fixed and the inelastic

interaction between hadrons ceases. Finally, the system is dilute enough and comes to
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Figure 1.2: Time-evolution of a heavy ion collision. Nuclei approach each other at the
speed of light and collide, creating new matter in the process. The new matter expands
and cools as a fluid, eventually freezing into particles.

the kinetic freeze-out at an end, when hadrons cease their elastic interactions (10∼15

fm/c). Plenty of exciting physics results reveal that the matter created at RHIC top

energy is quite different from what we observed before and it can not be described by

hadronic degrees of freedom. Those measurements provide strong hints that the strongly

interacting QGP has been formed at top energy of Au+Au collisions at RHIC [44].

1.2 QCD Phase Diagram and Critical Point

A lot of progress has been made recently to understand the QCD phase transition

but most of the things are still not clear and there are many unanswered questions in

this field, e.g., the relation between deconfining and chiral symmetry restoring phase

transition, position of critical point (CP) in the phase diagram and its properties, and

the signals for detection of QGP formation. The studies about QGP at baryo chemical

potential µB ∼ 0 (RHIC and LHC) help us in our understanding early stages of the

Universe after the Big-Bang. Similarly the properties of dense matter are needed to

understand the inner core of neutron stars, where one finds µB very large.
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1.2.1 Conjectured QCD Phase Diagram

A phase diagram mainly gives the information about the location of the phase bound-

aries (phase transitions) as well as the physics of the phases that these transitions

delineate. Phase transitions involve thermodynamic singularities of the system. Ac-

cording to the Ehrenfest classification [10], a phase transition is of first-order, if at least

one of the first derivatives of the grand canonical potential is discontinuous, and of

second order if the first are continuous but the second derivatives are not. Thus in a

first order phase transition the discontinuous first derivative can usually serve as an

order parameter. According to Landau [11], a first order phase transition is defined by

the appearance of different phases in coexistence, which can be distinguished and are

characterised by order parameters. The appearance of latent heat is a signature of first

order phase transition.

Fig. 1.3 presents the schematic phase diagram of water. The control parameters in

this case are temperature (T) and pressure (P). Three regions correspond to ice, water

and the steam phases. The solid lines mark the various co-existent curves, where two

phases are in equilibrium.

Two special points in the phase diagram are the triple point (Ttr = 273.16 K, Ptr =

600 Nm−2), where all three phases co-exist and the critical point or more clearly called

as critical end point (Tc = 647 K, Pc = 2.21×107 Nm−2), where the meniscus separating

liquid and vapour disappears and the two phases become indistinguishable. For T <

Tc, the transition between liquid and vapour is first-order, implying discontinuities in

entropy and volume.

At the critical end point (CEP), the transition becomes second order, which means

that the singularity instead occurs in specific heat (CP ) and isothermal compressibility
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Figure 1.3: Schematic phase diagram of water in the pressure-temperature (P − T )
plane.

(κT ) of the fluid, which are related to the second derivative of the free energy :

CP = −T
(
∂2G

∂T 2

)
P

(1.3)

κT = − 1

V

(
∂2G

∂P 2

)
T

Therefore, CP and κT diverges at CEP. Just beyond the CEP, thermodynamic observ-

ables still vary very rapidly. This is known as the crossover region.

Fig. 1.4 shows the conjectured (or proposed) QCD phase diagram in the T − µB
plane. There should be at least three fundamental states of matter in QCD [12] : In

low density and low temperature region, we have the hadronic phase with broken chiral

symmetry, in which quarks and gluons are confined inside hadrons. On the other hand,

in high density and high temperature region, the confinement breaks down and decon-

fined quarks and gluons become relevant degrees of freedom. This phase is known as
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Figure 1.4: Conjectured QCD phase diagram in T − µB plane [13]

QGP. The third conjectured phase is a colour superconducting phase at low tempera-

ture and high µB.

1.2.2 QCD Critical End Point

The temperature driven transition at zero µB has been studied extensively by lattice

QCD techniques. Recent lattice calculations on the basis of the staggered and Wil-

son fermion indicate a rapid crossover from the hadronic phase to the QGP phase for

realistic u, d and s quark masses [14, 15]. The pseudo-critical temperature Tc, which

characterizes the crossover location lies in the range 150−200 MeV as shown in Fig. 1.4.

The µB driven transition at zero T is a first order phase transition. This conclusion
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is less robust, since the first principle lattice calculations are not controllable in this

regime due to a notorious sign problem at finite µB [16]. Nevertheless, a number of

different model approaches indicate that the transition in this region is strongly first

order. However, most of these models are essentially extensions of the linear sigma

model, such as the Nambu model with or without Polyakov loop dynamics, and small

modifications may alter the conclusions.

Since the first order line originating at zero T cannot end at the vertical axis

µB = 0, the line must end somewhere in the midst of the phase diagram. This end

point of a first order phase transition line is a critical end point (CEP) of the second

order. This is the most common critical phenomena in condensed matter physics. CEP

in the proposed QCD phase diagram has much importance to understand the critical (or

non-perturbative) nature of the strongly interacting matter and its governing theory,

QCD. If the critical end point exists, the correlation length of an order parameter, ξ

, diverges and thermodynamic quantities have singular behavior at the point, like the

specific heat at the liquid-gas critical end point. Due to such singularity, the critical end

point is expected to be useful for the experimental probe of the QCD phase structure

in the relativistic heavy ion colliders.

Theoretically, finding the coordinates (T, µB) of the CEP is a well-defined task.

We need to construct the partition function of QCD and to find out the singularity

corresponding to the end of the first order phase transition line. But this procedure is

severely impaired by the notorious sign problem in lattice calculations. Thus, nature

guards its secrets better at finite µB and, therefore, to find the exact location of CEP,

which involves finite value of µB, is a tedious task for the theoreticians. Certain methods

were proposed to circumvent this problem [19]. However, the results obtained from

different methods are quite different from each other as shown in Fig. 1.5. Thus lack of

an unanimous method to circumvent the sign problem still poses a tough challenge in

the search of exact location of CEP.
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Figure 1.5: Comparison of predictions for the location of the QCD critical point on the
phase diagram [18] by different theories.

1.3 QCD Critical Point: A Brief Experimental

Overview

Relativistic heavy ion collision (HIC) provides a tool to realize a high energy density

environment in order to study the signatures for different phases of strongly interacting

matter and location of CEP as suggested by the conjectured QCD phase diagram [20].

In nuclear collisions, we expect the occurrence of high energy density in two different

ways: in the “stopping regime” at a laboratory beam energy ≤10 GeV/A, where A is

the number of nucleons in the colliding nucleus; and in the “central rapidity regime” at

a beam energy ≥100 GeV/A. The medium formed in the stopping regime is a baryon-

rich plasma, because when the nuclei are stopped together, the baryon density is found

to be very large. However, at higher energies, the nuclear transparency increases and

nuclei almost pass through each other, leaving an excited vacuum behind them. The

energy thus trapped may become liberated in the form of multiple pion production.

This region is called pionization region or the central rapidity region and has a very
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Table 1.1: Past, current and future accelerator experiments for heavy ion collisions:

Accelerator Collision Energy Colliding Starting
year

in CM Frame Nuclei

AGS (BNL, 1986) ∼ 5 AGeV p+A, O+A, 1986
Si+A, Au+Au

SPS (CERN, 1986) 17.3 AGeV, Pb+Pb 1986
19.4 AGeV p+A, S+U

RHIC (BNL, 2000) 200 AGeV, p+p, d+Au, 2000
62.4 AGeV, Cu+Cu
130 AGeV Au+Au,

LHC (CERN,2008) 5.5 ATeV p+p, p+Pb, 2009
CBM (GSI) 3.97 AGeV, p+p, p+Au, 2018

8.1 AGeV Au+Au, Pb+Pb

small baryon content. In this region, hadrons are formed mainly because of the quark

anti-quark pairs and gluons, and thus the medium formed is almost baryon-free. For

the intermediate colliding energies, the medium formed lies somewhat in between the

stopping and transparent regimes. Thus we can say that by using different kind of

heavy ion collisions in the laboratory, we can form different types of media, which

thus probe the various aspects of phases of QCD matter. Table 1.1 gives a summary

of the accelerators, collision energy in center-of-mass frame and the colliding nuclei

used for heavy ion collisions. The HIC at LHC and higher RHIC energies attempts

to create a high temperature and quite dense medium which is more suitable for the

possible formation of quark-gluon plasma phase and the crossover region between HG

to QGP phase (as predicted by lattice QCD calculations). Complementary to these

HIC experiments, CBM at GSI will shed light on the high baryon-dense medium in

the stopping regime. The created medium can thus provide a way to study the various

phase structures (e.g., colour superconductor phase, QCD critical end point, quarkyonic

phase etc.) at high-baryon density of the conjectured phase diagram.

Experimentally, search for the QCD critical point and its signatures have been un-

dertaken from SPS to RHIC experiments. In NA49 experiment, transverse momentum
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fluctuation, ΦpT -measure [21, 39], and the particle multiplicity fluctuation (the scaled

variance) [38], ω, are used. In this experiment, central Pb+Pb collisions are studied

at 20A, 30A, 40A, 80A, and 158 AGeV collision energy. Both ΦpT and ω, measure

of transverse and particle multiplicity fluctuations, show no increase or non-monotonic

behavior [38, 39] as a function of collision energies. The system size dependance of the

above fluctuations are also studied for intermediate system C+C and Si+Si interaction

at 158 AGeV. The higher moments of pT fluctuation, Φ(n)
pT , have also been studied to

amplify the signal of the critical point in the above colliding system. No critical point

signature has been found in these results. Besides, it was suggested that particle ratio

fluctuation might also provide the signature of critical point because hadron production

at freeze-out carry the nature of the deconfinement phase transition.

The NA49 [40] and STAR [41] experiments have also analyzed the data for dy-

namical fluctuation, σdyn, for the particle ratio like K/π, p/π, and K/p. In this case, the

difference of the width of the particle ratio fluctuation for data and that of the mixed

events are considered the dynamical fluctuation of particle ratio. These results show no

non-monotonic behavior as a function of the beam energies. The NA49 intermittency

result shows some clue for the presence of QCD critical point. In this analysis, second

factorial moments, F2, of low-mass π+π− pair in central Si+Si interaction at 158 AGeV

(which is
√
sNN= 17.8 GeV) are studied. The magnitude of the net-proton and σ field

are characterized by the order parameter for the second order phase transition associ-

ated with QCD critical point. In this case, difference of F2 between data and mixed

events, ∆F2(M), as a function of transverse momentum space of bin, shows intermit-

tency signal in the data. The intermittency results for the Si+Si system approaches

the QCD critical point prediction [43]. These results provide strong evidence for exis-

tence of the critical point in the proximity of the Si+Si and Pb+Pb freeze-out state.

Future experiments like NA61/SHINE [42] at the CERN SPS, which is the successor

of the NA49 experiment, is a dedicated experiment for the search of the critical point,
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whereas the RHIC beam energy scan program aims to probe the QCD critical point

in a wide range of temperature and baryon chemical point. Future colliders like JINR

NICA (3 GeV<
√
sNN <9 GeV) and GSI FAIR (2.3 GeV<

√
sNN <8.5 GeV) have also

planned of the search for QCD critical point at low temperature and high baryochemical

potential.

14



Chapter 2

Kinematics and Collision Dynamics

In high energy physics, we use different kinematic variables and units, which are dis-

cussed briefly in the following section along with collision pictures for heavy ions.

2.1 Kinematic Variables

We start out by looking at the global coordinate system (x,y,z), which is centered

around the interaction vertex. The z-axis is chosen along the beam line, and the x-axis

always points towards the center of the accelerator ring, thus leaving the y-axis to point

vertically upwards. Local coordinate system (x′, y′, z′) exists in each sub detector, with

the z′-axis pointing away from the original collision. The y′-axis of the local system

is parallel to the y′-axis of the global system. A sketch of these systems is shown in

Fig. 2.1.

The momenta of the created particles, are split into a longitudinal component

pZ , along the beam-line and a transverse momentum component, pT , orthogonal to the

beam. The transverse momentum, illustrated in Fig. 2.1, is given by:

pT =
√
p2
x + p2

y (2.1)

Similarly the transverse mass is defined as:

mT =
√
m2 + p2

T , (2.2)
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Figure 2.1: Sketch of the coordinate system used in accelerators. Collision occur at (0,
0, 0) in the global XYZ system. The Z-axis follows the beam line, and the X-axis point
to the center of the accelerator ring.

Both the transverse mass and momentum are Lorentz invariant making them

excellent variables in relativistic systems. The normal velocity is non-linear in successive

Lorentz transformation. However a new variable rapidity, y, defined as:

y =
1

2
ln
E + pz
E − pz

, (2.3)

is additive under Lorentz transformation. This leaves the shape of the rapidity spectra

invariant.

E2 = p2 +m2. (2.4)

If the mass is unknown as is the case in experiment the pseudo rapidity η is a very

useful quantity, defined as:

η = − ln tan θ/2 (2.5)

θ denotes the polar angle between the momentum vector, p, and the beam axis, as seen

in Fig. 2.2. In the relativistic case when p >>m the rapidity variable reduces to the
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pseudo rapidity variable as:

y =
1

2
ln
E + pz
E − pz

≈ 1

2
ln
p+ pz
p− pz

=
1

2
ln

1 + cos θ

1− cos θ
= − ln tan θ/2 (2.6)

Here as p >>m, E ≈ p and pz = p cos θ. For studying the particle production it is useful

Figure 2.2: Pictorial representation of angle θ and φ in real experiment.

to express the invariant cross section E d3σ
dp3

in terms of rapidity, transverse momentum

and the azimuthal angle φ, which are defined as px = pT cosφ and py = pT sinφ. Using

the definition of cos y :

cosh y =
1

2
(ey + e−y)

=
1

2

(√
E + pz
E − pz

+

√
E − pz
E + pz

)

=
1

2

(
E + pz + E − pz√

E2 − p2
T

)
=> E = mT cosh y
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In a similar fashion one obtains longitudinal momentum pz as:

pz = mT sinh y (2.7)

To convert from usual Cartesian coordinates (x,y,z) to that used in high energy physics,

i.e. (y, pT , φ), one uses

f(px, py, pz) = Jf(y, pT , φ) (2.8)

here, Jacobian J is defined as,

J(y, pT , φ) =
∂(px, py, pz)

∂(y, pT , φ)
(2.9)

now, to get Jacobian, J in Eq. 2.9,

J ≡

∣∣∣∣∣∣∣∣∣
∂px/∂y ∂px/∂pT ∂px/∂φ

∂py/∂y ∂py/∂pT ∂py/∂φ

∂pz/∂y ∂pz/∂pT ∂pz/∂φ

∣∣∣∣∣∣∣∣∣ (2.10)

=

∣∣∣∣∣∣∣∣∣
0 cosφ −pT sinφ

0 sinφ pT cosφ

−E ∂pz/∂pT ∂pz/∂φ

∣∣∣∣∣∣∣∣∣ (2.11)

= E.pT

The rapidity variable has the useful property that it transforms linearly under a Lorentz

transformation so that the invariant cross-section is given by:

E
d3σ

dp3
=

d2N

2πpTdpTdy
=

d2N

2πmTdmTdy
(2.12)

Here the integration over the azimuthal angle gives the factor of 2π. The right hand

side of equation 2.12 ,This is a very important observable in heavy ion physics and

is used to study particle yields. From experimental consideration, normalizing by the
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number of events one uses,

E
d3σ

dp3
=

1

Nevent

d2N

2πpTdpTdy
(2.13)

Where, N is the measured number of a given particle species, and Nevent is the number

of events. In the following sections an introduction to the central pictures and concepts

of relativistic heavy ion collisions is given.

2.2 Collision Picture

In Fig. 2.3 an illustration of a relativistic collision is shown as seen from the Center-

of-mass frame of the nuclei. Each nucleus is Lorentz contracted along its direction of

motion.

Figure 2.3: Schematic illustration of a relativistic heavy ion collision. The participant
nucleons of the overlap region between the colliding nuclei form the high density fireball,
whereas the rest of the nucleons continues unaffected as spectators.
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2.2.1 Participants and Spectators

The nucleons directly involved in the collision, called participants, interact strongly

giving rise to a high density volume, known as the fireball. Nucleons outside the over-

lapping region of the two nuclei are called spectators. They are unaffected by the

collision except for Coulomb-interactions and they retain their initial momentum, fly-

ing away from the fireball. Fig 2.3 also introduces the impact parameter, b, which is the

transverse distance between the centers of the two nuclei. A large impact parameter

hence corresponds to a peripheral collision, where a small region of the nuclei overlap,

whereas a small impact parameter gives a central collision with a large overlapping re-

gion and hence more number of nucleon participants. As it is practically impossible to

measure the impact parameter directly, an experimental technique is used to distinguish

collisions into classes of centrality. This is done based on the multiplicity or transverse

energy of the events so that the collisions with highest particle production are defined

as most central.

The impact parameter is correlated to the centrality of the collision in the following

way:

c =

∫ bc
0

dσin(b′)
db′

db′

σin
(2.14)

Here σin ,dσin(b′)/db′ and bc are the total inelastic nuclear reaction cross section, the

differential cross section and a cut-off in the impact parameter, respectively. Thus the

centrality, c, denotes the probability that a collision occurs with an impact parameter

of b ≤ bc. For a solid sphere dσin(b′)
db′

= 2πbdb and thereby under the assumption that

nuclei are identical and spherical the centrality becomes:

c =

∫ bc
0

2πbdb∫ 2R

0
2πbdb

=
b2
c

4R2

20



Here R denotes the radius of the nuclei. Consisting of 197 nucleons, Au is found to have

R = R0A
1/3 = 1.21971/3fm = 7.0fm. R0 is taken as 1.2 fm. The impact parameter

and the number of participants in the collision are directly related. Their relation can

be estimated using the Glauber model.

2.2.2 The Bjorken Picture

A important contribution to heavy ion physics is a paper from 1983 by Bjorken , which

deals with a hydro-dynamical description of the central rapidity region in heavy ion

collisions. The description depends on four important assumptions on collisions between

nuclei with number of nucleons A:

• Boost in-variance: Each thin slab (perpendicular to the z-axis) of the fireball is

boost invariant; hence there will be no longitudinal pressure gradient. The energy

density and particle production for any given slab will then be the same, so the total

particle production as a function of rapidity dN/dy (also boost invariant), will have

a plateau shape. This however is only assumed to be true in a few units of rapidity

around mid-rapidity.

• Transparency: The nuclei interpenetrates in the Au+Au collision and the central

plateau is formed through particle production from the breaking of colour strings. The

fragments of the original nuclei end up some units of rapidity from mid-rapidity. In

Lorentz frames with velocities close to the mid-rapidity frame, the nuclei look like flat

pancakes.

• Transverse expansion: The radial expansion is negligible compared to longitudinal.

The fireball will thus appear to be stretched out between the two incident nuclei, so for

central collisions it takes on a cylindrical form. This is assumed to hold good at least

until some time after possible QGP is formed.

• Thermalization: At some early time, assumed to be of the order of the characteristic
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hadronic time scale t∼1 fm/c, the system thermalises and hydrodynamics governs the

evolution and expansion of the source.

These assumptions lead to a diagram of the space-time evolution of the post-

collision dynamics. If the longitudinal expansion of the nuclei is neglected, assumption

1 gives that all slabs move according to:

z = βt (2.15)

and have a proper time:

τ =
t

γ
=

√
t2(1− z2

t2
) =
√
t2 − z2 (2.16)

As each slab is unaffected by neighboring slabs (assumption 1), they can be seen as

evolving independently in their own proper time. The proper time forms a hyperbola

in (z,t) plane, which is shown in Fig. 2.4.

In the Bjorken picture the incoming nuclei are transparent to each other as men-

tioned, allowing them to interpenetrate without loosing much of their initial kinetic

energy. However, upon doing so they leave a highly excited colour field between them,

in which particle production take place due to the breaking of colour strings. The

concept of transparency is illustrated in Fig. 2.5.

2.2.3 The Landau Picture

The intuitive understanding of a collision would be that the two particles collide and

lose all of their kinetic energy in the process, like any two macroscopic massive objects.

This was also the first approach proposed by Landau in 1953. The Landau picture

consists of 3 stages:

• Full stopping: When the two nuclei collide all energy is released and many particles
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Figure 2.4: Proposed space-time evolution of a heavy ion collision. Quarks and gluon
are at first deconfined in a QGP which thermalises; eventually the hadrons freeze out
and streams away freely [17].

are instantly created from the collision overlap area. The mean free path is so small

that the system is instantly in statistical equilibrium.

• Hydrodynamics: The system expands according to relativistic hydrodynamics with

the strong force being the only interaction. The fireball is assumed to be an ideal fluid,

that is, it has no viscosity and thermal conductivity. Particles are still being created and

absorbed since the energy density is above the chemical potential for many particles.

• Adiabatic expansion: The fluid expands adiabatic-ally, i.e. the entropy is constant.

As the system expands, the mean free path increases and energy density decreases. At

a critical time, no particles or very few are scattered or created. Landau named it as

the “break-up stage”, but it has later been renamed as “freeze-out”.

An interesting point is that the original baryons (nuclear fragments) have no “ special

qualities ” in the fireball, and as it expands and freezes out, the fragments will be

distributed according to relativistic hydrodynamics like the other particles. A collision

in accordance with the Landau picture is illustrated in Fig. 2.6.
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Figure 2.5: Schematic view of a collision in the transparent (baryonless mid-rapidity)
picture.

Figure 2.6: Schematic view of a collision in Landau’s nuclear stopping picture.

These two extreme pictures corresponds to very different macroscopic physical

phenomena. The transparent Bjorken picture is reminiscent of the early Universe, with

very high temperature and low baryon-chemical potential, µB. In the other end of the

scale, Landau’s stopping picture is reminiscent of the conditions inside stellar objects

like neutron stars, with large µB and relatively low temperature. At RHIC, it is found

by nuclear stopping measurements, that the higher the collision energy is, the more

transparent the collision is.
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Chapter 3

Baryon Stopping in High Energy

Nuclear Collisions

The characterisation and interpretation of the proton distributions produced in heavy

ion collisions are important to understand the dynamics of hot and dense nuclear matter.

It can be observed from the nuclear matter phase diagram shwon in Fig. 1.5, there exists

a continuum of critical temperatures and baryon densities at which a phase transition

from a hadron gas to a Quark Gluon Plasma (QGP) might occur. By studying stopping

in heavy ion collisions as a function of beam energy, we are able to determine whether

the energy densities attained in the collisions are high enough to allow a phase transition

to a QGP state.

We know the initial (pre-collision) and final states of the proton distributions as

a function of rapidity. There are two distinct signatures, which may be inferred from

the observed proton rapidity densities: incomplete stopping/nuclear transparency and

longitudinal hydrodynamic flow. While the true situation is a combination of these two

effects, they cannot be easily disentangled. In the following sections, the interpretations

of the observed proton rapidity densities at AGS (2, 4, 6 and 8 AGeV) and RHIC (62.4

and 200 GeV) are discussed.
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3.1 Nuclear Stopping

Landau and Bjorken models, each composed of two extreme nuclear collision cases:

total nuclear stopping and transparency, respectively. Experiments have been trying to

look for signatures, which reveals the collision dynamics and the created new form of

matter. This might be good to explore the collision dynamics, which in turn can be

used to validate and improve theoretical models.

The nuclear stopping power is a measure of the degree to which the kinetic energy

of the relative motion of the two colliding nuclei is transformed into other degrees of

freedom. As the nuclear stopping increases, thermalization of incident energy increases

and high energy density is observed. The production of particles will increase and a

collective flow is expected.

3.1.1 Quantifying Baryon Stopping in High Energy Nuclear

Collisions

A baryon is a tri-quark bound state (e.g. proton, neutron, hyperon, etc.), and the cor-

responding quantum number (called the baryon number denoted B) is +1 for a baryon

and -1 for an anti-baryon or ± 1/3 per (anti)quark, all other particles (fundamental or

bound state) have B=0. It is empirically observed that in any interaction, either elastic

or inelastic, the total baryon number is conserved.

Experimental Consideration

In heavy ion collisions, two nuclei moving at relativistic speed deposite their kinetic

energy in small region for a short time of interval for the possible formation of QGP

and the particle production. The mean rapidity loss is a measure of kinetic energy loss

quantified as

δy = yp− < ynet−b >, (3.1)
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here yp is the rapidity of the beam protons and 〈ynet−b〉 is the mean rapidity of

net-baryons after the collisions. Net-baryon is defined as the number of baryons minus

the number of anti-baryons. Experimentally it is not possible to distinguish between

the produced and those originating from collision remnants. To extract the pure colli-

sion remnants rapidity distribution from experimental data, different phenomenological

models have been used.

Rapidity losses in heavy ion collisions are measured at different center of mass

energies at AGS, SPS to RHIC [29] [32] [26] in order to determine the degree of nuclear

stopping and energy density built up in the stopping region. At AGS energies, the net-

baryon distributions are described with double Gaussians distributions demonstrated

by the E917 collaboration.

The mean rapidity losses can be estimated by using Eq.3.1 with the 〈ynet−b〉,

determined from the Gaussian distribution centered at positive rapidity. It is assumed

that the Gaussian corresponds to projectile baryon distribution. At SPS and RHIC

energies the mean rapidity losses are calculated without discriminate the origin of the

net-baryons. The comparison of rapidity losses at different energies becomes compli-

cated, when the contribution of target baryon to the net-baryon distribution at rapidity

region above mid-rapidity shows a strong energy dependence [25]. Thus it is necessary

to examine the sensitivity of rapidity loss to the target baryon contribution in order to

study the energy dependence of the rapidity loss.

Before the collision, the projectile baryons peak at 〈yp〉 and after the collision

the projectile baryon distribution extend from target rapidity to the projectile rapid-

ity. Thus, to obtain the average projectile baryon rapidity 〈ynet−b〉 after the collision,

the integration is carried out from the target rapidity to the projectile rapidity. For

symmetrical heavy ion collisions, 〈yp〉 can be expressed in the center-of-mass system as:

< y >=
2

NPart

∫ yp

−yp
y
dNB−B̄

dy
dy, (3.2)
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Where dNB−B̄/dy is the net-baryon rapidity density, which is related to the net-proton

distribution and Npart is the number of participating baryons in the collisions. The net-

baryon yield can be estimated from the net-proton yield, i .e. the difference of proton and

anti-protons yields. thus, the rapidity distribution of the net-protons after the collision

determines the energy available for particle production and yields the information on

the stopping of ions due to their mutual interactions.

In case of full stopping, the average rapidity loss is δy = yp, which means that

< ynet−b > is 0. In case of total transparency δy= 0, because the net-baryons stay in

the beam rapidity region < ynet−b > = yp, and because of baryon number conservation,

any baryons created between the nuclear fragments should be from baryon-anti baryon

pair production and thus keeping the region net-baryon free.

The non-(direct) interdependence between stopping and energy loss means that a

high degree of transparency doesn’t necessarily mean low energy loss. This is fortunate

as the transparency seem to increase with the beam energy. If this hadn’t been the

case, building bigger accelerators in order to increase the energy available for particle

production would largely be futile.

3.2 Protons as a Proxy for Baryons

In most of the experiments the only identifiable baryons measured are protons. Neu-

trons are the lightest non-detectable baryons only measured in zero degree calorimeter

(ZDC) for centrality selection and are most likely to be produced. However, some heav-

ier strange baryons (∧, Σ0,Σ+ and Σ−) are also produced, while they decay into either

protons or neutrons before reaching the detector.

This is obviously a non-trivial problem for the measurements related to baryons.

Similar is the situation in case of net-baryon susceptibilities. As net-baryon is a con-

served quantity not the net-proton, therefore it has been questionable to use net-protons

as a probe to look for CEP. On the other hand, since the σ-measure to quantify fluctu-
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ations in theories are blind to isospin symmetries, it is argued that the measurements

of net-protons are equally good as net-baryons. Therefore proton works as a proxy of

baryons in event-by-event fluctuation measurement of net-baryons.

3.3 Review of Previous Results

Stopping has been examined in several experiments at different energies and particle

species. The shape of the net-baryon distribution at different energies is shown in

Fig. 3.1 [26]. At AGS (
√
sNN = 11.6 GeV) for Au-Au collisions (yb ∼1.64) the distri-

bution peaks at mid-rapidity and then falls off as the rapidity increases, looking mostly

like a Landau Gaussian rapidity profile. But at higher energies like SPS for Pb+Pb

collision at sNN = 17.2 GeV, (yb ∼ 2.9) a dip is seen in the middle of the distribution.

It is observed that the net-baryons have a tendency to shift forwards (and backwards).

The central region does, however, contain a fair amount of net-baryons indicating a

certain degree of stopping.

At 200 GeV Au-Au collisions (RHIC’s top centre of mass energy) a large por-

tion of the mid-rapidity net-baryon distribution exhibits a flattening indicating a high

degree of transparency. This is much more consistent with Bjorken type of collision

picture. Several models have also been employed to examine the net-baryon distribu-

tion and stopping. For some of the models, there does seem to be some agreement with

the transparencies seen in the higher energy experiments. It may not be qualitatively

exact, but they do appear to push the net-baryons into the forward rapidity region.

Fig 3.1 shows net–proton dN/dy measured at AGS, SPS and LHC energies. The

distributions show a strong energy dependence. The net–protons peak at mid-rapidity

at AGS, while at SPS a dip is observed in the middle of the distribution. At RHIC,

a broad minimum has developed spanning several units of rapidity, indicating that at

RHIC energies collisions are quite transparent. In Fig 3.1, all data are from the top 5 %

most central collisions and the errors are both statistical and systematic (the light gray
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band shows the 10% overall normalization uncertainty on the E802 points, but not 15%

for E917). The data have been symmetrized. For RHIC data black points are measured

and gray points are symmetrized (mirror reflections about ycm), while the opposite is

true for AGS and SPS data (for clarity). At AGS, weak decay corrections are negligible

and at SPS they have been applied.

Figure 3.1: The net-proton rapidity distribution at AGS [27–29] (Au+Au at 5 GeV),
SPS [32] (Pb+Pb at 17 GeV) and RHIC (Au+Au at 200 GeV). The data are from the
top 5% most central collisions and the errors are both statistical and systematic. The
figure is adopted from Ref. [26]

.

The energy dependence of rapidity loss

The rapidity losses can be calculated using Eq.3.1 and Eq.3.2 as a function of projectile

rapidity (in the CM). Rapidity losses in heavy ion collisions were measured at different

energies at AGS [32], SPS [29] to RHIC [26]. Fig.3.2 shows the rapidity loss in which

< yb > was evaluated from mid-rapidity to beam rapidity. In Fig.3.2 from AGS to
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SPS, avarage rapidity loss < yb > increases linearly with the beam energy yb. When

discussing at RHIC, we study the average rapidity loss at
√
sNN = 62.4 and 200 GeV, a

new linear increasing relationship is established from SPS to RHIC, but this begins to

increase slowly unlike the degree of increase that was observed at AGS to SPS energies.

Figure 3.2: The inset plot shows the extrapolated net-baryon distribution (data points)
with fits (represented by the curves) to the data. The full Fig 3.2 shows the rapidity
loss, obtained using Eq. 3.2, as a function of projectile rapidity (in the CM). The figure
is adopted from Ref. [26]

.
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Chapter 4

Effect of Baryon Stopping on

Higher Moments of Net-Proton

In recent years, using control parameters temperature (T ) and baryon chemical poten-

tial (µB) the Beam Energy Scan (BES) program at Brookhaven National Laboratory’s

Relativistic Heavy Ion Collider (RHIC) has drawn much attention to map the quantum

chromodynamics (QCD) phase diagram in terms of [45]. Lattice QCD calculations

combined with other theoretical models suggest that there should be a critical point,

where the phase transition line of first order originating from high µB ends [46–48]. Ex-

perimentally the location of the critical point can be measured by scanning the T − µB
plane of the phase diagram. One can scan the T − µB plane by varying the center-of-

mass energies of the colliding ions.

Measurement of the moments of distributions for conserved quantities like net-

baryon, net-charge and net-strangeness number for systems undergoing strong inter-

actions as in high energy heavy ion collisions, have recently provided rich physics in-

sights [66, 67]. The most crucial realisation is that, the product of moments of the

conserved number distributions are measured experimentally and can be linked to sus-

ceptibilities (χ) computed in Quantum Chromodynamics (QCD) based calculations.

For example, S σ = χ(3)/χ(2) and κ σ2 = χ(4)/χ(2), where σ is the standard deviation,

S is the skewness, κ is the kurtosis of the measured conserved number distribution, χ(n)

are the nth order theoretically calculated susceptibilities associated with these conserved

numbers.
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Non-monotonic variation of observables related to the moments of the distribu-

tions of conserved quantities with
√
sNN are believed to be good signatures of a phase

transition and a CEP. The moments are related to the correlation length (ξ) of the

system. The signatures of phase transition or CEP are detectable if they survive the

evolution of the system. Finite size and time effects in heavy ion collisions put con-

straints on the significance of the desired signals. A theoretical calculation suggests

a non-equilibrium ξ ≈ 2-3 fm for heavy ion collisions. Hence, it is proposed to study

the higher moments (like skewness, S = 〈(δN)3〉 /σ3 and kurtosis, κ = [〈(δN)4〉 /σ4]

– 3 with δN = N – 〈N〉) of distributions of conserved quantities due to a stronger

dependence on ξ. Both the magnitude and the sign of the moments, which quantify the

shape of the multiplicity distributions, are important to understand the phase transition

and CEP effects. Further, products of the moments can be related to susceptibilities

associated with the conserved numbers. The product κσ2 of the net-baryon number

distribution is related to the ratio of fourth order (χ
(4)
B ) to second order (χ

(2)
B ) baryon

number susceptibilities. The ratio χ
(4)
B /χ

(2)
B is expected to deviate from unity near the

CEP. It has different values for the hadronic and partonic phases. Such a connection

between theory and high energy heavy ion collision experiment has led to furthering

our understanding about the freeze-out conditions [50, 66], details of the quark-hadron

transition and plays a crucial role for the search of possible QCD critical point in the

QCD phase diagram.

The STAR experiment has measured the event-by-event proton (Np) and anti-

proton (Np̄) multiplicities for Au+Au minimum-bias events at
√
sNN = 7.7, 11.5, 19.6,

27, 39, 62.4, and 200 GeV to calculate net-proton fluctuations. The 19.6 and 27 GeV

data were collected in the year 2011 and the other energies were taken in 2010.

But, the STAR proton multiplicities include the protons from stopping, reso-

nances and production. It is to be noted that the conservation of baryon numbers

is associated to only produced protons not with the stopping ones. Therefore, in the

present work, we try to estimate the stopped protons and then remove their contribu-
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tion from the STAR measured proton multiplicities. Since the STAR measurement use

all the protons to estimate the higher order moments of net-protons distributions, It

will be constructive to check whether the non-monotonic behavior of higher moments

persists by removing the stopped protons from STAR data.

4.1 Estimation of Baryon Stopping from Rapidity

Distribution

The rapidity distribution of net-protons after the collision determines the available

energy for particle production as well as tells about the stopping of the ions due to

their mutual interaction. The net-baryon rapidity distribution is the direct measure

of baryon stopping. The experimental information on neutrons is unavailable so we

have to rely on proton data. Presently there exists experimental data on proton (or

net-proton) rapidity spectra at AGS [27–29], SPS [32–36] and RHIC [25, 26] energies.

In central Au+Au heavy ion collision at AGS energies rapidity distribution of proton

indicates almost complete stopping. Nuclear rapidity distribution yield information

on nuclear stopping, which provides a measure of energy that is deposited for particle

production. Therefore, baryon stopping calculation is of prime interest for theoretical

understanding and to connect it with experimental results.

4.1.1 Fitting Function used for Analysis of Experimental

Data

In order to determine the stopping of the collision we first need the net-baryon distri-

bution function. This means, we will have a function to fit the net-baryon distribution

available at different energies. The choice of a function is however not theoretically de-

termined, but by observing the net-baryon distribution at different energies from AGS
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to RHIC. we can consider a double Gaussian function so the function should be flat

around mid-rapidity, increases towards higher rapidity and terminate at ybeam. To make

this comparison more quantitative, we fit data by a simple function which has a thermal

origin explained in Ref. [37]. The invariant momentum spectrum of particles radiated

by a thermal source with temperature T is given as follows:

E
d3n

d3p
=

dn

dymTdmTdφ
=

gV

(2π)3
Ee−(E−µ)/T (4.1)

Now, Eq. 4.1 can be written as:

1

2π

dn

dymTdmT

=
gV

(2π)3
Ee−(E−µ)/T (4.2)

or,
dn

mTdmTdy
=

gV

(2π)2
Ee−(E−µ)/T .

Here, g is the spin/isospin-degeneracy factor for the particle species and µ the

grand canonical potential µ = bµb + sµs as originating from its baryon and strangeness

quantum numbers b and s, respectively . For simplicity, we neglect quantum statistics

with the reasoning that its influence will be rather small at the low densities where the

particles typically decouple from each other and where the spectra are computed.

Volume of the source, giving together with the factor eµ/T is the normalization

of the spectrum, which we will always adjust for a best fit to the data, because we are

only interested in the shape of the spectra to reveal the dynamics of the collision zone

at freeze-out. In the remainder of the text we will always give the spectra in terms of

rapidity y = tanh−1(pL/E), where pL ≡ longitudinal momentum.

Inserting E = mT cosh y in above Eq. 4.2 and integrated over transverse compo-

nent from mT = m to mT =∞, we get the total rapidity density dn/dy as follows

dn

dy
=

∫ ∞
mT =m

gV

(2π)2
m2
T cosh ye−(E−µ)/TdmT . (4.3)

36



Now by integrating the invariant momentum spectra in Eq. 4.3 over the transverse

component:

dn

dy
=

V

(2π)2
T 3(

m2

T 2
+
m

T

2

cosh y
+

2

cosh y2
)× exp(−m

T
cosh y). (4.4)

For the sake of convenience in this equation we can neglect the last two terms and the

equation can be written as:

dn

dy
=

V

(2π)2

m2

T 2
× exp(−m

T
cosh y)

=>
dn

dy
= A(exp(−m

T
cosh y)). (4.5)

Here, A is the normalization constant because m and T are independent of y so we can

take them into the constant term. Since in symmetric heavy collisions both the nuclei

are same and the formed fireball is a mixture of two sources, so the above function can

be modified for symmetric collisions as follows [24] :

dn

dy
= a(exp(−(1/ws)cosh(y − ycm − ys)) + exp(−(1/ws)cosh(y − ycm + ys))), (4.6)

where a, ys and ws are parameters of the fit function. The Eq. 4.6 is a sum of two

thermal sources shifted by ±ys from the mid-rapidity. The width ws of the sources is

being interpreted as ws = (temperature)/(transverse mass). Here we consider collision

of identical nuclei, so parameter of the two sources are identical. These parameters

monotonously rise with the energy. Baryon stopping is most directly measured via

the rapidity distribution of net-proton (the number of proton minus anti-protons). At

AGS, for central (0-5%) Au+Au collision production of anti-protons is very small so

the net-proton distribution is same as proton distribution, the rapidity distribution is

peaked at mid-rapidity. As the collision energy increases, the distribution peaks at

higher rapidity.
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4.1.2 Fitting Parameters

The variation of fit parameters, ys and ws with center-of-mass energy
√
sNN is shown

below in Fig. 4.1. Both the parameters increase monotonically with the energy and can

be fitted by a exponential function.

Figure 4.1: (Left panel) The shift in rapidity of two sources ys, with center-of-mass
energy

√
sNN, this shows a monotonic rise of ys with

√
sNN. (Right panel) The width

parameter, ws, as a function of
√
sNN.

Baryon stopping, is most directly measured via the rapidity distribution of net-

protons. At AGS for central (0-5%) Au+Au collisions, the production of anti-protons

is very small so that the net-proton distribution is same as proton distribution and the

rapidity distribution is peaked at mid-rapidity. As the collision energy increases, the

distribution peaks at higher rapidity.

4.2 Calculation of Baryon Stopping using Rapidity

Distribution of Protons

BRAHMS has measured the net-proton rapidity distribution at RHIC in the rapidity

range of 0 < y < 3.1 for 0-10% central collisions at
√
sNN =62.4 GeV and 0-5% central

collision at
√
sNN=200 GeV [25] [26]. Also the rapidity distributions are measured at

AGS in different rapidity ranges. The distribution measured at RHIC is very different
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from those at lower energies, as possibly a different system is formed near mid-rapidity.

In order to calculate the stopping, we fit a function to the rapidity distribution

of protons. We chose a two source fit function as given in Eq. 4.6 by observing the

behaviour of the rapidity distribution at different energies. This function in Eq. 4.6

fits the rapidity distribution of proton, which is flat around mid-rapidity and increases

towards higher rapidities, terminating at ybeam.

The fitting procedure uses ROOT’s χ2-minimization method. The χ2/ndf or

the reduced-χ2 is found to be around 1, indicating a very good fitting of net-proton

rapidity spectra to the two-source fitting function. Fit results are shown in Fig. 4.2.

The rapidity densities of proton at AGS and net-proton (p− p̄) at RHIC are from most

central Au+Au collisions. Experimental data are from collaboration E802 [27], E877

[28], E917 [29], E866 [31], RHIC at 62.4 and 200 GeV.

Table 4.1: Percentage of baryon stopping at different energies from AGS and RHIC

√
sNN % baryon stopping

2 AGeV 64.23 ± 0.13
4 AGeV 52.16 ±0.15
6 AGeV 47.59 ± 0.12
8 AGeV 44.61 ± 0.12

62.4 GeV 4.58 ± 0.11
200 GeV 2.91 ± 0.00

We have calculated the net number of protons per unit of rapidity around y = 0

at AGS [27] [28] [29] and RHIC [25] [26] energies in mid-rapidity by integrating the fit

function given by Eq. 4.6 in the range −yb to +yb. In Fig. 4.2, the circles are data points

or the resulting rapidity density dN/dy as a function of rapidity. The most prominent

feature of the data is that, while the proton and anti-proton dN/dy decreases towards

forward rapidities, while the net-proton dN/dy increases. A two source fitting function

nicely fits to this distribution, giving the total extrapolated net-proton dN/dy at mid-

rapidity at different energies, i.e stopped protons. At 2, 4, 8 A GeV stopped protons
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Figure 4.2: The rapidity densities of protons at 2, 4, 8A GeV (AGS) and net-proton
(p− p̄) (for RHIC energies) from central collision of Au+Au (AGS and RHIC) in center-
of-mass system. Experimental data are from collaboration E802 [27], E877 [28], E917
[29], E866 [31], RHIC experiments. The open circles are experimentally measured data
points and the filled circles are the mirror reflections, assuming a symmetry in particle
production. Solid lines represent the two source fit function given by Eq. 4.6.

are around 72, 69, 58 in numbers and at RHIC energies for 62.4 and 200 GeV, they are

around 10 and 6 in numbers respectively.

Then to calculate the percentage of stopping, we integrate the fit function in

whole rapidity range. We calculate baryon stopping at AGS (2, 4, 8A GeV) and RHIC

(62.4 and 200 GeV) energies. The calculated percentage of stopping at these energies

are shown in Table 4.1. Now this extrapolated percentage of stopping can be fitted
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with an exponential fit function, which is shown in Fig. 4.3.

Figure 4.3: Percentage of baryon stopping as a function of
√
sNN, showing an exponential

decrease with energy.

Afterwords, we parameterise the baryon stopping percentage as a function of
√
sNN with an exponential function to get a parametric form. Using this function, we

interpolate the percentage stopping at STAR BES energies for
√
sNN= 7.7, 11.5, 19.6,

27, 39, 62.4, 200 GeV, which is crucial to study the CEP. The calculated percentage

Table 4.2: Percentage of baryon stopping at different STAR BES energies:

√
sNN [ GeV] 7.7 11.5 19.6 27 39 62.4 200

Baryon Stopping [%] 27.27 20.43 13.90 11.03 8.46 6.03 2.60

No. of stopped 18.79 14.02 9.73 7.61 5.78 3.78 1.544
protons

of stopping at STAR BES energies are shown in Table 4.2. For STAR BES energies
√
sNN = 7.7, 11.5, 19.6, 27, 39, 62.4, 200 GeV, the percentage of Baryon stopping is
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Figure 4.4: The net-proton as a function of
√
sNN.

approximately 27.27, 20.43, 13.90, 11.03, 8.46, 6.03, 2.60, respectively. Similarly, the

protons are also interpolated as shown in Table 4.2 from Fig 4.4. We do an AMPT

simulation at the discussed energies to study the invariant yield of protons falling in

STAR acceptance. This is discussed in the next section.

4.3 AMPT Simulation

A Multi-Phase Transport model was constructed specifically for the study of relativistic

heavy ion collisions. It contains essential stages of heavy ion collisions from the initial

condition to final observable on an event-by-event basis, including the parton cascade,

hadronization and the hadron cascade. The model can generate events in two different
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modes: 1. default and 2. string melting (SM). In both modes the initial conditions

are taken from HIJING. We use the default mode for simulation in this work. In the

default mode, energetic partons cascade through Zhang’s Parton Cascade (ZPC) before

the strings and partons are recombined and the strings are fragmented via the Lund

string fragmentation function,

f(z) = z−1(1− z)aexp(−bmT
2/z), (4.7)

where a and b are the Lund string fragmentation function parameters, taken to be 0.2

and 2.2. ART (A Relativistic Transport model for hadrons) is originally developed for

heavy ion collisions at the alternating gradient synchrotron (AGS) energies. The default

mode describes the evolution of collision in terms of string and mini jets followed by

string fragmentation.
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Figure 4.5: Invariant yield of protons using AMPT model at different
√
sNN

.
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The AMPT model has been applied to study many observables at RHIC. We have

used AMPT model with default settings to simulate the invariant pT spectra of protons

at different centre-of-mass energies at mid-rapidity (η ± 0.5), as is shown in Fig. 4.5.

Now to estimate the number of protons in STAR pT -range (0.4 to 0.8 GeV/c), we calcu-

late the fraction of protons in whole pT -range to the protons in 0.4 < pT < 0.8 GeV/c.

We use the same fraction to calculate the stopped protons in STAR acceptance.

Table 4.3: Percentage from pT spectra at different STAR energies:

√
sNN[GeV] 7.7 11.5 19.6 27 39 62.4 200

% from pT 43.63 43.56 44.31 43.65 43.24 39.74 37.5658
Spectra

4.4 Estimation of Stopped Protons in STAR

Acceptance

Following Table 4.4 summaries the results obtained through different processes as is

mentioned in the above sections. To summaries, we calculate the number of protons

due to the stopping of colliding nuclei. These stopped protons are estimated at mid-

rapidity (|η| < 0.5). Further, these protons are distributed over whole pT spectra.

To quantify these protons in the STAR momentum range, we have used the AMPT

simulation. From AMPT, we calculate the fraction of protons lying in the range of

STAR momentum acceptance i.e. (0.4 6 pT 6 0.8 GeV/c). Afterwords, these protons

are compared with the STAR protons distribution.

It is interesting to see, the stopped protons measured are less than the STAR

proton data, which have contribution from stopping as well as from production. After

subtracting i.e. protons without stopping, we compare results with STAR < p̄ >. The

calculations are in good agreement with STAR < p̄ > for all available center-of-mass
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energies from 7.7 to 200 GeV. The importance of this work and future outlooks are

described in the next Chapter.

Table 4.4: Summary of protons at different center-of-mass energies:

(a) (b) (c) (d) (e) (f) (g)
√
sNN Total % of No. of STAR Protons STAR

( GeV) stopped stopped stopped protons data w/o < p̄ >
protons protons protons Data stopping
in (%) in STAR in STAR

pT -range acceptance

7.7 27.27 43.63 18.79 18.92 0.13 0.165

11.5 20.43 43.56 14.02 15.00 0.99 0.49

19.6 13.90 44.32 9.73 11.37 1.64 1.15

27.0 11.03 43.65 7.61 9.39 1.78 1.65

39.0 8.46 43.24 5.78 8.22 2.44 2.38

62.4 6.03 39.74 3.78 7.25 3.47 3.14

200 2.60 37.57 1.54 5.66 4.11 4.11
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Chapter 5

Conclusions and Scope for Future

Work

The baryon stopping plays an important role in studying the QCD phase diagram and

possibly locating the critical end point and/ the equation of state; as this is directly

related to the collision energy. The non-monotonic behavior of higher moments of net-

proton has been a focus point in recent days. In this work we have tried to subtract out

the stopped protons from the net-proton distribution, as the former plays an important

role at lower center-of-mass energies.

In the present thesis work, the contribution of protons coming from the colliding

nuclei is estimated. Also special emphasis is given to their contribution on the recent

net-proton measurements by STAR collaboration. In most of the experiments it is

difficult to identify the contribution of resonance decay, produced protons and stopped

protons. We have developed a method to estimate and remove the stopped protons

from the experimentally measured net-proton fluctuation.

There are many speculations about the non-monotonic behavior at STAR energies

[Phys. Rev. Lett. 112, 032302]. It is believed that the decreasing trend at 19.6 GeV

may be an indication for QCD-critical end point of phase diagram.

We propose to check this behavior after removing the beam-stopped protons as

they play a significant role at lower center-of-mass energies. It will be exciting to see

whether the non-monotonic behavior persists after taking out the contribution coming

from the stopped protons in the net-proton higher moments. We reserve the further
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discussion about net-proton fluctuation after correcting STAR measurements for our

future works, which is planned to appear in a regular journal publication.
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