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Abstract 

 

In this project report, we present an adaptable solution for clustering and in turn apply this 

solution to identify similar plant species based on whole genome sequencing. We combine 

a novel spectral clustering approach with Vector Quantization technique to alleviate the 

clustering. We upgrade previous clustering algorithms by leveraging spectral clustering 

and introducing Vector Quantization to improve the time complexity with a minor tradeoff 

in accuracy. 

The Spectral Clustering uses the eigenvalues and eigenvectors to perform clustering based 

on k-means algorithm. But for reducing time complexity we have initially done sampling 

via Vector Quantization. For a better understanding we have compared the results obtained 

by using:-  

a)Spectral Clustering  

b)Spectral Clustering with Vector Quantization 
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1. INTRODUCTION 

1.1 Motivation 

Clustering is one of the most widely used techniques for exploratory data analysis, with applications 

ranging from statistics, computer science, biology to social sciences or psychology. In virtually every 

scientific field dealing with empirical data, people attempt to get a first impression on their data by trying 

to identify groups of  “similar behaviour” in their data.  Compared to the “traditional algorithms” such 

as k-means or single linkage, spectral clustering has many fundamental advantages. Results obtained by 

spectral clustering often outperform the traditional approaches, spectral clustering is very simple to 

implement and can be solved efficiently by standard linear algebra methods. 

In this article we would like to improve the existing spectral clustering with the aid of Growing Vector 

Quantization. Also the project provides a good learning opportunity to implement many areas together 

specifically Optimization and Machine Learning. This has motivated us to work on the project. 
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2. LITERATURE REVIEW 

Here we provide a detailed summary of various research papers telling us about the previous work done in 

this field: 

2.1 Spectral Clustering – 2007 [1] 

They defined the notion of similarity between the data points 

They perform clustering by: 

(1)  Constructing similarity graph and defining the similarity matrix.  

(2)  Finding the eigenvectors of laplacian defined from similarity matrix. 

(3)  Clustering based on eigenvectors found above. 

 

Modelling local neighborhood relationships 

There are several popular constructions to transform a given set x1,...,xn of data points with pairwise 

similarities sij or pairwise distances dij into a graph. When constructing similarity graphs the goal is to 

model the local neighborhood relationships between the data points. 

The ε-neighborhood graph: Here we connect all points whose pairwise distances are smaller than ε. As 

the distances between all connected points are roughly of the same scale (at most ε), weighting the edges 

would not incorporate more information about the data to the graph. Hence, the ε-neighborhood graph is 

usually considered as an unweighted graph. 

k-nearest neighbor graphs: Here the goal is to connect vertex vi with vertex vj if vj is among the k-

nearest neighbors of vi. However, this definition leads to a directed graph, as the neighborhood 

relationship is not symmetric. There are two ways of making this graph undirected. The first way is to 

simply ignore the directions of the edges, that is we connect vi and vj with an undirected edge if vi is 

among the k-nearest neighbors of vj or if vj is among the k-nearest neighbors of vi. The resulting graph is 

what is usually called the normal k-nearest neighbor graph. The second choice is to connect vertices vi 

and vj if both vi is among the k-nearest neighbors of vj and vj is among the k-nearest neighbors of vi. The 

resulting graph is called the mutual k-nearest neighbor graph. In both cases, after connecting the 

appropriate vertices we weight the edges by the similarity of their endpoints. 
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The fully connected graph: Here we simply connect all points with positive similarity with each other, 

and we weight all edges by sij. As the graph should represent the local neighborhood relationships, this 

construction is only useful if the similarity function itself models local neighborhoods. An example for 

such a similarity function is the Gaussian similarity function s(xi, xj) = exp(−||xi −xj||2/(2σ2)), where the 

parameter σ controls the width of the neighborhoods. This parameter plays a similar role as the parameter 

ε in case of the ε-neighborhood graph. 

All graphs mentioned above are regularly used in spectral clustering. To our knowledge, theoretical 

results on the question how the choice of the similarity graph influences the spectral clustering result do 

not exist. 

 

 

.  
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                Figure1 : Different Similarity graphs 

 

 

 

Limitations 

This approach is highly computationally intensive because it needs O(n3) computational 

operations to perform clustering on n data points. 

 

 

2.2 A Study on Vector Quantization. 

Vector quantization is a process that encodes each input vector (a data point) with the closest matching 

(with minimum distance) vector in current codebook (representative data point set), then decodes each 

vector according to the generated codebook. The crucial part of this method is to design a good codebook 

(a set of representative data point set).  

The well-known algorithm for this design is Linde-Buzo-Gray algorithm. The LBG algorithm can 

provide a encoder that satisfy necessary but not sufficient conditions for optimality. But it needs fixed 

input number of representative data point and iterated scans of the original data set until the representative 

data points in the codebook change by a small enough fraction compared with the latest iteration. Given n 

original data points, k representative data points in codebook and t iterations, LBG needs computational 

operations Ο(nkt) to construct a codebook. Thus it is time-consuming to applying the traditional vector 

quantization algorithm directly into the preprocessing of a large set of data point.  

Many of the existing vector quantization algorithms (including LBG) neglect the important connection 

between the decreasing of the original data set by a preprocessing method and the subsequent effect on 

the clustering which leads to poor accuracy. 

 

2.2.1 Growing Vector Quantization Method (GVQ) 

It is hard for a traditional vector quantization algorithm to assign the number of representative data points 

of a codebook before processing a set of original data points, which is due to the lack of knowledge about 

the distributional characteristics of the original data set. We also note that a predefined and fixed number 
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of representative data points is hard for common user to specify, which also troubles the understanding of 

final clustering results. 

When preprocessing a large data set and generating a good set of representative data point to replace the 

original set, there are two important factors. The first is: the distortion of the preprocessing algorithm, 

which is crucial for the following clusters quality. The second is: the scan number of all data points in 

the original data set, given that many scans of a larger data set is time-consuming. Based on the above 

considerations, we design a novel growing vector quantization method GVQ based on the minimization of 

the increment of distortion, which can produce a good set of representative data point in one-scan of the 

original data set 

 

2.2.2 A Fast Spectral Clustering Method based on Growing Vector 

Quantization- 2013 [2] 

Spectral clustering is a flexible clustering algorithm that can produce high-quality clusters on small scale 

data sets, but it is limited applicable to large scale data sets because it needs Ο(n3) computational 

operations to process a data set of n data points[1]. Based on the minimization of the increment of 

distortion, we tackle this problem by developing a novel efficient growing vector quantization method to 

preprocess a large scale data set, which can compress the original data set into a small set of 

representative data points in one scan of the original data set. Then we apply spectral clustering algorithm 

to the small set.  

  

Limitations 

This approach has a less accuracy than simple spectral clustering because of the distortion 

incurred in it. 
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3. DESIGN AND ANALYSIS OF PROPOSED SYSTEM 

3.1 Architecture 

 

    

Figure 2: Our Clustering Algorithm  

 

Data Set: The input data set 

Sampling:  Performs sampling on input data set 

Clustering:  Performs clustering on sampled data  

Reverse Mapping: Finds the cluster indices of original data points using the cluster indices of sampled 

data points. 

 

3.2 Vector Quantization Algorithm 

We find the closest matching point of each data point in the current codebook. If we succeed to find it, 

then proceed to process the next point. If not, then we add a new representative data point in the current 

codebook and then proceed to next point. During this process, we maintain the mapping between original 

data point and its corresponding representative data point. 

 
 

3.3 Spectral Clustering Algorithm 
 

Once the representative data set is generated, we move further to clustering. First we construct the 

similarity graph (choosing one among the three: ε-neighborhood, k-nearest neighbor, fully connected) 

and then define similarity matrix using it. Next we define the laplacian depending on whether we are 
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normalizing the data set or not. Now the first k-eigenvectors of laplacian are found out, on which we 

perform a small processing and then feed to k-means algorithm to find the cluster number of each 

representative data point. Finally, using the mapping between the original data set and representative data 

set, we find the cluster number of each original data point.  

 

3.4 Phylogenetic Trees 

A phylogenetic tree or evolutionary tree is a branching diagram or "tree" showing the inferred 

evolutionary relationships among various biological species or other entities—their phylogeny—based 

upon similarities and differences in their physical or genetic characteristics. The taxa joined together in 

the tree are implied to have descended from a common ancestor.  

 In a rooted phylogenetic tree, each node with descendants represents the inferred most recent 

common ancestor of the descendants, and the edge lengths in some trees may be interpreted as time 

estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical 

taxonomic units, as they cannot be directly observed 

 Unrooted trees illustrate only the relatedness of the leaf nodes and do not require the ancestral root 

to be known or inferred. 

 

Construction of Phylogenetic Trees: 

Phylogenetic trees composed with a nontrivial number of input sequences are constructed using 

computational phylogenetics methods. Distance-matrix methods such as neighbor-joining or UPGMA, 

which calculate genetic distance from multiple sequence alignments, are simplest to implement, but do 

not invoke an evolutionary model. Many sequence alignment methods such as ClustalW also create trees 

by using the simpler algorithms (i.e. those based on distance) of tree construction. Maximum parsimony 

is another simple method of estimating phylogenetic trees, but implies an implicit model of evolution (i.e. 

parsimony). More advanced methods use the optimality criterion of maximum likelihood, often within a 

Bayesian Framework, and apply an explicit model of evolution to phylogenetic tree estimation. Here we 

describe two of these methods. 
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3.4.1 Neighbor Joining  

Neighbor Joining is a bottom-up (agglomerative) clustering method for the creation of phylogenetic 

trees.It is usually used for trees based on DNA or protein sequence data, the algorithm requires knowledge 

of the distance between each pair of taxa (e.g., species or sequences) to form the tree. 

 

Algorithm: 

Neighbor joining takes as input a distance matrix specifying the distance between each pair of taxa. The 

algorithm starts with a completely unresolved tree, whose topology corresponds to that of a star network, 

and iterates over the following steps until the tree is completely resolved and all branch lengths are 

known: 

1) Initialization - Each node is considered as an active node  

2) Based on the current distance matrix calculate the matrix Q. 

   

3) Find the pair of distinct taxa i and j (i.e. with i != j) for which Q(i,j) has its lowest value. These 

taxa are joined to a newly created node, which is connected to the central node. 

4) Calculate the distance from each of the taxa in the pair to this new node. 

   

   

5) Calculate the distance from each of the taxa outside of this pair to the new node. 

   

6) Start the algorithm again if number of active nodes currently is greater than 1, replacing the pair of 

joined neighbors with the new node and using the distances calculated in the previous step; else stop. 
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Example:- 

Table 1.1: Neighbor Joining Example(1)  

Distance Matrix: 

 a b c d e 

a 0 5 9 9 8 

b 5 0 10 10 9 

c 9 10 0 8 7 

d 9 10 8 0 3 

e 8 9 7 3 0 

  

 

           Figure 3.1 : Neighbor Joining Tree(1)       

Table 1.2: Neighbor Joining Example(2)  

Corresponding Q matrix: 

 a b c d e 

a  -50 -38 -34 -34 

b -50  -38 -34 -34 

c -38 -38  -40 -40 

d -34 -34 -40  -48 

e -34 -34 -40 -48  
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Table 1.3: Neighbor Joining Example(4)  

Distance Matrix: 

 u(a,b) c d e 

u(a,b) 0 7 7 6 

c 7 0 8 7 

d 7 8 0 3 

e 6 7 0 3 

 

 

 

    Figure 3.2 : Neighbor Joining Tree(2)       

 

 

Table 1.4: Neighbor Joining Example(4)  

Corresponding Q matrix: 

 u c d e 

u  -28 -24 -24 

c -28  -24 -24 

d -24 -24  -28 
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e -24 -24 -28  

 

     

Table 1.5: Neighbor Joining Example(5)  

Distance: 

 v((a,b),c) d e 

v((a,b),c) 0 4 3 

d 4 0 3 

e 3 3 0 

 

 

 

    Figure 3.3 : Neighbor Joining Tree(3)       

    

 

3.4.2 Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

It is a simple agglomerative (bottom-up) hierarchical clustering method for the creation of phylogenetic 

trees. The algorithm requires knowledge of the distance between each pair of taxa (e.g. species or 

sequences) to form the tree. 
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Algorithm: 

The UPGMA algorithm constructs a rooted tree that reflects the structure present in a pairwise similarity 

matrix (or a dissimilarity matrix)  

1) Initialization - Each point is considered as an individual cluster  

2) At each step, the nearest two clusters are combined into a higher-level cluster. The distance 

between any two clusters A and B, each of size |A| and |B|, is taken to be the average of all distances d(x, 

y) between pairs of objects x in A and y in B, i.e. the mean distance between elements of each cluster: 

 

3) At each clustering step, the updated distance between the joined clusters A⋃B and a new cluster X 

is given by the proportional averaging of the dA,X and dB,X distances: 

 

4)  Go to step 2 if number of clusters currently are greater than 1 else stop 

 

 

Example: 

Table 2.1: UPGMA Example(1)  

First Clustering: 

 a b c d e 

a 0 17 21 31 23 

b 17 0 30 34 21 

c 21 30 0 28 39 

d 31 34 28 0 43 

e 23 21 39 43 0 
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Table 2.2: UPGMA Example(2)  

Second Clustering: 

 (a,b) c d e 

(a,b) 0 25.5 32.5 22 

c 25.5 0 28 39 

d 32.5 28 0 43 

e 22 39 43 0 

 

 

Table 2.3: UPGMA Example(3)  

Third Clustering: 

 ((a,b),e) c d 

((a,b),e) 0 30 36 

c 30 0 28 

d 36 28 0 

 

     

Table 2.4: UPGMA Example(4)  

Final Clustering: 

 ((a,b),e) (c,d) 

((a,b),e) 0 33 

(c,d) 33 0 
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     Figure 4 : UPGMA Tree       
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4. PRACTICAL ASPECT : IDENTIFYING SIMILAR 

SOYBEAN SPECIES 

4.1 Basic Algorithm 

Input: A set of input soybean accessions/genotypes X={X1,X2,......,Xn} and a reference genotype R 

Step 1) Filtering the input genotypes using the reference genotype. 

Step 2) Finding the dissimilarity S(i, j) between Xi and Xj. The dissimilarity between any two genotype Xi 

and Xj is defined as 

S(i, j) = SNP(i, j) 

where SNP(i, j) = Number of positions at which genotypes Xi and Xj differ. 

Step 3) Applying the spectral clustering algorithm as described previously 

 

Figure 5 : Identifying Similar Soybean Species  

 

4.2 k-medoids 

k-medoids clustering is a partitioning method commonly used in domains that require robustness to 

outlier data, arbitrary distance metrics, or ones for which the mean or median does not have a clear 

definition. 

It is similar to k-means, and the goal of both methods is to divide a set of measurements or observations 

into k subsets or clusters so that the subsets minimize the sum of distances between a measurement and a 

center of the measurements cluster. In the k-means algorithm, the center of the subset is the mean of 
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measurements in the subset, often called a centroid. In the k-medoids algorithm, the center of the subset is 

a member of the subset, called a medoid. 

The k-medoids algorithm returns medoids which are the actual data points in the data set. This allows you 

to use the algorithm in situations where the mean of the data does not exist within the data set. This is the 

main difference between k-medoids and k-means where the centroids returned by k-means may not be 

within the data set. Hence k-medoids is useful for clustering categorical data where a mean is impossible 

to define or interpret. 

 

4.3 Applying Vector Quantization on genotypes 

We use the k-medoids algorithm to generate a representative set of genotypes 

Algorithm: 

Input: n data points {xi} , i = 1..n and number of representative points k  

Output: m-way partition of the input data  

1. Perform k-means with k clusters on x1, . . . , xn to:  

a) Compute the cluster centroids y1, . . . , yk as the k representative points.  

b) Build a correspondence table to associate each xi with the nearest cluster centroid yj .  

2. Run a spectral clustering algorithm on y1, . . . , yk to obtain an m-way cluster membership for each of yi 

.  

3. Recover the cluster membership for each xi by looking up the cluster membership of the corresponding 

centroid yj in the correspondence table.  
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5. IMPLEMENTATION AND RESULTS 

5.1 Data Sets 

Our dataset comprises of two parts: 

1)  Testing Data Set 

2)  Real Data Set 

Testing Data Set 

It contains 5 data sets each containing 30-50 genotypes and the length of each genotype varies between 

3000-5000 

Real Data Set 

It contains 31 genotypes each of length 4847 

 

5.2 Performance parameters 

Silhouette : It is a measure of how similar an object is to its own cluster (cohesion) compared to other 

clusters (separation). The silhouette ranges from -1 to 1, where a high value indicates that the object is 

well matched to its own cluster and poorly matched to neighboring clusters 

For each datum i, let a(i) be the average dissimilarity of i with all other data within the same cluster. We 

can interpret a(i) as how well i is assigned to its cluster (the smaller the value, the better the assignment). 

We then define the average dissimilarity of point i to a cluster c as the average of the distance from i to all 

points in c. 

Let b(i) be the lowest average dissimilarity of i to any other cluster, of which i is not a member. The 

cluster with this lowest average dissimilarity is said to be the "neighbouring cluster" of i because it is the 

next best fit cluster for point i. We now define a silhouette: 

 

The average s(i) over all data of a cluster is a measure of how tightly grouped all the data in the cluster 

are. Thus the average s(i) over all data of the entire dataset is a measure of how appropriately the data 

have been clustered. 
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Sigma(σ): It decides the shape of gaussian distribution curve. 

No. of Clusters(k): It decides into how many clusters the input data should be grouped. Choosing k for a 

given data set also affects the clustering performance, and hence finding optimal k for a data set is also a 

good study. 

 

5.3 Result Comparison: SC+VQ vs PT 

 

     Table 3: Comparison of Silhouette values on Test Data 1 

 

No. of clusters 
(k) 

Spectral 

Clustering 
Spectral 

Clustering + 

VQ 

Neighbor 

Joining 
UPGMA 

4 0.6992 0.6992 0.7057 0.6992 

5 0.6448 0.6448 0.6688 0.5691 

6 0.5959 0.5959 0.5595 0.5131 

7 0.5412 0.5412 0.5711 0.4951 

8 0.5142 0.5142 0.5267 0.4531 

9 0.4888 0.4888 0.5303 0.4475 

10 0.4624 0.4624 0.4954 0.4586 

11 0.4340 0.4340 0.4716 0.4217 

12 0.4162 0.4162 0.1766 0.4164 

13 0.3851 0.3851 0.1818 0.3898 

14 0.3827 0.3827 0.2134 0.3047 
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Table 4: Comparison of Silhouette values on Test Data 2 

 

No. of Clusters 

(k) 

Spectral 

Clustering 

Spectral 

Clustering + 

VQ 

Neighbor 

Joining 

UPGMA 

4 0.7007 0.7007 0.7068 0.7007 

5 0.6388 0.6388 0.6613 0.5548 

6 0.5993 0.5993 0.5569 0.5159 

7 0.5409 0.5086 0.5687 0.4898 

8 0.5108 0.5064 0.5383 0.4536 

9 0.4683 0.4482 0.4538 0.4403 

10 0.4456 0.4159 0.3767 0.4500 

11 0.4343 0.4376 0.4090 0.4228 

12 0.4166 0.4166 0.4200 0.4201 

13 0.3845 0.3945 0.2027 0.3945 

14 0.3875 0.2909 0.2103 0.3144 

 

 

 

 

 



29 

 

 

 

 

 

Table 5: Comparison of Silhouette values on Test Data 3 

 

No. of Clusters 
(k) 

Spectral 

Clustering 
Spectral 

Clustering + 

VQ 

Neighbor 

Joining 
UPGMA 

4 0.6192 0.6192 0.6417 0.5257 

5 0.5458 0.5458 0.5597 0.5284 

6 0.4891 0.4891 0.4754 0.4820 

7 0.4506 0.4448 0.4841 0.4110 

8 0.4186 0.4148 0.4520 0.4186 

9 0.3994 0.3994 0.2710 0.3105 

10 0.3911 0.3252 0.2886 0.3302 

11 0.3616 0.3579 0.3337 0.3634 

12 0.3787 0.3686 0.3066 0.3787 

13 0.4200 0.4199 0.3483 0.4147 

14 0.4315 0.4326 0.3966 0.4429 
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Table 6: Comparison of Silhouette values on Test Data 4 

 

No. of Clusters 
(k) 

Spectral 

Clustering 
Spectral 

Clustering + 

VQ 

Neighbor 

Joining 
UPGMA 

4 0.6162 0.6162 0.5420 0.5306 

5 0.5576 0.5576 0.5963 0.4832 

6 0.5141 0.5141 0.5006 0.4728 

7 0.4655 0.4236 0.5129 0.4138 

8 0.4260 0.4030 0.2518 0.4220 

9 0.4033 0.2722 0.2071 0.4031 

10 0.3501 0.2851 0.2315 0.3169 

11 0.3526 0.2950 0.2306 0.3322 

12 0.3882 0.3625 0.2698 0.3560 

13 0.4063 0.3160 0.3172 0.3946 

14 0.4226 0.4122 0.3519 0.4244 
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Table 7: Comparison of Silhouette values on Test Data 5 

 

No. of Clusters 
(k) 

Spectral 

Clustering 
Spectral 

Clustering + 

VQ 

Neighbor 

Joining 
UPGMA 

4 0.6620 0.6620 0.6698 0.5757 

5 0.5968 0.5968 0.6274 0.5838 

6 0.5528 0.5528 0.5303 0.5493 

7 0.5050 0.5050 0.5433 0.4690 

8 0.4726 0.4726 0.5112 0.4726 

9 0.4414 0.1914 0.1813 0.4169 

10 0.4197 0.4197 0.2030 0.3210 

11 0.3458 0.3364 0.2298 0.3320 

12 0.3493 0.2670 0.2600 0.3315 

13 0.3479 0.2951 0.2119 0.3362 

14 0.3627 0.2993 0.2373 0.3469 
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Table 8: Comparison of Silhouette values on Real Data 

 

No. of Clusters 
(k) 

Spectral 

Clustering 
Spectral 

Clustering + 

VQ 

Neighbor 

Joining 
UPGMA 

4 0.2053 0.2159 0.2546 0.2192 

5 0.2421 0.1700 0.2791 0.2488 

6 0.2771 0.2639 0.2389 0.2771 

7 0.2990 0.2446 0.2612 0.2736 

8 0.3451 0.2727 0.2902 0.2874 

9 0.3490 0.2861 0.3110 0.3031 

10 0.3522 0.3361 0.3430 0.2966 

11 0.3687 0.3035 0.3831 0.3476 

12 0.3799 0.3299 0.4089 0.3569 

13 0.4329 0.4268 0.4153 0.3829 

14 0.4470 0.4128 0.4610 0.4403 
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6. CONCLUSION 

This project was a confluence of Genomic study, Optimization and Clustering in matlab. 

The objective of the project was to explore the latest research and technique in the field of Computer 

Science and develop a sophisticated system to identify similar soybean plant species in a given data set. 

The implementation of the project was possible only after the detailed study of identifying similar 

genomes, Vector Quantization techniques, Clustering Concepts and Matlab Programming. 

While working on the project, we were successfully able to implement a eigenvalues and eigenvectors 

inspired algorithm which is able to identify similar soybean species based on their genomic sequences. 

We compared the results with the standard phylogeny inference methods like phylogenetic trees on our 

dataset and found that Spectral Clustering is better than the phylogenetic tree method 

Once identifying the similarity between various accessions/genotypes we are able to identify similar 

accessions using Spectral Clustering. The complete project has been implemented on matlab. 
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7. Future Work 

To extend this project in future, a lot of work can be done further on this application. We highlight some 

of the possibilities here as: 

1)  Heuristics exist which performs Neighbor Joining in ~ O(n2)     

Complexity of Spectral Clustering + Vector Quantization ~ O(n3/x3) = dn3/x3 

Analyzing VQ method for n / x > c / d 

2)  Applying the idea of dimensionality reduction - compressing  genotypes if their lengths are huge.   

3)  Refining the similarity matrix 

4) Use k-means for VQ using consensus sequence and compare results. 
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