
B. TECH. PROJECT REPORT

On

Spectral Clustering based on

Growing Vector Quantization

for Plant Genome Sequence

BY

Aditya Shah

Anant Lal

Aishwary Gagrani

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

September 2016

2

 Spectral Clustering based on

Growing Vector Quantization for

Plant Genome Sequence

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

In

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Aditya Shah

Anant Lal

Aishwary Gagrani

Guided by:

Dr. Kapil Ahuja, Assistant Professor, IIT Indore

INDIAN INSTITUTE OF TECHNOLOGY INDORE

September 2016

3

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Spectral Clustering based on Growing

Vector Quantization for Plant Genome Sequence” submitted in partial fulfillment for

the award of the degree of Bachelor of Technology in ‘Computer Science and

Engineering’ completed under the supervision of Dr. Kapil Ahuja, Assistant Professor,

Computer Science and Engineering, IIT Indore is an authentic work.

 Further, I/we declare that I/we have not submitted this work for the award of any

other degree elsewhere.

Aditya Shah, Anant Lal and Aishwary Gagrani, 28/11/2016

CERTIFICATE by BTP Guide

 It is certified that the above statement made by the students is correct to the best of

my/our knowledge.

Dr. Kapil Ahuja, Assistant

Professor,

Computer Science and

Engineering,

IIT Indore

4

Preface

This report on “Spectral Clustering based on Growing Vector Quantization for

Plant Genome Sequence" is prepared under the guidance of Dr. Kapil Ahuja.

Through this report we have tried to give a detailed explanation of our effort to develop a

system that identifies similar plant species based on whole genome sequencing by Spectral

Clustering and Vector Quantization.

We have tried to the best of our abilities and knowledge to explain the content in a lucid

manner. We have also added tables and explanatory images wherever necessary.

Aditya Shah

Anant Lal

Aishwary Gagrani

B.Tech IV Year

Discipline of Computer Science and Engineering

IIT Indore

5

Acknowledgements

It is our privilege to express our gratitude to several persons who helped us directly or

indirectly to conduct this research project work. We express our heart full indebtedness to

our BTP guide Dr. Kapil Ahuja for his sincere guidance and inspiration in completing this

project.

We are extremely thankful to Mr. Aditya Anand Shastri for his coordination and

cooperation and for his kind guidance and encouragement.

I also thank my friends who have more or less contributed to the making of this project.

This study has indeed helped us to explore more knowledgeable avenues related to this

topic and we are sure it will help us in future.

Aditya Shah

Anant Lal

Aishwary Gagrani

B.Tech IV Year

Discipline of Computer Science and Engineering

IIT Indore

6

Abstract

In this project report, we present an adaptable solution for clustering and in turn apply this

solution to identify similar plant species based on whole genome sequencing. We combine

a novel spectral clustering approach with Vector Quantization technique to alleviate the

clustering. We upgrade previous clustering algorithms by leveraging spectral clustering

and introducing Vector Quantization to improve the time complexity with a minor tradeoff

in accuracy.

The Spectral Clustering uses the eigenvalues and eigenvectors to perform clustering based

on k-means algorithm. But for reducing time complexity we have initially done sampling

via Vector Quantization. For a better understanding we have compared the results obtained

by using:-

a)Spectral Clustering

b)Spectral Clustering with Vector Quantization

7

Table of Contents

1. Introduction………………………………………………………………………………….....10

 1.1 Motivation……………………………………………………………………………….....10

2. Literature Review………………………………………………………………………............11

 2.1 Spectral Clustering – 2007 [1]…………………………………………………………......11

 2.2 A Study on Vector Quantization…………………………………………………………..13

 2.2.1 Growing Vector Quantization Method(GVQ)..13

 2.2.2 Fast Spectral Clustering Method based on Growing

 Vector Quantization - 2013 [2]...14

3. Design and Analysis of Proposed System……………………………………………………...15

 3.1 Architecture………………………………………………………………...........................15

 3.2 Vector Quantization Algorithm………………………………………………….................15

 3.3 Spectral Clustering Algorithm…………………………………………………………......15

 3.4 Phylogenetic Trees……………………………………………………………………...….16

 3.4.1 Neighbour Joining…………………………………………………………………….17

 3.4.2 UPGMA………………………………………………..………………………… .. 20

4. Practical Aspect: Identifying similar soybean species……………………………………….....24

 4.1 Basic Algorithm………………………………………………………………………….....24

 4.2 k-medoids………………………………………………………………………………..….24

 4.3 Applying Vector Quantization on Genotypes…………………………………………..…..25

5. Implementation and Results……………………………………………………………….........26

 5.1 Data Sets…………………………………….………………………………………..……..26

 5.2 Performance Parameters……………………………………………………………..……...26

 5.3 Result Comparison: SC+VQ vs PT …………………………………………………… …27

6. Conclusion………………………………………………………………………………………33

7. Future Work…………………………………………………………………………………….34

8. Bibliography and References ……………………………………………………………...........35

8

List of Figures

Figure 1: Different Similarity Graphs …………………………………………………………..12

Figure 2: Our Clustering Algorithm……………………………………………………………..15

Figure 3.1: Neighbor Joining Tree(1)……………………………………………………………18

Figure 3.2: Neighbor Joining Tree(2)……………………………………………………………19

Figure 3.3: Neighbor Joining Tree(3)……………………………………………………………20

Figure 4: UPGMA Tree………………………………………………………………………….23

Figure 5: Identifying Similar Soybean Species………………………………………………….24

 List of Tables

Table 1.1: Neighbor Joining Example(1)………………………………………………………..18

Table 1.2: Neighbor Joining Example(2)………………………………………………………..18

Table 1.3: Neighbor Joining Example(3)………………………………………………………..19

Table 1.4: Neighbor Joining Example(4)………………………………………………………..19

Table 1.5: Neighbor Joining Example(5)………………………………………………………..20

Table 2.1: UPGMA Example(1)...21

Table 2.2: UPGMA Example(2)...22

9

Table 2.3: UPGMA Example(3)..22

Table 2.4: UPGMA Example(4)...22

Table 3: Comparison of Silhouette values on Test Data 1……………………………………….27

Table 4: Comparison of Silhouette values on Test Data 2……………………………………….28

Table 5: Comparison of Silhouette values on Test Data 3……………………………………….29

Table 6: Comparison of Silhouette values on Test Data 4……………………………………….30

Table 7: Comparison of Silhouette values on Test Data 5……………………………………….31

Table 8: Comparison of Silhouette values on Real Data………………………………………...32

10

1. INTRODUCTION

1.1 Motivation

Clustering is one of the most widely used techniques for exploratory data analysis, with applications

ranging from statistics, computer science, biology to social sciences or psychology. In virtually every

scientific field dealing with empirical data, people attempt to get a first impression on their data by trying

to identify groups of “similar behaviour” in their data. Compared to the “traditional algorithms” such

as k-means or single linkage, spectral clustering has many fundamental advantages. Results obtained by

spectral clustering often outperform the traditional approaches, spectral clustering is very simple to

implement and can be solved efficiently by standard linear algebra methods.

In this article we would like to improve the existing spectral clustering with the aid of Growing Vector

Quantization. Also the project provides a good learning opportunity to implement many areas together

specifically Optimization and Machine Learning. This has motivated us to work on the project.

11

2. LITERATURE REVIEW

Here we provide a detailed summary of various research papers telling us about the previous work done in

this field:

2.1 Spectral Clustering – 2007 [1]

They defined the notion of similarity between the data points

They perform clustering by:

(1) Constructing similarity graph and defining the similarity matrix.

(2) Finding the eigenvectors of laplacian defined from similarity matrix.

(3) Clustering based on eigenvectors found above.

Modelling local neighborhood relationships

There are several popular constructions to transform a given set x1,...,xn of data points with pairwise

similarities sij or pairwise distances dij into a graph. When constructing similarity graphs the goal is to

model the local neighborhood relationships between the data points.

The ε-neighborhood graph: Here we connect all points whose pairwise distances are smaller than ε. As

the distances between all connected points are roughly of the same scale (at most ε), weighting the edges

would not incorporate more information about the data to the graph. Hence, the ε-neighborhood graph is

usually considered as an unweighted graph.

k-nearest neighbor graphs: Here the goal is to connect vertex vi with vertex vj if vj is among the k-

nearest neighbors of vi. However, this definition leads to a directed graph, as the neighborhood

relationship is not symmetric. There are two ways of making this graph undirected. The first way is to

simply ignore the directions of the edges, that is we connect vi and vj with an undirected edge if vi is

among the k-nearest neighbors of vj or if vj is among the k-nearest neighbors of vi. The resulting graph is

what is usually called the normal k-nearest neighbor graph. The second choice is to connect vertices vi

and vj if both vi is among the k-nearest neighbors of vj and vj is among the k-nearest neighbors of vi. The

resulting graph is called the mutual k-nearest neighbor graph. In both cases, after connecting the

appropriate vertices we weight the edges by the similarity of their endpoints.

12

The fully connected graph: Here we simply connect all points with positive similarity with each other,

and we weight all edges by sij. As the graph should represent the local neighborhood relationships, this

construction is only useful if the similarity function itself models local neighborhoods. An example for

such a similarity function is the Gaussian similarity function s(xi, xj) = exp(−||xi −xj||2/(2σ2)), where the

parameter σ controls the width of the neighborhoods. This parameter plays a similar role as the parameter

ε in case of the ε-neighborhood graph.

All graphs mentioned above are regularly used in spectral clustering. To our knowledge, theoretical

results on the question how the choice of the similarity graph influences the spectral clustering result do

not exist.

.

13

 Figure1 : Different Similarity graphs

Limitations

This approach is highly computationally intensive because it needs O(n3) computational

operations to perform clustering on n data points.

2.2 A Study on Vector Quantization.

Vector quantization is a process that encodes each input vector (a data point) with the closest matching

(with minimum distance) vector in current codebook (representative data point set), then decodes each

vector according to the generated codebook. The crucial part of this method is to design a good codebook

(a set of representative data point set).

The well-known algorithm for this design is Linde-Buzo-Gray algorithm. The LBG algorithm can

provide a encoder that satisfy necessary but not sufficient conditions for optimality. But it needs fixed

input number of representative data point and iterated scans of the original data set until the representative

data points in the codebook change by a small enough fraction compared with the latest iteration. Given n

original data points, k representative data points in codebook and t iterations, LBG needs computational

operations Ο(nkt) to construct a codebook. Thus it is time-consuming to applying the traditional vector

quantization algorithm directly into the preprocessing of a large set of data point.

Many of the existing vector quantization algorithms (including LBG) neglect the important connection

between the decreasing of the original data set by a preprocessing method and the subsequent effect on

the clustering which leads to poor accuracy.

2.2.1 Growing Vector Quantization Method (GVQ)

It is hard for a traditional vector quantization algorithm to assign the number of representative data points

of a codebook before processing a set of original data points, which is due to the lack of knowledge about

the distributional characteristics of the original data set. We also note that a predefined and fixed number

14

of representative data points is hard for common user to specify, which also troubles the understanding of

final clustering results.

When preprocessing a large data set and generating a good set of representative data point to replace the

original set, there are two important factors. The first is: the distortion of the preprocessing algorithm,

which is crucial for the following clusters quality. The second is: the scan number of all data points in

the original data set, given that many scans of a larger data set is time-consuming. Based on the above

considerations, we design a novel growing vector quantization method GVQ based on the minimization of

the increment of distortion, which can produce a good set of representative data point in one-scan of the

original data set

2.2.2 A Fast Spectral Clustering Method based on Growing Vector

Quantization- 2013 [2]

Spectral clustering is a flexible clustering algorithm that can produce high-quality clusters on small scale

data sets, but it is limited applicable to large scale data sets because it needs Ο(n3) computational

operations to process a data set of n data points[1]. Based on the minimization of the increment of

distortion, we tackle this problem by developing a novel efficient growing vector quantization method to

preprocess a large scale data set, which can compress the original data set into a small set of

representative data points in one scan of the original data set. Then we apply spectral clustering algorithm

to the small set.

Limitations

This approach has a less accuracy than simple spectral clustering because of the distortion

incurred in it.

15

3. DESIGN AND ANALYSIS OF PROPOSED SYSTEM

3.1 Architecture

Figure 2: Our Clustering Algorithm

Data Set: The input data set

Sampling: Performs sampling on input data set

Clustering: Performs clustering on sampled data

Reverse Mapping: Finds the cluster indices of original data points using the cluster indices of sampled

data points.

3.2 Vector Quantization Algorithm

We find the closest matching point of each data point in the current codebook. If we succeed to find it,

then proceed to process the next point. If not, then we add a new representative data point in the current

codebook and then proceed to next point. During this process, we maintain the mapping between original

data point and its corresponding representative data point.

3.3 Spectral Clustering Algorithm

Once the representative data set is generated, we move further to clustering. First we construct the

similarity graph (choosing one among the three: ε-neighborhood, k-nearest neighbor, fully connected)

and then define similarity matrix using it. Next we define the laplacian depending on whether we are

16

normalizing the data set or not. Now the first k-eigenvectors of laplacian are found out, on which we

perform a small processing and then feed to k-means algorithm to find the cluster number of each

representative data point. Finally, using the mapping between the original data set and representative data

set, we find the cluster number of each original data point.

3.4 Phylogenetic Trees

A phylogenetic tree or evolutionary tree is a branching diagram or "tree" showing the inferred

evolutionary relationships among various biological species or other entities—their phylogeny—based

upon similarities and differences in their physical or genetic characteristics. The taxa joined together in

the tree are implied to have descended from a common ancestor.

 In a rooted phylogenetic tree, each node with descendants represents the inferred most recent

common ancestor of the descendants, and the edge lengths in some trees may be interpreted as time

estimates. Each node is called a taxonomic unit. Internal nodes are generally called hypothetical

taxonomic units, as they cannot be directly observed

 Unrooted trees illustrate only the relatedness of the leaf nodes and do not require the ancestral root

to be known or inferred.

Construction of Phylogenetic Trees:

Phylogenetic trees composed with a nontrivial number of input sequences are constructed using

computational phylogenetics methods. Distance-matrix methods such as neighbor-joining or UPGMA,

which calculate genetic distance from multiple sequence alignments, are simplest to implement, but do

not invoke an evolutionary model. Many sequence alignment methods such as ClustalW also create trees

by using the simpler algorithms (i.e. those based on distance) of tree construction. Maximum parsimony

is another simple method of estimating phylogenetic trees, but implies an implicit model of evolution (i.e.

parsimony). More advanced methods use the optimality criterion of maximum likelihood, often within a

Bayesian Framework, and apply an explicit model of evolution to phylogenetic tree estimation. Here we

describe two of these methods.

17

3.4.1 Neighbor Joining

Neighbor Joining is a bottom-up (agglomerative) clustering method for the creation of phylogenetic

trees.It is usually used for trees based on DNA or protein sequence data, the algorithm requires knowledge

of the distance between each pair of taxa (e.g., species or sequences) to form the tree.

Algorithm:

Neighbor joining takes as input a distance matrix specifying the distance between each pair of taxa. The

algorithm starts with a completely unresolved tree, whose topology corresponds to that of a star network,

and iterates over the following steps until the tree is completely resolved and all branch lengths are

known:

1) Initialization - Each node is considered as an active node

2) Based on the current distance matrix calculate the matrix Q.

3) Find the pair of distinct taxa i and j (i.e. with i != j) for which Q(i,j) has its lowest value. These

taxa are joined to a newly created node, which is connected to the central node.

4) Calculate the distance from each of the taxa in the pair to this new node.

5) Calculate the distance from each of the taxa outside of this pair to the new node.

6) Start the algorithm again if number of active nodes currently is greater than 1, replacing the pair of

joined neighbors with the new node and using the distances calculated in the previous step; else stop.

18

Example:-

Table 1.1: Neighbor Joining Example(1)

Distance Matrix:

 a b c d e

a 0 5 9 9 8

b 5 0 10 10 9

c 9 10 0 8 7

d 9 10 8 0 3

e 8 9 7 3 0

 Figure 3.1 : Neighbor Joining Tree(1)

Table 1.2: Neighbor Joining Example(2)

Corresponding Q matrix:

 a b c d e

a -50 -38 -34 -34

b -50 -38 -34 -34

c -38 -38 -40 -40

d -34 -34 -40 -48

e -34 -34 -40 -48

19

Table 1.3: Neighbor Joining Example(4)

Distance Matrix:

 u(a,b) c d e

u(a,b) 0 7 7 6

c 7 0 8 7

d 7 8 0 3

e 6 7 0 3

 Figure 3.2 : Neighbor Joining Tree(2)

Table 1.4: Neighbor Joining Example(4)

Corresponding Q matrix:

 u c d e

u -28 -24 -24

c -28 -24 -24

d -24 -24 -28

20

e -24 -24 -28

Table 1.5: Neighbor Joining Example(5)

Distance:

 v((a,b),c) d e

v((a,b),c) 0 4 3

d 4 0 3

e 3 3 0

 Figure 3.3 : Neighbor Joining Tree(3)

3.4.2 Unweighted Pair Group Method with Arithmetic Mean (UPGMA)

It is a simple agglomerative (bottom-up) hierarchical clustering method for the creation of phylogenetic

trees. The algorithm requires knowledge of the distance between each pair of taxa (e.g. species or

sequences) to form the tree.

21

Algorithm:

The UPGMA algorithm constructs a rooted tree that reflects the structure present in a pairwise similarity

matrix (or a dissimilarity matrix)

1) Initialization - Each point is considered as an individual cluster

2) At each step, the nearest two clusters are combined into a higher-level cluster. The distance

between any two clusters A and B, each of size |A| and |B|, is taken to be the average of all distances d(x,

y) between pairs of objects x in A and y in B, i.e. the mean distance between elements of each cluster:

3) At each clustering step, the updated distance between the joined clusters A⋃B and a new cluster X

is given by the proportional averaging of the dA,X and dB,X distances:

4) Go to step 2 if number of clusters currently are greater than 1 else stop

Example:

Table 2.1: UPGMA Example(1)

First Clustering:

 a b c d e

a 0 17 21 31 23

b 17 0 30 34 21

c 21 30 0 28 39

d 31 34 28 0 43

e 23 21 39 43 0

22

Table 2.2: UPGMA Example(2)

Second Clustering:

 (a,b) c d e

(a,b) 0 25.5 32.5 22

c 25.5 0 28 39

d 32.5 28 0 43

e 22 39 43 0

Table 2.3: UPGMA Example(3)

Third Clustering:

 ((a,b),e) c d

((a,b),e) 0 30 36

c 30 0 28

d 36 28 0

Table 2.4: UPGMA Example(4)

Final Clustering:

 ((a,b),e) (c,d)

((a,b),e) 0 33

(c,d) 33 0

23

 Figure 4 : UPGMA Tree

24

4. PRACTICAL ASPECT : IDENTIFYING SIMILAR

SOYBEAN SPECIES

4.1 Basic Algorithm

Input: A set of input soybean accessions/genotypes X={X1,X2,......,Xn} and a reference genotype R

Step 1) Filtering the input genotypes using the reference genotype.

Step 2) Finding the dissimilarity S(i, j) between Xi and Xj. The dissimilarity between any two genotype Xi

and Xj is defined as

S(i, j) = SNP(i, j)

where SNP(i, j) = Number of positions at which genotypes Xi and Xj differ.

Step 3) Applying the spectral clustering algorithm as described previously

Figure 5 : Identifying Similar Soybean Species

4.2 k-medoids

k-medoids clustering is a partitioning method commonly used in domains that require robustness to

outlier data, arbitrary distance metrics, or ones for which the mean or median does not have a clear

definition.

It is similar to k-means, and the goal of both methods is to divide a set of measurements or observations

into k subsets or clusters so that the subsets minimize the sum of distances between a measurement and a

center of the measurements cluster. In the k-means algorithm, the center of the subset is the mean of

25

measurements in the subset, often called a centroid. In the k-medoids algorithm, the center of the subset is

a member of the subset, called a medoid.

The k-medoids algorithm returns medoids which are the actual data points in the data set. This allows you

to use the algorithm in situations where the mean of the data does not exist within the data set. This is the

main difference between k-medoids and k-means where the centroids returned by k-means may not be

within the data set. Hence k-medoids is useful for clustering categorical data where a mean is impossible

to define or interpret.

4.3 Applying Vector Quantization on genotypes

We use the k-medoids algorithm to generate a representative set of genotypes

Algorithm:

Input: n data points {xi} , i = 1..n and number of representative points k

Output: m-way partition of the input data

1. Perform k-means with k clusters on x1, . . . , xn to:

a) Compute the cluster centroids y1, . . . , yk as the k representative points.

b) Build a correspondence table to associate each xi with the nearest cluster centroid yj .

2. Run a spectral clustering algorithm on y1, . . . , yk to obtain an m-way cluster membership for each of yi

.

3. Recover the cluster membership for each xi by looking up the cluster membership of the corresponding

centroid yj in the correspondence table.

26

5. IMPLEMENTATION AND RESULTS

5.1 Data Sets

Our dataset comprises of two parts:

1) Testing Data Set

2) Real Data Set

Testing Data Set

It contains 5 data sets each containing 30-50 genotypes and the length of each genotype varies between

3000-5000

Real Data Set

It contains 31 genotypes each of length 4847

5.2 Performance parameters

Silhouette : It is a measure of how similar an object is to its own cluster (cohesion) compared to other

clusters (separation). The silhouette ranges from -1 to 1, where a high value indicates that the object is

well matched to its own cluster and poorly matched to neighboring clusters

For each datum i, let a(i) be the average dissimilarity of i with all other data within the same cluster. We

can interpret a(i) as how well i is assigned to its cluster (the smaller the value, the better the assignment).

We then define the average dissimilarity of point i to a cluster c as the average of the distance from i to all

points in c.

Let b(i) be the lowest average dissimilarity of i to any other cluster, of which i is not a member. The

cluster with this lowest average dissimilarity is said to be the "neighbouring cluster" of i because it is the

next best fit cluster for point i. We now define a silhouette:

The average s(i) over all data of a cluster is a measure of how tightly grouped all the data in the cluster

are. Thus the average s(i) over all data of the entire dataset is a measure of how appropriately the data

have been clustered.

27

Sigma(σ): It decides the shape of gaussian distribution curve.

No. of Clusters(k): It decides into how many clusters the input data should be grouped. Choosing k for a

given data set also affects the clustering performance, and hence finding optimal k for a data set is also a

good study.

5.3 Result Comparison: SC+VQ vs PT

 Table 3: Comparison of Silhouette values on Test Data 1

No. of clusters
(k)

Spectral

Clustering
Spectral

Clustering +

VQ

Neighbor

Joining
UPGMA

4 0.6992 0.6992 0.7057 0.6992

5 0.6448 0.6448 0.6688 0.5691

6 0.5959 0.5959 0.5595 0.5131

7 0.5412 0.5412 0.5711 0.4951

8 0.5142 0.5142 0.5267 0.4531

9 0.4888 0.4888 0.5303 0.4475

10 0.4624 0.4624 0.4954 0.4586

11 0.4340 0.4340 0.4716 0.4217

12 0.4162 0.4162 0.1766 0.4164

13 0.3851 0.3851 0.1818 0.3898

14 0.3827 0.3827 0.2134 0.3047

28

Table 4: Comparison of Silhouette values on Test Data 2

No. of Clusters

(k)

Spectral

Clustering

Spectral

Clustering +

VQ

Neighbor

Joining

UPGMA

4 0.7007 0.7007 0.7068 0.7007

5 0.6388 0.6388 0.6613 0.5548

6 0.5993 0.5993 0.5569 0.5159

7 0.5409 0.5086 0.5687 0.4898

8 0.5108 0.5064 0.5383 0.4536

9 0.4683 0.4482 0.4538 0.4403

10 0.4456 0.4159 0.3767 0.4500

11 0.4343 0.4376 0.4090 0.4228

12 0.4166 0.4166 0.4200 0.4201

13 0.3845 0.3945 0.2027 0.3945

14 0.3875 0.2909 0.2103 0.3144

29

Table 5: Comparison of Silhouette values on Test Data 3

No. of Clusters
(k)

Spectral

Clustering
Spectral

Clustering +

VQ

Neighbor

Joining
UPGMA

4 0.6192 0.6192 0.6417 0.5257

5 0.5458 0.5458 0.5597 0.5284

6 0.4891 0.4891 0.4754 0.4820

7 0.4506 0.4448 0.4841 0.4110

8 0.4186 0.4148 0.4520 0.4186

9 0.3994 0.3994 0.2710 0.3105

10 0.3911 0.3252 0.2886 0.3302

11 0.3616 0.3579 0.3337 0.3634

12 0.3787 0.3686 0.3066 0.3787

13 0.4200 0.4199 0.3483 0.4147

14 0.4315 0.4326 0.3966 0.4429

30

Table 6: Comparison of Silhouette values on Test Data 4

No. of Clusters
(k)

Spectral

Clustering
Spectral

Clustering +

VQ

Neighbor

Joining
UPGMA

4 0.6162 0.6162 0.5420 0.5306

5 0.5576 0.5576 0.5963 0.4832

6 0.5141 0.5141 0.5006 0.4728

7 0.4655 0.4236 0.5129 0.4138

8 0.4260 0.4030 0.2518 0.4220

9 0.4033 0.2722 0.2071 0.4031

10 0.3501 0.2851 0.2315 0.3169

11 0.3526 0.2950 0.2306 0.3322

12 0.3882 0.3625 0.2698 0.3560

13 0.4063 0.3160 0.3172 0.3946

14 0.4226 0.4122 0.3519 0.4244

31

Table 7: Comparison of Silhouette values on Test Data 5

No. of Clusters
(k)

Spectral

Clustering
Spectral

Clustering +

VQ

Neighbor

Joining
UPGMA

4 0.6620 0.6620 0.6698 0.5757

5 0.5968 0.5968 0.6274 0.5838

6 0.5528 0.5528 0.5303 0.5493

7 0.5050 0.5050 0.5433 0.4690

8 0.4726 0.4726 0.5112 0.4726

9 0.4414 0.1914 0.1813 0.4169

10 0.4197 0.4197 0.2030 0.3210

11 0.3458 0.3364 0.2298 0.3320

12 0.3493 0.2670 0.2600 0.3315

13 0.3479 0.2951 0.2119 0.3362

14 0.3627 0.2993 0.2373 0.3469

32

Table 8: Comparison of Silhouette values on Real Data

No. of Clusters
(k)

Spectral

Clustering
Spectral

Clustering +

VQ

Neighbor

Joining
UPGMA

4 0.2053 0.2159 0.2546 0.2192

5 0.2421 0.1700 0.2791 0.2488

6 0.2771 0.2639 0.2389 0.2771

7 0.2990 0.2446 0.2612 0.2736

8 0.3451 0.2727 0.2902 0.2874

9 0.3490 0.2861 0.3110 0.3031

10 0.3522 0.3361 0.3430 0.2966

11 0.3687 0.3035 0.3831 0.3476

12 0.3799 0.3299 0.4089 0.3569

13 0.4329 0.4268 0.4153 0.3829

14 0.4470 0.4128 0.4610 0.4403

33

6. CONCLUSION

This project was a confluence of Genomic study, Optimization and Clustering in matlab.

The objective of the project was to explore the latest research and technique in the field of Computer

Science and develop a sophisticated system to identify similar soybean plant species in a given data set.

The implementation of the project was possible only after the detailed study of identifying similar

genomes, Vector Quantization techniques, Clustering Concepts and Matlab Programming.

While working on the project, we were successfully able to implement a eigenvalues and eigenvectors

inspired algorithm which is able to identify similar soybean species based on their genomic sequences.

We compared the results with the standard phylogeny inference methods like phylogenetic trees on our

dataset and found that Spectral Clustering is better than the phylogenetic tree method

Once identifying the similarity between various accessions/genotypes we are able to identify similar

accessions using Spectral Clustering. The complete project has been implemented on matlab.

34

7. Future Work

To extend this project in future, a lot of work can be done further on this application. We highlight some

of the possibilities here as:

1) Heuristics exist which performs Neighbor Joining in ~ O(n2)

Complexity of Spectral Clustering + Vector Quantization ~ O(n3/x3) = dn3/x3

Analyzing VQ method for n / x > c / d

2) Applying the idea of dimensionality reduction - compressing genotypes if their lengths are huge.

3) Refining the similarity matrix

4) Use k-means for VQ using consensus sequence and compare results.

35

8.Bibliography and References

[1] Ulrike von Luxburg: A Tutorial on Spectral Clustering. Max Planck Institute for Biological

Cybernetics. The article appears in Statistics and Computing, 17(4), 2007.

[2] Xiujun Wang, Xiao Zheng, Feng Qin, and Baohua Zhao: A Fast Spectral Clustering Method Based

on Growing Vector Quantization for Large Data Sets. School of Computer Science and Technology,

Anhui University of Technology, China and School of Computer Science and Technology, University of

Science and Technology of China, 2013.

[3] Andrew Y. Ng, Michael I. Jordan and Yair Weiss: On Spectral Clustering: Analysis and an

algorithm. U.C. Berkeley and School of CS & Engineering, The Hebrew University

[4] Tae-Ho Lee, Hui Guo, Xiyin Wang, Changsoo Kim and Andrew H Paterson: SNPhylo: a pipeline to

construct a phylogenetic tree from huge SNP data. National Academy of Agricultural Science,

University of Georgia, Hebei Union University, Chungnam National University. The article appears in

BMC Genomics, February 2014

