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Preface 

This report on “Design and development of Extended Recurrent Convolutional          

Neural Network for Multi-label Text Classification" is prepared under the guidance           

of Dr. Aruna Tiwari. 

  

Through this report we have tried to implement a new approach for multi-label text              

classification. We have researched the existing approaches analysed their         

shortcomings. The algorithm which we have proposed is a novel work in the text              

classification research area and can find many real life applications. 

We have tried to the best of our abilities and knowledge to explain the content in a                 

lucid manner. We have also added figures to make it more illustrative. 
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Abstract 

While deep Recurrent Convolutional Neural Networks (RCNN) have shown a great success in             

single-label/binary text classification, it is important to note that real world text generally contain              

multiple labels, which could correspond to different objects, scenes, actions and attributes in an              

image. Traditional approaches to multi-label text classification learn independent classifiers for           

each category and employ ranking or thresholding on the classification results. These techniques             

performance results are depriving. Moreover, they fail to explicitly exploit the label            

dependencies in a text. 

The approaches developed over the years can be divided into two broad categories, i) Bag of                

Words, and ii) Word Embedding. The Bag of words approach doesn’t take into account the               

sentiments of the words due to which it cannot give accurate results in some situations. SVM,                

back-propagation neural network and random forest are some of the approaches using the bag of               

words. We have implemented these for comparison with our approach. Word embedding maps             

words of the vocabulary to vectors of real numbers. It is better than the bag of words approach as                   

it helps capture the semantic of the words. Convolutional neural network and recurrent neural              

network use word embeddings of the words as input in the input layer. Both of them have been                  

implemented [16][17] and have shown better results than BoW approaches. 

In this paper, we have proposed Extended Recurrent Convolutional Neural Networks(ERCNN)           

for multi-label text classification. RCNN is a combination of RNN and CNN which uses a               

bidirectional recurrent structure to avoid giving preference to the words which appear later in the               

text. The max pooling layer of convolutional neural network automatically judges features which             

play a key role in text classification. It is evident from the results that RCNN produces better                 

results than the Bag of Words(BoW) approaches as well as RNN and CNN which use word                

embedding. We have extended the RCNN for multi-label problem and we will call it Extended               

RCNN in this paper. The complexity of ERCNN is O(n) which is same as RNN and CNN as they                   

are applied sequentially. 
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1 
Introduction 

 

 

Natural Language Processing is an emerging field and with so much data produced each day on                

the internet, it is very important to design novel algorithms which are faster and more accurate.                

In this paper, we are proposing an algorithm for multi-label text classification. This section will               

brief you on the topics of text classification and multi-label classification. 

 

1.1 Text Classification 

 

Text Classification is a semi-supervised machine learning task that automatically assigns a given             

document to a set of predefined categories/labels based on its textual content and extracted              

features. Automatic Text Classification has important applications in content management,          

contextual search, opinion mining, product review analysis, spam filtering and text sentiment            

mining. 

Documents may be classified according to their subjects or according to other attributes (such as               

document type, author, printing year etc.). In the rest of this article only subject classification is                
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considered. There are two main philosophies of subject classification of documents: the            

content-based approach and the request-based approach. 

 

1.1.1 Applications 

Text Classification has many applications now-a-days because of the huge amount of data we              

deal with everyday. Some of the major domains where text classification is used are listed below: 

● Spam Filtering: Detecting if an email is legitimate or not. 

● Language identification: Automatically determining the language of a text 

● Genre classification: Automatically determining the genre of a text 

● Readability assessment”: automatically determining the degree of readability of a text. 

● Sentiment analysis: determining the attitude of a speaker or a writer with respect to some               

topic or the overall contextual polarity of a document. 

 

1.1.2 Process 

● Documents Collection: This is first step of classification process in which we are             

collecting the different types of documents to train the model we will use for the               

classification process.  

● Preprocessing: The data collected has to be pre-processed in the next steps to remove              

unwanted data or noise. Some of the steps taken are:  

○ Tokenization: A document is treated as a string, and then partitioned into a list of               

tokens.  

○ Removing stop words: Stop words such as “the”, “a”, “and”, etc. are frequently             

occurring, so the insignificant words need to be removed.  

○ Stemming word: Applying the stemming algorithm that converts different word          

form into similar canonical form.  

● Indexing: The documents representation is one of the pre-processing technique that is            

used to reduce the complexity of the documents and make them easier to handle. One               

way to do it is to represent the words in the document in the form of vectors. 
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● Feature Selection: After pre-processing and indexing the important step of text           

classification, is feature selection to construct vector space, which improves the           

scalability, efficiency and accuracy of a text classifier. The main idea of Feature             

Selection (FS) is to select subset of features from the original documents. FS is              

performed by keeping the words with highest score according to predetermined measure            

of the importance of the word. 

● Classification: The automatic classification of documents into predefined categories has          

observed as an active attention, the documents can be classified by three ways,             

unsupervised, supervised and semi-supervised methods. From last few years, the task of            

automatic text classification have been extensively studied and rapid progress seems in            

this area, including the machine learning approaches such as Bayesian classifier,           

Decision Tree, K-nearest neighbor(KNN), Support Vector Machines(SVMs), Neural        

Networks, Rocchio’s.  

● Performance Evaluations: This is Last stage of Text classification, in which the            

evaluations of text classifiers is typically conducted experimentally, rather than          

analytically. An important issue of Text categorization is how to measures the            

performance of the classifiers. 
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 Figure 1. Text Classification based on labels 

 

 

1.2 Multi-label Classification 

 

1.2.1 Overview 

Multi-label classification is a classification problem where multiple target labels must be            

assigned to each instance. Multi-label classification should not be confused with multi-class            

classification, which is the problem of categorizing instances into one of more than two classes.               

Formally, multi-label learning can be phrased as the problem of finding a model that maps inputs                

x to binary vectors y, rather than scalar outputs as in the ordinary classification problem. 

 

 

1.2.2 Methods 

There are two main methods for tackling the multi-label classification problem: problem            

transformation methods and algorithm adaptation methods. Problem transformation methods         

transform the multi-label problem into a set of binary classification problems, which can then be               
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handled using single-class classifiers. Algorithm adaptation methods adapt the algorithms to           

directly perform multi-label classification. In other words, rather than trying to convert the             

problem to a simpler problem, they try to address the problem in its full form. 

The multi-label context is used in many domains, such as text categorisation and labelling              

images but the main challenge encountered while implementing it is modelling dependencies            

between labels, which must be done efficiently to scale up to settings involving large datasets               

and data streams. 

To model label dependency, most existing works are based on graphical models, among which a               

common approach is to model the co-occurrence dependencies with pairwise compatibility           

probabilities or co-occurrence probabilities and use Markov random fields to infer the final joint              

label probability. However, when dealing with a large set of labels, the parameters of these               

pairwise probabilities can be prohibitively large while lots of the parameters are redundant if the               

labels have highly overlapping meanings. Moreover, most of these methods either can not model              

higher-order correlations, or sacrifice computational complexity to model more complicated          

label relationships.  

Objectives 
 

● Our main goal is to develop a multi-label algorithm which is self-adaptive and able to               

cater large databases. 

● Text classification system should take into account the semantic, sentiment and context            

of the text. 

● Existing approaches has very low precision, so our aim is to develop an algorithm which               

is high on performance. 
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2 
Literature Survey 

 

In this chapter, we will focus on the work already done in text classification and multi-label                

algorithms. We will also analyse the difference between the algorithms and use data from              

previous implementations in other publications to offer a comparative study. 

2.1 Related Work 
 
Most of the progress in multi-label classification is to transform the multi-label classification             

problem into one or more single-label classification or regression problems. 
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Figure 2. General steps for text classification model 

 
There are two approaches studied in this field: 
 
2.1.1 Bag of Words (BoW): 
The bag-of-words model is a simplifying representation used in natural language processing and             
information retrieval (IR). In this model, a text (such as a sentence or a document) is represented                 
as the bag (multiset) of its words, disregarding grammar and even word order but keeping               
multiplicity. 

 
Figure 3. Bag of Words 
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Random Forest: Random forests or random decision forests are an ensemble learning method             

for classification, regression and other tasks, that operate by constructing a multitude of decision              

trees at training time and outputting the class that is the mode of the classes (classification) or                 

mean prediction (regression) of the individual trees.  

  

SVM: Support Vector Machine (SVM) is a supervised machine learning algorithm which can be              

used for both classification and regression. However, it is mostly used in classification problems.              

In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of                   

features you have) with the value of each feature being the value of a particular coordinate. Then,                 

we perform classification by finding the hyperplane that differentiate the two classes very well. 

For this problem, while a movie can belong to multiple genres, whether tagging it with a                

particular genre is just a binary classification problem. Specifically, one can group all movies of               

a particular genre together as the positive samples and the rest as negative samples and train a                 

binary classifier with these two disjoint sets. This approach is generally known as One-Vs-All. 

 

Neural Network: The backpropagation algorithm trains a given feed-forward multilayer neural           

network for a given set of input patterns with known classifications. When each entry of the                

sample set is presented to the network, the network examines its output response to the sample                

input pattern. The output response is then compared to the known and desired output and the                

error value is calculated. Based on the error, the connection weights are adjusted. 

 
Limitations with existing models: 

● A key problem in text classification is feature representation, which is commonly based             

on the bag-of-words (BoW) model, where unigrams, bigrams, n-grams or some           

exquisitely designed patterns are typically extracted as features. 

● Traditional feature representation methods often ignore the contextual information or          

word order in texts and remain unsatisfactory for capturing the semantics of the words. 

 
 
 
 

 
16 

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)


 
 

2.1.2 Word Embedding 
 
The word embedding technique began development in 2000. Bengio et al.[20] provided in a              

series of papers the "Neural probabilistic language models" to reduce the high dimensionality of              

words representations in contexts by "learning a distributed representation for words"[20]. 

For word embedding representation, a feed-forward neural network that takes words from a             

vocabulary as input and embeds them as vectors into a lower dimensional space, which it then                

fine-tunes through back-propagation and yields word embeddings as the weights of the first             

layer, which is usually referred to as Embedding Layer. 

 

 

Figure 4. Word Embedding Example 
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The key problems with traditional models are that they fail to capture the contextual information.               

With the help of word embedding, some composition-based methods are proposed to capture the              

semantic representation of texts: 

 

2.1.2.1 Architectures based on Word Embedding 

Recursive NN: Socher et al. [10,11,12] proposed the Recursive Neural Network (Recursive NN)             

that has been proven to be efficient in terms of constructing sentence representations. However,              

the Recursive NN captures the semantics of a sentence via a tree structure. Its performance               

heavily depends on the performance of the textual tree construction. Moreover, constructing such             

a textual tree exhibits a time complexity of at least O(n2), where n is the length of the text. This                    

would be too time-consuming when the model meets a long sentence or a document.              

Furthermore, the relationship between two sentences can hardly be represented by a tree             

structure. Therefore, Recursive NN is unsuitable for modeling long sentences or documents. 

 

Recurrent NN: Another model, which only exhibits a time complexity O(n), is the Recurrent              

Neural Network (Recurrent NN). This model analyzes a text word by word and stores the               

semantics of all the previous text in a fixed-sized hidden layer [21]. The advantage of Recurrent                

NN is the ability to better capture the contextual information. This could be beneficial to capture                

semantics of long texts. However, the Recurrent NN is a biased model, where later words are                

more dominant than earlier words. Thus, it could reduce the effectiveness when it is used to                

capture the semantics of a whole document, because key components could appear anywhere in a               

document rather than at the end. 

 

Convolutional Neural Network: To tackle the bias problem, the Convolutional Neural           

Network (CNN), an unbiased model is introduced to NLP tasks, which can fairly determine              

discriminative phrases in a text with a max-pooling layer. Thus, the CNN may better capture the                

semantic of texts compared to recursive or recurrent neural networks. The time complexity of the               

CNN is also O(n). However, previous studies on CNN’s tends to use simple convolutional              

kernels such as a fixed window [22]. When using such kernels, it is difficult to determine the                 
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window size: small window sizes may result in the loss of some critical information, whereas               

large windows result in an enormous parameter space (which could be difficult to train). 

 

2.1.2.2  Activation Functions 

Every activation function (or non-linearity) takes a single number and performs a certain fixed              

mathematical operation on it. There are several activation functions you may encounter in             

practice: 

 

 

Figure 5. Tanh and Sigmoid activation functions 

Top: Sigmoid non-linearity squashes real numbers to range between [0,1]  

Bottom: The tanh non-linearity squashes real numbers to range between [-1,1]. 
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Sigmoid. The sigmoid non-linearity has the mathematical form σ(x)=1/(1+e−x) and is shown in             

the image above on the left. As alluded to in the previous section, it takes a real-valued number                  

and “squashes” it into range between 0 and 1. In particular, large negative numbers become 0                

and large positive numbers become 1. The sigmoid function has seen frequent use historically              

since it has a nice interpretation as the firing rate of a neuron: from not firing at all (0) to                    

fully-saturated firing at an assumed maximum frequency (1). In practice, the sigmoid            

non-linearity has recently fallen out of favor and it is rarely ever used. It has two major                 

drawbacks: 

● Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid            

neuron is that when the neuron’s activation saturates at either tail of 0 or 1, the                

gradient at these regions is almost zero. Recall that during backpropagation, this            

(local) gradient will be multiplied to the gradient of this gate’s output for the whole               

objective. Therefore, if the local gradient is very small, it will effectively “kill” the              

gradient and almost no signal will flow through the neuron to its weights and              

recursively to its data. Additionally, one must pay extra caution when initializing the             

weights of sigmoid neurons to prevent saturation. For example, if the initial weights             

are too large then most neurons would become saturated and the network will barely              

learn. 

● Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers             

of processing in a Neural Network (more on this soon) would be receiving data that is                

not zero-centered. This has implications on the dynamics during gradient descent,           

because if the data coming into a neuron is always positive (e.g. x >0 elementwise in               

f=w T x+b )), then the gradient on the weights w will during backpropagation become            

either all be positive, or all negative (depending on the gradient of the whole              

expression f ). This could introduce undesirable zig-zagging dynamics in the gradient           

updates for the weights. However, notice that once these gradients are added up across              

a batch of data the final update for the weights can have variable signs, somewhat               
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mitigating this issue. Therefore, this is an inconvenience but it has less severe             

consequences compared to the saturated activation problem above. 

Tanh. The tanh non-linearity is shown on the image above on the right. It squashes a real-valued                 

number to the range [-1, 1]. Like the sigmoid neuron, its activations saturate, but unlike the                

sigmoid neuron its output is zero-centered. Therefore, in practice the tanh non-linearity is always              

preferred to the sigmoid nonlinearity. Also note that the tanh neuron is simply a scaled sigmoid                

neuron, in particular the following holds: tanh(x)=2σ(2x)−1 . 

We will be using Tanh because of its above mentioned advantages. 
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3 

Proposed Work 
 
In this chapter, we will discuss the motivation for taking up this problem and then briefly talk                 

about the approach that we are going to use for multi-label text-classification.  

3.1 Motivation 

There has been a lot of work done in text classification but classifying text in multiple-labels has                 

not been explored much and is in its nascent stages. The motivation for taking up the multi-label                 

text classification problem is to design a novel algorithm for the task which can efficiently scale                

up to settings involving large datasets and data streams. 

 

3.2 Extended Recurrent Convolutional Neural Network 

To address the limitation of the above models, we propose an Extended Recurrent Convolutional              

Neural Network (ERCNN) and apply it to the task of text classification. First, we apply a                

bi-directional recurrent structure, which may introduce considerably less noise compared to a            
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traditional window based neural network, to capture the contextual information to the greatest             

extent possible when learning word representations. Moreover, the model can reserve a larger             

range of the word ordering when learning representations of texts. Second, we employ a              

max-pooling layer that automatically judges which features play key roles in text classification,             

to capture the key component in the texts. By combining the recurrent structure and max-pooling               

layer, our model utilizes the advantage of both recurrent neural models and convolutional neural              

models. Furthermore, our model exhibits a time complexity of O(n), which is linearly correlated              

with the length of the text length. 

For extending the above model for multi-label classification, We then add a fully connected              

output layer of size |L|, where L are the labels which we are using for classification, with a                  

sigmoid activation function, which produces a probability for each of our potential labels. During              

training, these probabilities are used to compute the error, while during testing, we round each of                

these labels to 0 or 1 depending upon a set threshold. 

 

 

 

 

 

 

 

 

 

 
23 



 
 

 

 

 

 

 

4 
Design and Implementation 

 

In the previous chapter, we discussed the ERCNN approach that we will use for text               

classification task. This chapter contains the design of the architecture that we have implemented              

as well as other details of the implementation. The block diagram given below is the architecture                

that we have implemented. 

 

Figure 6. The architecture of the proposed ERCNN model for multilabel classification.  
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We will understand each component of the above architecture in detail now. 

 

 

4.1 Modelling of ERCNN 

We propose an Extended RCNN framework for multilabel classification problem. The           

architecture of the RCNN framework.  

We propose a deep neural model to capture the semantics of the text. Figure 4 shows the network 

structure of our model. The input of the network is a document D, which is a sequence of words 

w 1 , w 2  ,...., w n . The output of the net-work contains label elements. We use p( k|D;Q )  to denote 

the probability of the document being label k , where Q  is the parameters in the network. 

4.2 Word Embedding Component 

As discussed in section 2.1.2, word embedding is a technique to represent words in the form of 

vectors. This component of our architecture uses Google’s word2vec library to represent words 

in the text in the form of vectors. 

● This component changes the word to its vector representation. 
● Word embedding takes into account the semantic relations between the words. 
● Example: 

king−man+woman≈queen 

4.3 Label Dependency Component 

● To model label correlations, we use Label powerset method with Ensembles of Pruned 
Sets (EPS) improvement 

Label Powerset Method (LP) 

● Make a single multi-class problem with 2L possible class values and train with any 
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off-the-shelf multi-class classifier. 

 

Figure 7. Label Powerset Method 

Label Powerset Method (LP) with Ensembles of Pruned Sets (EPS) 

● ‘Prune’ out infrequent label sets, replace with sampled frequent sets. 

● keep (most) label dependency information, reduce complexity and other LP issues. 

 

Figure 8. Label Powerset Method with Ensembles of Pruned Sets Example 

 

4.4 Semantic Modelling Component (Recurrent Structure) 

We combine a word and its context to present a word. The contexts help us to obtain a more 

precise word meaning. In our model, we use a recurrent structure, which is a bidirectional 

recurrent neural network, to capture the contexts. 
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Figure 9. The structure of the recurrent convolutional neural network. This figure is a partial example of 
the sentence “A sunset stroll along the South Bank affords an array of stunning vantage points”, and the 
subscript denotes the position of the corresponding word in the original sentence. 

 

We define c l ( w i ) as the left context of word w i and c r ( w i ) as the right context of word w i . Both                          

c l ( w i ) and c r ( w i ) are dense vectors with |c| real value elements. The left-side context c l ( w i ) of                        

word w i is calculated using Equation (1), where e( w i-1 ) is the word embedding of word w i-1 ,                     

which is a dense vector with |e| real value elements. c l ( w i-1 ) is the left-side context of the                    

previous word w i-1 . The left-side context for the first word in any document uses the same shared                  

parameters c l ( w i ) . W (l) is a matrix that transforms the hidden layer (context) into the next hidden                   

layer. W (sl) is a matrix that is used to combine the semantic of the current word with the next                   

word’s left context. f is a non-linear activation function. The right-side context c r ( w i ) is                 

calculated in a similar manner, as shown in Equation (2). The right-side contexts of the last word                 

in a document share the parameters c r  ( w n  ) . 

c l  ( w i  )  = f (  W ( l )  c l  ( w i−1  ) + W ( sl )  e( w i−1  )  ) (1) 

c r  ( w i  )  = f (  W ( r )  c r ( w i+1  ) + W ( sr )  e( w i+1  )  ) (2) 
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As shown in Equations (1) and (2), the context vector captures the semantics of all left- and                 

right-side contexts. 

For example, in Figure E4, c l ( w 7 ) encodes the semantics of the left-side context “stroll along                  

the South” along with all previous texts in the sentence, and c r ( w 7 ) encodes the semantics of the                   

right-side context “affords an . . . ”. Then, we define the representation of word w i in Equation                  

(3), which is the concatenation of the left-side context vector c l ( w i ) , the word embedding e( w i )                    

and the right-side context vector c r ( w i ) . In this manner, using this contextual information, our                 

model may be better able to disambiguate the meaning of the word w i compared to conventional                

neural models that only use a fixed window (i.e., they only use partial information about texts). 

x i  = [ c l ( w  i  ); e( w i  ); c r  ( w i  ) ] (3) 

The recurrent structure can obtain all c l in a forward scan of the text and c r in a backward scan of                     

the text. The time complexity is O(n). After we obtain the representation xi of the word wi , we                   

apply a linear transformation together with the tanh activation function to xi and send the result to                 

the next layer. 

y i
(2)  = tanh (W (2)  x i  + b (2) ) (4) 

y i
(2) is a latent semantic vector, in which each semantic factor will be analyzed to determine the                 

most useful factor for representing the text. 

 

4.5 Variable Length Adjusting Component (Max Pooling Layer) 

The convolutional neural network in our model is designed to represent the text. From the               

perspective of convolutional neural networks, the recurrent structure we previously mentioned is            

the convolutional layer. 

When all of the representations of words are calculated, we apply a max-pooling layer. 

    y (3)  = max y i 
(2) i (1, )⋁  ∈  n (5) 
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The max function is an element-wise function. The k-th element of y (3) is the maximum in the                 

k-th elements of y i
(2)  .  

The pooling layer converts texts with various lengths into a fixed-length vector. With the pooling               

layer, we can capture the information throughout the entire text. There are other types of pooling                

layers, such as average pooling layers [22]. We do not use average pooling here because only a                 

few words and their combination are useful for capturing the meaning of the document. The               

max-pooling layer attempts to find the most important latent semantic factors in the document.              

The pooling layer utilizes the output of the recurrent structure as the input. The time complexity                

of the pooling layer is O(n). The overall model is a cascade of the recurrent structure and a                  

max-pooling layer, therefore, the time complexity of our model is still O(n).  

The last part of our model is an output layer. Similar to traditional neural networks, it is defined                  

as  

y  (4)  = W  (4)  y  (3)  + b  (4)               (6) 

Finally, the softmax function is applied to y (4) .It can convert the output numbers into               

probabilities. 

pi =  
exp ( y  )

i 
(4)

 exp ( y  )   ∑
n

k=1
 i

(4)
  (7) 

 

4.6 Training 

Training Network parameters: We define all of the parameters to be trained as θ . 

θ = {E, b  (2)  , b  (4)  , c l  (w 1  ), c r  (w n  ), W  (2)  ,W  (4)  , W  (l)  , W  (r)  , W  (sl)  , W  (sr)  } (8) 
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Specifically, the parameters are word embeddings E ∈ R|e|×|V | , the bias vectors b (2) ∈ RH , b (4)                     

∈ RO , the initial contexts c l (w 1 ), c r (w n ) ∈ R|c| and the transformation matrixes W (2) ∈                    

RH×(|e|+2|c|) , W (4) ∈ RO×H , W (l) , W (r) ∈ R |c|×|c| , W (sl) , W (sr) ∈ R |e|×|c| , where |V | is the number of                              

words in the vocabulary, H  is the hidden layer size, and O  is the number of document types. 

The training target of the network is used to maximize the log-likelihood with respect to θ : 

  log p (label  D  |D, θ )θ → ∑
 

D∈D 
 (9) 

where D is the training document set and label D  is the correct label of document D. 

We use stochastic gradient descent [23]to optimize the training target. In each step, we randomly               

select an example (D, label D  ) and make a gradient step. 

θ ← θ + α ∂θ
∂ log p(label D |D, θ) (10) 

where α is the learning rate. 

We use one trick that is widely used when training neural networks with stochastic gradient               

descent in the training phase. We initialize all of the parameters in the neural network from a                 

uniform distribution. The magnitude of the maximum or minimum equals the square root of the               

“fan-in”[24]. The number is the network node of the previous layer in our model. The learning                

rate for that layer is divided by “fan-in”. 

Pre-training Word Embedding: Word embedding is a distributed representation of a word.            

Distributed representation is suitable for the input of neural networks. Traditional           

representations, such as one-hot representation, will lead to the curse of dimensionality [20].             

Recent research [25] shows that neural networks can converge to a better local minima with a                

suitable unsupervised pre-training procedure. In this work, we use the Skip-gram model to             

pre-train the word embedding. this model is the state-of-the-art in many NLP tasks [26]. The               

Skip-gram model trains the embeddings of words w 1 , w 2 . . . w T by maximizing the average log                   

probability 
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1
T og p(w  |w  )∑

T

t=1
∑
 

−c≤j≤c,j=0/
l t+j t (11) 

p(wb |wa ) =
exp (e (w  )  e(w  ) )′ b

T
a

xp( e  (w  ) e(w  ) )∑
|V |

k=1
e ′ k a

(12) 

where |V | is the vocabulary of the unlabeled text. e’ (w i ) is another embedding for w i . We use                     

the embedding e because some speed-up approaches (e.g., hierarchical softmax [27]) will be used              

here, and e’  is not calculated in practice. 

 

4.7 ERCNN Algorithm 

The training network parameters would be: 

θ = {E, b  (2)  , b  (4)  , c l  (w 1  ), c r  (w n  ), W  (2)  ,W  (4)  , W  (l)  , W  (r)  , W  (sl)  , W  (sr)  }  

(described in section 4) 

The training target of the network is used to maximize the log-likelihood with respect to :θ  

 

where D is the training document set and label D  is the correct label of document D. 

We are using stochastic gradient descent to optimize the training target. We initialize all of the                

parameters in the neural network from a uniform distribution.  

We then add a fully connected output layer of size |L|, where L are the labels in which the text                    

has to be classified, with a sigmoid activation function, which produces a probability for each of                

our potential labels. During training, these probabilities are used to compute the error, while              

during testing, we round each of these labels to 0 or 1 depending upon a set threshold. 
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5 
Experimentation and Results 

 

5.1 Dataset 

We will use movie review database to classify movies based on their synopsis. Public movies’               

database such as IMDB provides genre information to assist searching. The tagging of movies’              

genres is still a manual process which involves the collection of users’ suggestions sent to known                

email addresses of IMDB. Movies are often registered with inaccurate genres. Automatic genres             

classification of a movie based on its synopsis not only speeds up the classification process by                

providing a list of suggestion but the result may potentially be more accurate than an untrained                

human. 

The Internet Movie Database (IMDB) has for synopsis of the synopsis and the genre tags for                

each movie. 

There are 2 data files 

plot.list.gz   : Contains synopsis of 1,58,840 movies. 

genre.list.gz: Contains 7,46,883 genre tags for different movies. 
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5.2 Data Pre-processing 
Data Pre-processing involves extracting the required features from the data given in text format.              

There are multiple steps in data processing which are described as follows: 

  

● Converting both the .list files to .txt and then to .csv using regular expression in python                

script. Reason for performing the conversion is, it becomes easy to apply ML algorithms              

on csv files. 

● Choose the movie titles for which both synopsis and genre data is available. These turn               

out to be 16,000. 

● 80% was randomly chosen as training data and rest 20% as test data. 

● In total 40 genres, selected the 26 most popular genres. 

● Process Synopsis to generate bag of words. 

● Apply NLTK to remove all stopwords. 

● Remove all numerical words. 

● Python stemmer, so words with same index were mapped to single word. 

● Created a dictionary from 16000 movies synopsis, so 63,840 words was generated. 

● Out of the 63,840 words, only those which have occurred more than 15 times in all the                 

training samples were used in BoW representation so only 10,656 (denoted as V ) words               

were left. 

● Term frequency inverse document frequency (tfidf ) of the words were then computed. 

 

where wki is the frequency of the k-th word in the i-th movie’s synopsis (di), and m is the number                    

of training/test sets. 
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Genre Distribution 

 

 
Figure 10. Data Distribution 

Code snippets can be found in Appendix. 

5.3 Experimentation Setup 

Training Hyper-parameters 

 
Learning rate of the stochastic gradient descent =  0.01, 
Hidden layer size as H =  100,  
Vector size of the word embedding as |e| =  50  
Size of the context vector as |c| =  50. 
  
We train word embeddings using the default parameter in word2vec with the Skip-gram             
algorithm. We used Wikipedia dumps in English to train the word embedding. 
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5.4 Performance parameters 

The performance is based on the following factors: 
 
Precision =       TP   . 

         TP + FP 
 
Recall =        TP    .  

     TP + FN 
 
F Measure =  2 * Precision * Recall 

             Precision + Recall 
 
Where, 
TP= number of true positive 
FP= number of false positive and  
FN= number of false negative 
 
 

5.5 Results and Comparison 

 

Approach (BoW) Precision Recall F Measure 

SVM 0.661 0.396 0.472 

Random Forest 0.582  0.382 0.421 

Backpropagation NN 0.67630 0.41513 0.49896 

 
 
 

Approach(Word Embedding) Precision Recall F Measure 

Recurrent NN 0.7406 0.4954 0.5936 

Convolutional NN 0.7061  0.5274 0.6038 

ERCNN 0.7714 0.5863 0.6662 
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Figure 11. Results comparing ERCNN with other Text Classification approaches 

The results show that all the Word Embedding approaches perform better than the Bag of Words 

(BoW) approaches. This can be explained based on the fact that word embedding captures the 

semantics of the word which the BoW doesn’t take into account.  

The Recurrent NN uses the word vectors gives more weight to the words which come later in the 

text. ERCNN overcomes this drawback by using a bi-directional recurrent structure which takes 

both left context and right context into consideration. ERCNN also uses the max pooling layer 

present in CNN to extract the most important features from the text. It produces better results 

than CNN because instead of using a fixed-size window like CNN, ERCNN uses the the left and 

right context which help to solve the problem of too much information due to large window size 

or loss of critical information due to a small window size. 
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6 
Conclusions and Future Scope 

 

 

Following are the conclusions based on the results: 

● The approaches using Bag of Words(BoW), (SVM, Backpropagation NN, and Random 

Forest) performed well but as BoW fails to capture the semantic of words, they can only 

have accuracy up to a particular limit. 

● As shown in the results, Extended Recurrent Convolutional Neural Network(ERCNN), 

outperforms the approaches using BoW. This is because it uses Word Embedding which 

takes into account the semantic of the words. 

● ERCNN gives better results than RNN because the bi-directional recurrent structure 

overcomes the problem of words appearing later in the text getting more weight. 

 

As future scope of the problem, we can implement an architecture which also takes the label 

dependencies into account. Real data mostly has a lot of labels in which the text has to be 

classified. For large number of labels, we have to consider the label dependencies to get the 

correct set of labels.  
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Figure 12. Proposed RCNN-RNN architecture for Text-Classification 

The above architecture uses multi-label Recurrent neural network(RNN) to learn a joint 

text-label embedding to model the semantic relevance between text and labels. The text 

representation as vectors are generated using RCNN. In the Prediction Layer, the text and the 

labels are projected to the same low-dimensional space to model the image-text relationship as 

well as the label redundancy. 

A similar architecture has been used in [18] for multi-label image classification where RNN is 

used for label representation and CNN is used to generate image embedding vectors. The results 

are significantly better than the others approaches used for comparison including KNN and RNN. 
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Appendix 

Data preprocessing: 

The raw data was in a particular format in a text file. 
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To extract the data from text and obtaining fruitful information from it we converted this raw                

data into excel file using regular expression in python language. 

#Regular expression that matches the Data format 

matchObj = re.match( r'"(.*)"\s+\((.*)\)\s+(.*)', lines[i], re.M|re.I) 

Then we merged the movie details and synopsis into a single excel file, which has movie name                 

and year as unique id and synopsis and genre info. 

#Merging the data into single excel file 

inters=pd.merge(df,df2, on=['Movie','Year'], how='inner') 

RCNN model : 

This is the forward pass of the model: 

def forward(self, x_list): 

        cl_list = [] 

        for x in x_list: 

            wvec = self.embed(x) 

            cl_list.append(wvec) #Capturing the left context 

        cr_list = [] 

        for x in reversed(x_list): 

            wvec = self.embed(x) 

            cr_list.append(wvec) #Capturing the right context 

        xi_list = [] 

        for cl, cr in zip(cl_list, cr_list): 

 
43 



 
 

            xi_list.append(F.concat((cl, cr))) 

        yi_list = [] 

        for xi in xi_list: 

            yi_list.append(F.tanh(self.fc1(xi))) 

        y3 = yi_list[0] 

        for yi in yi_list[1:]: 

            y3 = F.maximum(yi, y3) 

        y4 = self.fc2(y3) 

        return y4 
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Pre-processed Data: 

 

Short movies 
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Data after extracting year and synopsis 

 

Movies with corresponding labels as 1 
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