

B. TECH. PROJECT REPORT
On

Design and Development of
Extended Recurrent Convolutional

Neural Network (ERCNN) for
Multi-label Text Classification

 BY

Digvijay Singh Jaspreet Singh Saluja

 130001011 130001018

 DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2016

Design and Development of Extended
Recurrent Convolutional Neural Network

(ERCNN) for Multi-label Text Classification
 A PROJECT REPORT

 Submitted in partial fulfillment of the

requirements for the award of the degrees

 of

BACHELOR OF TECHNOLOGY

in

 COMPUTER SCIENCE AND ENGINEERING

 Submitted by:

Digvijay Singh Jaspreet Singh Saluja

 Guided by:

Dr. Aruna Tiwari

 INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2016

1

 CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Design and development of

Extended Recurrent Convolutional Neural Network (ERCNN) for Multi-label

Text Classification” submitted in partial fulfillment for the award of the degree of

Bachelor of Technology in ‘Computer Science Engineering’ completed under the

supervision of Dr. Aruna Tiwari, Assistant Professor, IIT Indore is an authentic

work.

 Further, we declare that we have not submitted this work for the award of

any other degree elsewhere.

Signature and name of the student(s) with date

CERTIFICATE by BTP Guide(s)

 It is certified that the above statement made by the students is correct to the

best of my knowledge.

Signature of BTP Guide(s) with dates and their designation

2

Preface

This report on “Design and development of Extended Recurrent Convolutional

Neural Network for Multi-label Text Classification" is prepared under the guidance

of Dr. Aruna Tiwari.

Through this report we have tried to implement a new approach for multi-label text

classification. We have researched the existing approaches analysed their

shortcomings. The algorithm which we have proposed is a novel work in the text

classification research area and can find many real life applications.

We have tried to the best of our abilities and knowledge to explain the content in a

lucid manner. We have also added figures to make it more illustrative.

 Digvijay Singh

Jaspreet Singh Saluja

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

3

Acknowledgements

We wish to thank Dr. Aruna Tiwari for her kind support and valuable guidance

throughout the duration of the project.

It is her help and support, due to which we became able to complete the design and

technical report.

Without her support this report would not have been possible.

Digvijay Singh

Jaspreet Singh Saluja

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

4

Abstract

While deep Recurrent Convolutional Neural Networks (RCNN) have shown a great success in

single-label/binary text classification, it is important to note that real world text generally contain

multiple labels, which could correspond to different objects, scenes, actions and attributes in an

image. Traditional approaches to multi-label text classification learn independent classifiers for

each category and employ ranking or thresholding on the classification results. These techniques

performance results are depriving. Moreover, they fail to explicitly exploit the label

dependencies in a text.

The approaches developed over the years can be divided into two broad categories, i) Bag of

Words, and ii) Word Embedding. The Bag of words approach doesn’t take into account the

sentiments of the words due to which it cannot give accurate results in some situations. SVM,

back-propagation neural network and random forest are some of the approaches using the bag of

words. We have implemented these for comparison with our approach. Word embedding maps

words of the vocabulary to vectors of real numbers. It is better than the bag of words approach as

it helps capture the semantic of the words. Convolutional neural network and recurrent neural

network use word embeddings of the words as input in the input layer. Both of them have been

implemented [16][17] and have shown better results than BoW approaches.

In this paper, we have proposed Extended Recurrent Convolutional Neural Networks(ERCNN)

for multi-label text classification. RCNN is a combination of RNN and CNN which uses a

bidirectional recurrent structure to avoid giving preference to the words which appear later in the

text. The max pooling layer of convolutional neural network automatically judges features which

play a key role in text classification. It is evident from the results that RCNN produces better

results than the Bag of Words(BoW) approaches as well as RNN and CNN which use word

embedding. We have extended the RCNN for multi-label problem and we will call it Extended

RCNN in this paper. The complexity of ERCNN is O(n) which is same as RNN and CNN as they

are applied sequentially.

5

Contents

Declaration and Certificate 2

Preface 3

Acknowledgment 4

Abstract 5

Contents 6

1. Introduction 8

1.1 Text Classification……………………………………………………………....8

1.1.1 Applications…………………………………………………………..9

1.1.2 Process………………………………………………………………..9

1.2 Multi-label Classification……………………………………………………...11

1.2.1 Overview………………………………………………………….....11

1.2.2 Methods…………………………………………………………..….11

 2. Literature Survey 13

2.1 Related Work……………………………………………………………..…....13

2.1.1 Bag of Words (BoW)...14

2.1.2 Word Embedding……………………………………………..……...16

 3. Proposed Work

21

3.1 Motivation……………………………………………………………………...21

6

3.2 Extended Recurrent Convolutional Neural Network (ERCNN)......………….....21

4. Design and Implementation 23

4.1 Modelling of ERCNN……………………………………………………….…..24

4.2 Word Embedding Component……………………......………………….……...24

4.3 Label Dependency Component…………………....…...……………….……....24

4.4 Semantic Modelling Component (Recurrent Structure)..……………….……...25

4.5 Variable Length Adjusting Component(Max Pooling Layer)………………….27

4.6 Training………………………………………………………………….……..28

4.7 ERCNN Algorithm…………………………………………………………….30

5. Experimentation and Results 32

5.1 Dataset………………………………………………………………………….32

5.2 Data Pre-processing…………………………………………………………….33

5.3 Experimentation Setup………………………………………………………....34

5.4 Performance Parameters………………………………………………………..35

5.5 Results and Comparison……………………………………………………......35

6. Conclusions and Future Scope 37

References

Appendix

7

List of Figures

1. Text Classification based on labels…………………………………………………...12

2. General steps for Text Classification Model…………………………………………15

3. Bag of Words………………………………………………………………………....15

4. Word Embedding Example…………………………………………………………..17

5. Tanh and Sigmoid Activation functions……………………………………………...19

6. The architecture of the proposed ERCNN model for multilabel classification……...24

7. Label Powerset Method……………………………………………………………...26

8. Label Powerset Method with Ensembles of Pruned Sets Example………………....26
9. The structure of Recurrent Convolutional Neural Network…………………………27

10. Data Distribution…………………………………………………………………….35

11. Results comparing ERCNN with other Text Classification approaches…………….37

12. Proposed RCNN-RNN architecture for Text-Classification………………………...39

8

1
Introduction

Natural Language Processing is an emerging field and with so much data produced each day on

the internet, it is very important to design novel algorithms which are faster and more accurate.

In this paper, we are proposing an algorithm for multi-label text classification. This section will

brief you on the topics of text classification and multi-label classification.

1.1 Text Classification

Text Classification is a semi-supervised machine learning task that automatically assigns a given

document to a set of predefined categories/labels based on its textual content and extracted

features. Automatic Text Classification has important applications in content management,

contextual search, opinion mining, product review analysis, spam filtering and text sentiment

mining.

Documents may be classified according to their subjects or according to other attributes (such as

document type, author, printing year etc.). In the rest of this article only subject classification is

9

https://en.wikipedia.org/wiki/Subject_(documents)

considered. There are two main philosophies of subject classification of documents: the

content-based approach and the request-based approach.

1.1.1 Applications

Text Classification has many applications now-a-days because of the huge amount of data we

deal with everyday. Some of the major domains where text classification is used are listed below:

● Spam Filtering: Detecting if an email is legitimate or not.

● Language identification: Automatically determining the language of a text

● Genre classification: Automatically determining the genre of a text

● Readability assessment”: automatically determining the degree of readability of a text.

● Sentiment analysis: determining the attitude of a speaker or a writer with respect to some

topic or the overall contextual polarity of a document.

1.1.2 Process

● Documents Collection: This is first step of classification process in which we are

collecting the different types of documents to train the model we will use for the

classification process.

● Preprocessing: The data collected has to be pre-processed in the next steps to remove

unwanted data or noise. Some of the steps taken are:

○ Tokenization: A document is treated as a string, and then partitioned into a list of

tokens.

○ Removing stop words: Stop words such as “the”, “a”, “and”, etc. are frequently

occurring, so the insignificant words need to be removed.

○ Stemming word: Applying the stemming algorithm that converts different word

form into similar canonical form.

● Indexing: The documents representation is one of the pre-processing technique that is

used to reduce the complexity of the documents and make them easier to handle. One

way to do it is to represent the words in the document in the form of vectors.

10

https://en.wikipedia.org/wiki/Language_identification
https://en.wikipedia.org/wiki/Readability
https://en.wikipedia.org/wiki/Sentiment_analysis

● Feature Selection: After pre-processing and indexing the important step of text

classification, is feature selection to construct vector space, which improves the

scalability, efficiency and accuracy of a text classifier. The main idea of Feature

Selection (FS) is to select subset of features from the original documents. FS is

performed by keeping the words with highest score according to predetermined measure

of the importance of the word.

● Classification: The automatic classification of documents into predefined categories has

observed as an active attention, the documents can be classified by three ways,

unsupervised, supervised and semi-supervised methods. From last few years, the task of

automatic text classification have been extensively studied and rapid progress seems in

this area, including the machine learning approaches such as Bayesian classifier,

Decision Tree, K-nearest neighbor(KNN), Support Vector Machines(SVMs), Neural

Networks, Rocchio’s.

● Performance Evaluations: This is Last stage of Text classification, in which the

evaluations of text classifiers is typically conducted experimentally, rather than

analytically. An important issue of Text categorization is how to measures the

performance of the classifiers.

11

 Figure 1. Text Classification based on labels

1.2 Multi-label Classification

1.2.1 Overview

Multi-label classification is a classification problem where multiple target labels must be

assigned to each instance. Multi-label classification should not be confused with multi-class

classification, which is the problem of categorizing instances into one of more than two classes.

Formally, multi-label learning can be phrased as the problem of finding a model that maps inputs

x to binary vectors y, rather than scalar outputs as in the ordinary classification problem.

1.2.2 Methods

There are two main methods for tackling the multi-label classification problem: problem

transformation methods and algorithm adaptation methods. Problem transformation methods

transform the multi-label problem into a set of binary classification problems, which can then be

12

https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Multiclass_classification
https://en.wikipedia.org/wiki/Binary_classification

handled using single-class classifiers. Algorithm adaptation methods adapt the algorithms to

directly perform multi-label classification. In other words, rather than trying to convert the

problem to a simpler problem, they try to address the problem in its full form.

The multi-label context is used in many domains, such as text categorisation and labelling

images but the main challenge encountered while implementing it is modelling dependencies

between labels, which must be done efficiently to scale up to settings involving large datasets

and data streams.

To model label dependency, most existing works are based on graphical models, among which a

common approach is to model the co-occurrence dependencies with pairwise compatibility

probabilities or co-occurrence probabilities and use Markov random fields to infer the final joint

label probability. However, when dealing with a large set of labels, the parameters of these

pairwise probabilities can be prohibitively large while lots of the parameters are redundant if the

labels have highly overlapping meanings. Moreover, most of these methods either can not model

higher-order correlations, or sacrifice computational complexity to model more complicated

label relationships.

Objectives

● Our main goal is to develop a multi-label algorithm which is self-adaptive and able to

cater large databases.

● Text classification system should take into account the semantic, sentiment and context

of the text.

● Existing approaches has very low precision, so our aim is to develop an algorithm which

is high on performance.

13

2
Literature Survey

In this chapter, we will focus on the work already done in text classification and multi-label

algorithms. We will also analyse the difference between the algorithms and use data from

previous implementations in other publications to offer a comparative study.

2.1 Related Work

Most of the progress in multi-label classification is to transform the multi-label classification

problem into one or more single-label classification or regression problems.

14

Figure 2. General steps for text classification model

There are two approaches studied in this field:

2.1.1 Bag of Words (BoW):
The bag-of-words model is a simplifying representation used in natural language processing and
information retrieval (IR). In this model, a text (such as a sentence or a document) is represented
as the bag (multiset) of its words, disregarding grammar and even word order but keeping
multiplicity.

Figure 3. Bag of Words

15

Random Forest: Random forests or random decision forests are an ensemble learning method

for classification, regression and other tasks, that operate by constructing a multitude of decision

trees at training time and outputting the class that is the mode of the classes (classification) or

mean prediction (regression) of the individual trees.

SVM: Support Vector Machine (SVM) is a supervised machine learning algorithm which can be

used for both classification and regression. However, it is mostly used in classification problems.

In this algorithm, we plot each data item as a point in n-dimensional space (where n is number of

features you have) with the value of each feature being the value of a particular coordinate. Then,

we perform classification by finding the hyperplane that differentiate the two classes very well.

For this problem, while a movie can belong to multiple genres, whether tagging it with a

particular genre is just a binary classification problem. Specifically, one can group all movies of

a particular genre together as the positive samples and the rest as negative samples and train a

binary classifier with these two disjoint sets. This approach is generally known as One-Vs-All.

Neural Network: The backpropagation algorithm trains a given feed-forward multilayer neural

network for a given set of input patterns with known classifications. When each entry of the

sample set is presented to the network, the network examines its output response to the sample

input pattern. The output response is then compared to the known and desired output and the

error value is calculated. Based on the error, the connection weights are adjusted.

Limitations with existing models:

● A key problem in text classification is feature representation, which is commonly based

on the bag-of-words (BoW) model, where unigrams, bigrams, n-grams or some

exquisitely designed patterns are typically extracted as features.

● Traditional feature representation methods often ignore the contextual information or

word order in texts and remain unsatisfactory for capturing the semantics of the words.

16

https://en.wikipedia.org/wiki/Ensemble_learning
https://en.wikipedia.org/wiki/Statistical_classification
https://en.wikipedia.org/wiki/Regression_analysis
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Decision_tree_learning
https://en.wikipedia.org/wiki/Mode_(statistics)

2.1.2 Word Embedding

The word embedding technique began development in 2000. Bengio et al.[20] provided in a

series of papers the "Neural probabilistic language models" to reduce the high dimensionality of

words representations in contexts by "learning a distributed representation for words"[20].

For word embedding representation, a feed-forward neural network that takes words from a

vocabulary as input and embeds them as vectors into a lower dimensional space, which it then

fine-tunes through back-propagation and yields word embeddings as the weights of the first

layer, which is usually referred to as Embedding Layer.

Figure 4. Word Embedding Example

17

https://en.wikipedia.org/wiki/Yoshua_Bengio

The key problems with traditional models are that they fail to capture the contextual information.

With the help of word embedding, some composition-based methods are proposed to capture the

semantic representation of texts:

2.1.2.1 Architectures based on Word Embedding

Recursive NN: Socher et al. [10,11,12] proposed the Recursive Neural Network (Recursive NN)

that has been proven to be efficient in terms of constructing sentence representations. However,

the Recursive NN captures the semantics of a sentence via a tree structure. Its performance

heavily depends on the performance of the textual tree construction. Moreover, constructing such

a textual tree exhibits a time complexity of at least O(n2), where n is the length of the text. This

would be too time-consuming when the model meets a long sentence or a document.

Furthermore, the relationship between two sentences can hardly be represented by a tree

structure. Therefore, Recursive NN is unsuitable for modeling long sentences or documents.

Recurrent NN: Another model, which only exhibits a time complexity O(n), is the Recurrent

Neural Network (Recurrent NN). This model analyzes a text word by word and stores the

semantics of all the previous text in a fixed-sized hidden layer [21]. The advantage of Recurrent

NN is the ability to better capture the contextual information. This could be beneficial to capture

semantics of long texts. However, the Recurrent NN is a biased model, where later words are

more dominant than earlier words. Thus, it could reduce the effectiveness when it is used to

capture the semantics of a whole document, because key components could appear anywhere in a

document rather than at the end.

Convolutional Neural Network: To tackle the bias problem, the Convolutional Neural

Network (CNN), an unbiased model is introduced to NLP tasks, which can fairly determine

discriminative phrases in a text with a max-pooling layer. Thus, the CNN may better capture the

semantic of texts compared to recursive or recurrent neural networks. The time complexity of the

CNN is also O(n). However, previous studies on CNN’s tends to use simple convolutional

kernels such as a fixed window [22]. When using such kernels, it is difficult to determine the

18

window size: small window sizes may result in the loss of some critical information, whereas

large windows result in an enormous parameter space (which could be difficult to train).

2.1.2.2 Activation Functions

Every activation function (or non-linearity) takes a single number and performs a certain fixed

mathematical operation on it. There are several activation functions you may encounter in

practice:

Figure 5. Tanh and Sigmoid activation functions

Top: Sigmoid non-linearity squashes real numbers to range between [0,1]

Bottom: The tanh non-linearity squashes real numbers to range between [-1,1].

19

Sigmoid. The sigmoid non-linearity has the mathematical form σ(x)=1/(1+e−x) and is shown in

the image above on the left. As alluded to in the previous section, it takes a real-valued number

and “squashes” it into range between 0 and 1. In particular, large negative numbers become 0

and large positive numbers become 1. The sigmoid function has seen frequent use historically

since it has a nice interpretation as the firing rate of a neuron: from not firing at all (0) to

fully-saturated firing at an assumed maximum frequency (1). In practice, the sigmoid

non-linearity has recently fallen out of favor and it is rarely ever used. It has two major

drawbacks:

● Sigmoids saturate and kill gradients. A very undesirable property of the sigmoid

neuron is that when the neuron’s activation saturates at either tail of 0 or 1, the

gradient at these regions is almost zero. Recall that during backpropagation, this

(local) gradient will be multiplied to the gradient of this gate’s output for the whole

objective. Therefore, if the local gradient is very small, it will effectively “kill” the

gradient and almost no signal will flow through the neuron to its weights and

recursively to its data. Additionally, one must pay extra caution when initializing the

weights of sigmoid neurons to prevent saturation. For example, if the initial weights

are too large then most neurons would become saturated and the network will barely

learn.

● Sigmoid outputs are not zero-centered. This is undesirable since neurons in later layers

of processing in a Neural Network (more on this soon) would be receiving data that is

not zero-centered. This has implications on the dynamics during gradient descent,

because if the data coming into a neuron is always positive (e.g. x >0 elementwise in

f=w T x+b)), then the gradient on the weights w will during backpropagation become

either all be positive, or all negative (depending on the gradient of the whole

expression f). This could introduce undesirable zig-zagging dynamics in the gradient

updates for the weights. However, notice that once these gradients are added up across

a batch of data the final update for the weights can have variable signs, somewhat

20

mitigating this issue. Therefore, this is an inconvenience but it has less severe

consequences compared to the saturated activation problem above.

Tanh. The tanh non-linearity is shown on the image above on the right. It squashes a real-valued

number to the range [-1, 1]. Like the sigmoid neuron, its activations saturate, but unlike the

sigmoid neuron its output is zero-centered. Therefore, in practice the tanh non-linearity is always

preferred to the sigmoid nonlinearity. Also note that the tanh neuron is simply a scaled sigmoid

neuron, in particular the following holds: tanh(x)=2σ(2x)−1 .

We will be using Tanh because of its above mentioned advantages.

21

3

Proposed Work

In this chapter, we will discuss the motivation for taking up this problem and then briefly talk

about the approach that we are going to use for multi-label text-classification.

3.1 Motivation

There has been a lot of work done in text classification but classifying text in multiple-labels has

not been explored much and is in its nascent stages. The motivation for taking up the multi-label

text classification problem is to design a novel algorithm for the task which can efficiently scale

up to settings involving large datasets and data streams.

3.2 Extended Recurrent Convolutional Neural Network

To address the limitation of the above models, we propose an Extended Recurrent Convolutional

Neural Network (ERCNN) and apply it to the task of text classification. First, we apply a

bi-directional recurrent structure, which may introduce considerably less noise compared to a

22

traditional window based neural network, to capture the contextual information to the greatest

extent possible when learning word representations. Moreover, the model can reserve a larger

range of the word ordering when learning representations of texts. Second, we employ a

max-pooling layer that automatically judges which features play key roles in text classification,

to capture the key component in the texts. By combining the recurrent structure and max-pooling

layer, our model utilizes the advantage of both recurrent neural models and convolutional neural

models. Furthermore, our model exhibits a time complexity of O(n), which is linearly correlated

with the length of the text length.

For extending the above model for multi-label classification, We then add a fully connected

output layer of size |L|, where L are the labels which we are using for classification, with a

sigmoid activation function, which produces a probability for each of our potential labels. During

training, these probabilities are used to compute the error, while during testing, we round each of

these labels to 0 or 1 depending upon a set threshold.

23

4
Design and Implementation

In the previous chapter, we discussed the ERCNN approach that we will use for text

classification task. This chapter contains the design of the architecture that we have implemented

as well as other details of the implementation. The block diagram given below is the architecture

that we have implemented.

Figure 6. The architecture of the proposed ERCNN model for multilabel classification.

24

We will understand each component of the above architecture in detail now.

4.1 Modelling of ERCNN

We propose an Extended RCNN framework for multilabel classification problem. The

architecture of the RCNN framework.

We propose a deep neural model to capture the semantics of the text. Figure 4 shows the network

structure of our model. The input of the network is a document D, which is a sequence of words

w 1 , w 2 ,...., w n . The output of the net-work contains label elements. We use p(k|D;Q) to denote

the probability of the document being label k , where Q is the parameters in the network.

4.2 Word Embedding Component

As discussed in section 2.1.2, word embedding is a technique to represent words in the form of

vectors. This component of our architecture uses Google’s word2vec library to represent words

in the text in the form of vectors.

● This component changes the word to its vector representation.
● Word embedding takes into account the semantic relations between the words.
● Example:

king−man+woman≈queen

4.3 Label Dependency Component

● To model label correlations, we use Label powerset method with Ensembles of Pruned
Sets (EPS) improvement

Label Powerset Method (LP)

● Make a single multi-class problem with 2L possible class values and train with any

25

off-the-shelf multi-class classifier.

Figure 7. Label Powerset Method

Label Powerset Method (LP) with Ensembles of Pruned Sets (EPS)

● ‘Prune’ out infrequent label sets, replace with sampled frequent sets.

● keep (most) label dependency information, reduce complexity and other LP issues.

Figure 8. Label Powerset Method with Ensembles of Pruned Sets Example

4.4 Semantic Modelling Component (Recurrent Structure)

We combine a word and its context to present a word. The contexts help us to obtain a more

precise word meaning. In our model, we use a recurrent structure, which is a bidirectional

recurrent neural network, to capture the contexts.

26

Figure 9. The structure of the recurrent convolutional neural network. This figure is a partial example of
the sentence “A sunset stroll along the South Bank affords an array of stunning vantage points”, and the
subscript denotes the position of the corresponding word in the original sentence.

We define c l (w i) as the left context of word w i and c r (w i) as the right context of word w i . Both

c l (w i) and c r (w i) are dense vectors with |c| real value elements. The left-side context c l (w i) of

word w i is calculated using Equation (1), where e(w i-1) is the word embedding of word w i-1 ,

which is a dense vector with |e| real value elements. c l (w i-1) is the left-side context of the

previous word w i-1 . The left-side context for the first word in any document uses the same shared

parameters c l (w i) . W (l) is a matrix that transforms the hidden layer (context) into the next hidden

layer. W (sl) is a matrix that is used to combine the semantic of the current word with the next

word’s left context. f is a non-linear activation function. The right-side context c r (w i) is

calculated in a similar manner, as shown in Equation (2). The right-side contexts of the last word

in a document share the parameters c r (w n) .

c l (w i) = f (W (l) c l (w i−1) + W (sl) e(w i−1)) (1)

c r (w i) = f (W (r) c r (w i+1) + W (sr) e(w i+1)) (2)

27

As shown in Equations (1) and (2), the context vector captures the semantics of all left- and

right-side contexts.

For example, in Figure E4, c l (w 7) encodes the semantics of the left-side context “stroll along

the South” along with all previous texts in the sentence, and c r (w 7) encodes the semantics of the

right-side context “affords an . . . ”. Then, we define the representation of word w i in Equation

(3), which is the concatenation of the left-side context vector c l (w i) , the word embedding e(w i)

and the right-side context vector c r (w i) . In this manner, using this contextual information, our

model may be better able to disambiguate the meaning of the word w i compared to conventional

neural models that only use a fixed window (i.e., they only use partial information about texts).

x i = [c l (w i); e(w i); c r (w i)] (3)

The recurrent structure can obtain all c l in a forward scan of the text and c r in a backward scan of

the text. The time complexity is O(n). After we obtain the representation xi of the word wi , we

apply a linear transformation together with the tanh activation function to xi and send the result to

the next layer.

y i
(2) = tanh (W (2) x i + b (2)) (4)

y i
(2) is a latent semantic vector, in which each semantic factor will be analyzed to determine the

most useful factor for representing the text.

4.5 Variable Length Adjusting Component (Max Pooling Layer)

The convolutional neural network in our model is designed to represent the text. From the

perspective of convolutional neural networks, the recurrent structure we previously mentioned is

the convolutional layer.

When all of the representations of words are calculated, we apply a max-pooling layer.

 y (3) = max y i
(2) i (1,)⋁ ∈ n (5)

28

The max function is an element-wise function. The k-th element of y (3) is the maximum in the

k-th elements of y i
(2) .

The pooling layer converts texts with various lengths into a fixed-length vector. With the pooling

layer, we can capture the information throughout the entire text. There are other types of pooling

layers, such as average pooling layers [22]. We do not use average pooling here because only a

few words and their combination are useful for capturing the meaning of the document. The

max-pooling layer attempts to find the most important latent semantic factors in the document.

The pooling layer utilizes the output of the recurrent structure as the input. The time complexity

of the pooling layer is O(n). The overall model is a cascade of the recurrent structure and a

max-pooling layer, therefore, the time complexity of our model is still O(n).

The last part of our model is an output layer. Similar to traditional neural networks, it is defined

as

y (4) = W (4) y (3) + b (4) (6)

Finally, the softmax function is applied to y (4) .It can convert the output numbers into

probabilities.

pi =
exp (y)

i
(4)

 exp (y) ∑
n

k=1
 i

(4)
 (7)

4.6 Training

Training Network parameters: We define all of the parameters to be trained as θ .

θ = {E, b (2) , b (4) , c l (w 1), c r (w n), W (2) ,W (4) , W (l) , W (r) , W (sl) , W (sr) } (8)

29

Specifically, the parameters are word embeddings E ∈ R|e|×|V | , the bias vectors b (2) ∈ RH , b (4)

∈ RO , the initial contexts c l (w 1), c r (w n) ∈ R|c| and the transformation matrixes W (2) ∈

RH×(|e|+2|c|) , W (4) ∈ RO×H , W (l) , W (r) ∈ R |c|×|c| , W (sl) , W (sr) ∈ R |e|×|c| , where |V | is the number of

words in the vocabulary, H is the hidden layer size, and O is the number of document types.

The training target of the network is used to maximize the log-likelihood with respect to θ :

 log p (label D |D, θ)θ → ∑

D∈D
 (9)

where D is the training document set and label D is the correct label of document D.

We use stochastic gradient descent [23]to optimize the training target. In each step, we randomly

select an example (D, label D) and make a gradient step.

θ ← θ + α ∂θ
∂ log p(label D |D, θ) (10)

where α is the learning rate.

We use one trick that is widely used when training neural networks with stochastic gradient

descent in the training phase. We initialize all of the parameters in the neural network from a

uniform distribution. The magnitude of the maximum or minimum equals the square root of the

“fan-in”[24]. The number is the network node of the previous layer in our model. The learning

rate for that layer is divided by “fan-in”.

Pre-training Word Embedding: Word embedding is a distributed representation of a word.

Distributed representation is suitable for the input of neural networks. Traditional

representations, such as one-hot representation, will lead to the curse of dimensionality [20].

Recent research [25] shows that neural networks can converge to a better local minima with a

suitable unsupervised pre-training procedure. In this work, we use the Skip-gram model to

pre-train the word embedding. this model is the state-of-the-art in many NLP tasks [26]. The

Skip-gram model trains the embeddings of words w 1 , w 2 . . . w T by maximizing the average log

probability

30

1
T og p(w |w)∑

T

t=1
∑

−c≤j≤c,j=0/
l t+j t (11)

p(wb |wa) =
exp (e (w) e(w))′ b

T
a

xp(e (w) e(w))∑
|V |

k=1
e ′ k a

(12)

where |V | is the vocabulary of the unlabeled text. e’ (w i) is another embedding for w i . We use

the embedding e because some speed-up approaches (e.g., hierarchical softmax [27]) will be used

here, and e’ is not calculated in practice.

4.7 ERCNN Algorithm

The training network parameters would be:

θ = {E, b (2) , b (4) , c l (w 1), c r (w n), W (2) ,W (4) , W (l) , W (r) , W (sl) , W (sr) }

(described in section 4)

The training target of the network is used to maximize the log-likelihood with respect to :θ

where D is the training document set and label D is the correct label of document D.

We are using stochastic gradient descent to optimize the training target. We initialize all of the

parameters in the neural network from a uniform distribution.

We then add a fully connected output layer of size |L|, where L are the labels in which the text

has to be classified, with a sigmoid activation function, which produces a probability for each of

our potential labels. During training, these probabilities are used to compute the error, while

during testing, we round each of these labels to 0 or 1 depending upon a set threshold.

31

5
Experimentation and Results

5.1 Dataset

We will use movie review database to classify movies based on their synopsis. Public movies’

database such as IMDB provides genre information to assist searching. The tagging of movies’

genres is still a manual process which involves the collection of users’ suggestions sent to known

email addresses of IMDB. Movies are often registered with inaccurate genres. Automatic genres

classification of a movie based on its synopsis not only speeds up the classification process by

providing a list of suggestion but the result may potentially be more accurate than an untrained

human.

The Internet Movie Database (IMDB) has for synopsis of the synopsis and the genre tags for

each movie.

There are 2 data files

plot.list.gz : Contains synopsis of 1,58,840 movies.

genre.list.gz: Contains 7,46,883 genre tags for different movies.

32

5.2 Data Pre-processing
Data Pre-processing involves extracting the required features from the data given in text format.

There are multiple steps in data processing which are described as follows:

● Converting both the .list files to .txt and then to .csv using regular expression in python

script. Reason for performing the conversion is, it becomes easy to apply ML algorithms

on csv files.

● Choose the movie titles for which both synopsis and genre data is available. These turn

out to be 16,000.

● 80% was randomly chosen as training data and rest 20% as test data.

● In total 40 genres, selected the 26 most popular genres.

● Process Synopsis to generate bag of words.

● Apply NLTK to remove all stopwords.

● Remove all numerical words.

● Python stemmer, so words with same index were mapped to single word.

● Created a dictionary from 16000 movies synopsis, so 63,840 words was generated.

● Out of the 63,840 words, only those which have occurred more than 15 times in all the

training samples were used in BoW representation so only 10,656 (denoted as V) words

were left.

● Term frequency inverse document frequency (tfidf) of the words were then computed.

where wki is the frequency of the k-th word in the i-th movie’s synopsis (di), and m is the number

of training/test sets.

33

Genre Distribution

Figure 10. Data Distribution

Code snippets can be found in Appendix.

5.3 Experimentation Setup

Training Hyper-parameters

Learning rate of the stochastic gradient descent = 0.01,
Hidden layer size as H = 100,
Vector size of the word embedding as |e| = 50
Size of the context vector as |c| = 50.

We train word embeddings using the default parameter in word2vec with the Skip-gram
algorithm. We used Wikipedia dumps in English to train the word embedding.

34

5.4 Performance parameters

The performance is based on the following factors:

Precision = TP .

 TP + FP

Recall = TP .

 TP + FN

F Measure = 2 * Precision * Recall

 Precision + Recall

Where,
TP= number of true positive
FP= number of false positive and
FN= number of false negative

5.5 Results and Comparison

Approach (BoW) Precision Recall F Measure

SVM 0.661 0.396 0.472

Random Forest 0.582 0.382 0.421

Backpropagation NN 0.67630 0.41513 0.49896

Approach(Word Embedding) Precision Recall F Measure

Recurrent NN 0.7406 0.4954 0.5936

Convolutional NN 0.7061 0.5274 0.6038

ERCNN 0.7714 0.5863 0.6662

35

Figure 11. Results comparing ERCNN with other Text Classification approaches

The results show that all the Word Embedding approaches perform better than the Bag of Words

(BoW) approaches. This can be explained based on the fact that word embedding captures the

semantics of the word which the BoW doesn’t take into account.

The Recurrent NN uses the word vectors gives more weight to the words which come later in the

text. ERCNN overcomes this drawback by using a bi-directional recurrent structure which takes

both left context and right context into consideration. ERCNN also uses the max pooling layer

present in CNN to extract the most important features from the text. It produces better results

than CNN because instead of using a fixed-size window like CNN, ERCNN uses the the left and

right context which help to solve the problem of too much information due to large window size

or loss of critical information due to a small window size.

36

6
Conclusions and Future Scope

Following are the conclusions based on the results:

● The approaches using Bag of Words(BoW), (SVM, Backpropagation NN, and Random

Forest) performed well but as BoW fails to capture the semantic of words, they can only

have accuracy up to a particular limit.

● As shown in the results, Extended Recurrent Convolutional Neural Network(ERCNN),

outperforms the approaches using BoW. This is because it uses Word Embedding which

takes into account the semantic of the words.

● ERCNN gives better results than RNN because the bi-directional recurrent structure

overcomes the problem of words appearing later in the text getting more weight.

As future scope of the problem, we can implement an architecture which also takes the label

dependencies into account. Real data mostly has a lot of labels in which the text has to be

classified. For large number of labels, we have to consider the label dependencies to get the

correct set of labels.

37

Figure 12. Proposed RCNN-RNN architecture for Text-Classification

The above architecture uses multi-label Recurrent neural network(RNN) to learn a joint

text-label embedding to model the semantic relevance between text and labels. The text

representation as vectors are generated using RCNN. In the Prediction Layer, the text and the

labels are projected to the same low-dimensional space to model the image-text relationship as

well as the label redundancy.

A similar architecture has been used in [18] for multi-label image classification where RNN is

used for label representation and CNN is used to generate image embedding vectors. The results

are significantly better than the others approaches used for comparison including KNN and RNN.

38

References

[1] Imdb alternative interfaces. URL http://www.imdb.com/interfaces.

[2] Natural language toolkit. URL http://www.nltk.org.

[3] Imdb genres database. URL : ftp://ftp.fu-berlin.de/pub/misc/movies/database/genres.list.gz.

[4] Imdb plots database. URL ftp://ftp.fu-berlin.de/pub/misc/movies/database/plot.list.gz.

[5] R. Boulton. Pystemmer 1.0.1. URL:http://pypi.python.org/pypi/PyStemmer/1.0.1.

[6] Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support vector machines."

ACM Transactions on Intelligent Systems and Technology (TIST)2.3 (2011): 27.

[7] Zhang, Min-Ling, and Zhi-Hua Zhou. "ML-KNN: A lazy learning approach to multi-label

learning." Pattern recognition 40.7 (2007): 2038-2048.

[8] McCallum, Andrew. "Multi-label text classification with a mixture model trained by EM."

AAAI’99 workshop on text learning. 1999.

[9] Ueda, Naonori, and Kazumi Saito. "Parametric mixture models for multi-labeled text."

Advances in neural information processing systems. 2002.

[10]Socher, Richard, et al. "Dynamic pooling and unfolding recursive autoencoders for

paraphrase detection." Advances in Neural Information Processing Systems. 2011..

[11]Socher, Richard, et al. "Semi-supervised recursive autoencoders for predicting sentiment

distributions." Proceedings of the Conference on Empirical Methods in Natural Language

Processing. Association for Computational Linguistics, 2011.

[12]Socher, Richard, et al. "Recursive deep models for semantic compositionality over a

sentiment treebank." Proceedings of the conference on empirical methods in natural language

processing (EMNLP). Vol. 1631. 2013.

39

[13]Oquab, Maxime, et al. "Learning and transferring mid-level image representations using

convolutional neural networks." Proceedings of the IEEE conference on computer vision and

pattern recognition. 2014.

[14]Ho, Ka-Wing. "Movies’ Genres Classification by Synopsis."

[15]McAfee, Lawrence. "Document classification using deep belief nets."CS224n, Sprint 42

(2008).

[16]Liu, Pengfei, Xipeng Qiu, and Xuanjing Huang. "Recurrent Neural Network for Text

Classification with Multi-Task Learning." arXiv preprint arXiv:1605.05101 (2016).

[17]Zhang, Xiang, Junbo Zhao, and Yann LeCun. "Character-level convolutional networks for

text classification." Advances in Neural Information Processing Systems. 2015.

[18]Wang, Jiang, et al. "CNN-RNN: A Unified Framework for Multi-label Image Classification."

arXiv preprint arXiv:1604.04573 (2016).

[19]Berger, Mark J. "Large Scale Multi-label Text Classification with Semantic Word Vectors."

[20]Bengio, Yoshua, et al. "A neural probabilistic language model." journal of machine learning

research 3.Feb (2003): 1137-1155.

[21]Elman, Jeffrey L. "Finding structure in time." Cognitive science 14.2 (1990): 179-211.

[22]Collobert, Ronan, et al. "Natural language processing (almost) from scratch." Journal of

Machine Learning Research 12.Aug (2011): 2493-2537.

[23]Bottou, Léon. "Stochastic gradient learning in neural networks." Proceedings of

Neuro-Nımes 91.8 (1991).

[24]Plaut, David C., and Geoffrey E. Hinton. "Learning sets of filters using back-propagation."

Computer Speech & Language 2.1 (1987): 35-61.

40

[25]Hinton, Geoffrey E., and Ruslan R. Salakhutdinov. "Reducing the dimensionality of data

with neural networks." Science 313.5786 (2006): 504-507.

[26]Baroni, Marco, Georgiana Dinu, and Germán Kruszewski. "Don't count, predict! A

systematic comparison of context-counting vs. context-predicting semantic vectors." ACL (1).

2014.

[27]Morin, Frederic, and Yoshua Bengio. "Hierarchical Probabilistic Neural Network Language

Model." Aistats. Vol. 5. 2005.

41

Appendix

Data preprocessing:

The raw data was in a particular format in a text file.

42

To extract the data from text and obtaining fruitful information from it we converted this raw

data into excel file using regular expression in python language.

#Regular expression that matches the Data format

matchObj = re.match(r'"(.*)"\s+\((.*)\)\s+(.*)', lines[i], re.M|re.I)

Then we merged the movie details and synopsis into a single excel file, which has movie name

and year as unique id and synopsis and genre info.

#Merging the data into single excel file

inters=pd.merge(df,df2, on=['Movie','Year'], how='inner')

RCNN model :

This is the forward pass of the model:

def forward(self, x_list):

 cl_list = []

 for x in x_list:

 wvec = self.embed(x)

 cl_list.append(wvec) #Capturing the left context

 cr_list = []

 for x in reversed(x_list):

 wvec = self.embed(x)

 cr_list.append(wvec) #Capturing the right context

 xi_list = []

 for cl, cr in zip(cl_list, cr_list):

43

 xi_list.append(F.concat((cl, cr)))

 yi_list = []

 for xi in xi_list:

 yi_list.append(F.tanh(self.fc1(xi)))

 y3 = yi_list[0]

 for yi in yi_list[1:]:

 y3 = F.maximum(yi, y3)

 y4 = self.fc2(y3)

 return y4

44

Pre-processed Data:

Short movies

45

Data after extracting year and synopsis

Movies with corresponding labels as 1

46

