

B. TECH. PROJECT REPORT
On

Design and Development of

Medical Diagnosis Expert System

using One Class Classifiers along

with Statistical Methods

BY

Ketan Uday Chaware 13000 1009

Vishwajeet Singh Thakur 13000 1040

DISCIPLINE OF COMPUTER SCIENCE AND ENGINEERING

INDIAN INSTITUTE OF TECHNOLOGY INDORE

NOVEMBER 2016

Design and Development of Medical

Diagnosis Expert System using One Class

Classifiers along with Statistical Methods

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Ketan Uday Chaware 13000 1009

Vishwajeet Singh Thakur 13000 1040

Guided by:

Dr. Aruna Tiwari,

Assistant Professor

INDIAN INSTITUTE OF TECHNOLOGY INDORE

November 2016

[i]

CANDIDATE’S DECLARATION

We hereby declare that the project entitled “Design and Development of Medical

Diagnosis Expert System using One Class Classifiers along with Statistical Methods”

submitted in partial fulfillment for the award of the degree of Bachelor of Technology in

‘Computer Science and Engineering’ completed under the supervision of Dr. Aruna

Tiwari, Assistant Professor, IIT Indore is an authentic work.

Further, we declare that we have not submitted this work for the award of any other

degree elsewhere.

Ketan Uday Chaware Vishwajeet Singh Thakur

CERTIFICATE by BTP Guide

 It is certified that the above statement made by the students is correct to the best of

my knowledge.

Dr. Aruna Tiwari,

Assistant Professor, CSE,

Indian Institute of Technology Indore

[ii]

Preface

This report on “Design and Development of Medical Diagnosis Expert System using

One Class Classifiers along with Statistical Methods” is prepared under the guidance of Dr.

Aruna Tiwari. This report is submitted in partial fulfillment of requirements for award of

degree of Bachelor of Technology in Computer Science and Engineering at Indian Institute

of Technology Indore.

In this report we propose new model for Auto-Encoder i.e. neural network used for

One Class Classification which tries to overcome the pitfalls of current models which are

unable to handle dynamism. Our model utilizes best from both – neural learning models and

statistical algorithms to tackle the dynamism and hence is a hybrid model. We developed

this model for problem of automating process of medical diagnosis which has inherent

dynamism associated with it.

This report thoroughly explains all aspects of new model, its design, its

implementation, experimentations, results and conclusions and finally, it gives insights on

its usability and scope for future work and development. Moreover, this report is written in

top-down fashion to facilitate the understanding i.e. we start with overview, then high level

design and then go into details of each component.

 We thank everyone for their direct or indirect support in making this report a success.

With this, we conclude the preface.

Ketan Uday Chaware

Vishwajeet Singh Thakur

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

[iii]

Acknowledgements

We wish to thank Dr. Aruna Tiwari for her kind support and valuable guidance. It is

her help and support, due to which we became able to complete the design and technical

report. Without their support this report would not have been possible.

We thank Mr. Chandan Gautam for his help and support at every step in completing

the project. We will like to remain in debt of Dr. Bude and Dr. Khatree who provided us

valuable guidance and helped in data collection in spite of their busy schedule. We also

thank our parents, family members and friends for their unconditional support. Finally we

would like to thank all those who helped us knowingly or unknowingly.

Ketan Uday Chaware

Vishwajeet Singh Thakur

B.Tech. IV Year

Discipline of Computer Science and Engineering

IIT Indore

[iv]

Abstract

Neural networks are widely used in many areas today for various problems. But they

lack the ability to handle dynamic input and output vectors and thus restricting their

applicability to many domains which have inherent dynamism e.g. medical diagnosis. The

project aimed at modifying Auto-Encoder (feed-forward neural network used in One Class

Classification) and enabling it to handle dynamism. The modified model is able to handle

dynamic and varying sized input as well as output vectors. This was achieved, partially by

modifying network model and partially by blending it with statistical methods. A framework

was developed for handling dynamism in auto-encoders which in future can be extended to

other neural networks. Developed model was then tested by applying it to problem of

medical diagnosis and performing experimentations. The accuracy levels obtained are good

enough for making model deployable for this problem. This project is a small step towards

making neural networks capable of handling dynamism and hence expanding their

applicability to large number of problems where dynamism restricts their ability to those

domains.

[v]

Table of Contents

Candidate’s Declaration . i

Supervisor’s Certificate . i

Preface . ii

Acknowledgements . iii

Abstract . iv

1. Introduction . 1

2. Overview . 2

2.1 Steps in diagnosis . 2

2.2 Benefits to doctors . 5

3. Analysis of Problem and Literature Survey . 6

3.1 Analysis of Problem and Choice of Technology . 6

3.2 Literature Survey of OCC . 7

3.2.1 Basics of OCC . 7

3.2.2 Taxonomy for OCC . 7

 Density based methods . 8

 Boundary based methods . 8

 Reconstruction methods . 8

3.2.3 Basics of Auto-Encoders . 9

4. Detailed Design and Architecture . 10

4.1 Basic design and architecture . 10

4.2 Detailed design of each component . 11

4.2.1 Input . 11

4.2.2 Knowledge Base . 11

[vi]

4.2.3 Statistical Engine . 13

4.2.4 OCC Engine . 15

4.2.5 OCC Database . 17

4.2.6 Treatment Engine . 17

4.2.7 Treatment Database . 18

5. Implementation details. 19

5.1 Front-end development . 19

5.2 Back-end development . 19

6. Experimentations, Results and Conclusions . 20

6.1 Data set preparations . 20

6.2 Concept of accuracy . 20

6.3 Results . 20

7. Benefits and Scope for future work . 22

8. References . 23

Chapter 1

Introduction

This chapter is intended to introduce the reader to the problem at hand. Chapter

clearly states objectives and highlights roadblocks faced in achieving them. It

also provides insights on why this project is required. Finally it gives the

overall outline of remaining thesis.

INTRODUCTION

Page 1 of 23

Field of medical diagnosis is closely related to our life. Process of medical diagnosis i.e. detecting

the disease given the symptoms faced by the patient, is foremost step of any treatment. It is one of the basic

needs of mankind. And still in spite of all the technological advancements, we are underperforming in this

field. In developing countries like India, there is acute shortage of good medical practitioners and especially

in rural parts situation is pathetic. Even in developed countries like US, cost of diagnosis is very high and

out of reach of poor communities. Increasing cases of medical mal-practices like prescribing costly

medicines and unnecessary test, performing unnecessary surgeries etc. are evident now-a-days. One of the

possible reason for this situation is that even when automation flourishes in most other fields and industries,

field of medical diagnosis lacks it significantly.

The process of automating diagnosis of disease is extremely challenging. This field is very dynamic

with discoveries of new diseases every year. Each disease can have different symptoms associated with it

in different patients. Also there is no mathematical model or logic in disease-symptom relationship. Many

times it even lacks biological model, leave alone the mathematical model. High accuracy requirements

makes it even more difficult as lives of patients are at stake. Also hidden factors like medical history, drug

allergies, epidemics, weather etc. add to the complexity of already complex problem.

Our project takes a small step in direction of automating the process of medical diagnosis and hence

expanding its reach to common man. In this project we developed an application to assist medical

practitioners in process of diagnosis and treatment. We tried to overcome few of the roadblocks mentioned

above. We achieved this by blending machine learning approach with statistical methods to tackle the

dynamism and lack of mathematical model. Requirement of high accuracy can be handled by training with

large number of examples and so we implemented our application to be able to work on distributed platform

to get large number of simultaneous users. Modelling hidden factors remains as future scope.

While developing this application and dealing with all these roadblocks, we developed a model

which is able to learn from training data and simultaneously able to handle situation of dynamic input and

output vector sizes. All of the current learning algorithms lack this ability right now. In this project we tried

and partially succeeded in incorporating this capability into neural networks.

Now we will provide an overview of developed system followed by analysis of problem and

literature survey. Then we provide detailed explanation of design and architecture. After that we give

details of implementation and experimental results. We will conclude with benefits and future scope.

Chapter 2

Overview

This chapter gives overview of developed application. It explains in details

everything about what the developed application is, what it does and what is

use of it.

OVERVIEW

Page 2 of 23

As said earlier in introduction, we developed a tool to assist medical practitioners in process of

diagnosis and treatment. A point to note here is that the tool will only assist doctors and nor replace them.

Now let’s have a tour of developed application. There are five steps for diagnosis and treatment and we

explain each of them in details in this section.

2.1 Steps in diagnosis

Step 1: Collecting general information.

In first step application collect general information about patient like age, gender, blood pressure,

sugar levels etc. Screenshot can be seen below:

Figure 2.1: Step 1- Collection of general information about patient.

Step 2: Collecting information about symptoms.

In second step, we collect information about symptoms from which patient is suffering. Each

symptom is associated with intensity value e.g. on scale of 1 to 5 how high is your head ache? Also there

are two types of symptoms – one which involves body parts e.g. head ache and other which doesn’t involve

body part e.g. fever. Below is the screenshot:

OVERVIEW

Page 3 of 23

Figure 2.2: Step 2 - Collection information about symptoms.

Step 3: Asking about missing symptoms.

In this step we ask user about possibly missing symptoms. E.g. suppose user inputs symptoms that

gives application ‘the feeling’ that patient may be suffering from malaria. But suppose user haven’t inputted

“head ache” which is important symptom for malaria. We call it a “missing symptom”. So now application

asks user if patient is indeed having head ache. This information is used to increase confidence of

application about that particular diagnosis. Screenshot can be seen on next page.

Step 4: Floating out list of all possible diagnoses.

Now we provide user i.e. doctor with the list of all possible diagnoses along with confidence factors

– the value that shows confidence of application about that diagnosis. User will now have to choose one of

the diagnosis which he thinks is correct to get latest treatment options for that disease. If user thinks that

none of the diagnosis from list is correct, he can provide his own input using ‘Other’ option (seen in

screenshot on next page). This is very crucial step in application as this is where it learns from the doctor

about correct diagnosis. It updates it knowledge repository and trains its machine learning components

based on input from doctor. So it basically gains the expertise from doctor every time system is used.

Screenshot on next page.

OVERVIEW

Page 4 of 23

Figure 2.3: Step 3 - Asking about missing symptoms.

Figure 2.1: Step 4 - Floating list of all possible diagnoses.

OVERVIEW

Page 5 of 23

Step 5: Provide the latest treatment options.

This is the last step in the process where application provides doctor with latest available generic

treatment (prescribing drugs instead of medicines) options for selected diagnosis. So doctor can brush up

their memory and prescribe medicines to patient accordingly. Screenshot is given below:

Figure 2.1: Step 5 - Providing latest treatment options.

 2.2 Benefits to doctors:

1. Never miss out any important symptom – Even if patient forgets to mention about some

important symptom, application will ask user about that in third step and so now we never miss out

important symptom.

2. Never miss out any possibility – In fourth step, user gets list of all possible diagnoses and so they

will never miss out any possible option just because they don’t have perfect memory like computers.

3. Get the latest treatment options – In last step, user gets latest treatment option for selected disease.

Now he can refresh his memory and prescribe medicines based on options provided by system.

After all doctors don’t have enough time to keep up with latest treatment of all diseases.

Chapter 3

Analysis of Problem and

Literature Survey

In this chapter a thorough analysis of problem statement is provided. It

explains and justifies the choice of technology for various components. It also

provides literature survey of existing technology, problems with it and

modification that we need to do and hence actually builds grounds for

understanding architecture of application.

Analysis of Problem and Literature Survey

Page 6 of 23

In last chapter, we have got insights of application and its utility. In this chapter, we will do a

thorough analysis of problem and decide which technologies to use for each component in the application.

3.1 Analysis of problem and Choice of Technology

As stated earlier field of medical diagnosis is very dynamic and fixed mathematical models are not

at all suitable for this field (and actually they cease to exist!). So machine learning (ML) paradigm which

can learn the concepts from seemingly unstructured data and can adopt themselves to changing

environment was a necessary component to be included. But almost all ML techniques fail to handle

dynamic size of input and output vectors which is inherent to process of diagnosis. So ML alone would

have failed miserably to handle such a dynamic field. So we decided to include statistical methods to

support ML tackle the dynamism at input and output level.

 In diagnosis, we need to identify disease from given set of input symptoms i.e. we need to attach a

disease label to each given set of symptoms which means we need to classify given set of symptoms into

possible diseases. So from huge ML paradigm, we chose classification based approaches. Now there are

two types of classifiers – One class and Multi Class (This is one of taxonomies of many available). In One

Class Classifiers (OCC) there is single output class and classifier tells whether or not given input belongs

to that class. While in Multi Class Classifiers (MCC) we have several output classes and system tells to

which class the given input belongs. Consider MCC first. We can have separate class for every disease and

train the system. Every time user inputs the symptoms, we fed it to the MCC and get to know which disease

patient may be suffering from. But there is major flaw in logic. Suppose system discovers a new disease.

It can’t add new class without re-training whole system. That means all the previous training goes in vein.

This makes system very unstable and renders it useless. With OCC, there is separate classifier for each

disease and so addition of new disease will not affect any other OCCs at all. So obviously OCC was the

way to go ahead with.

 For statistical models, almost all existing models require assumptions about probabilistic

distribution of data. But we don’t have any mathematical model in data. So we decided to develop our own

statistical algorithm to tackle the problem and support the ML component in its task. This is how we

finalized the technology stack.

Analysis of Problem and Literature Survey

Page 7 of 23

3.2 Literature Survey of OCC

 Now that we have decided to use OCC as one of the most important component of architecture,

let’s have look at various types of OCCs and their applicability to our problem.

3.2.1 Basics of OCC

As we said earlier, OCCs answer the question “does object belongs to a particular class or not?”

instead of answering “to which class does object belong?” We use OCC when we have sufficient training

sample belonging to one class (which we refer as positive or target class arbitrarily) and the other class

(negative or outlier) is significant under-sampled or un-sampled. So only one side of classification

boundary can be obtained using positive data. This makes dealing with OCCs harder compared to Multi-

class classifiers. A special care has to be taken to simulate error due to outliers because they are absent.

Otherwise classifiers will go on accepting everything instead of learning features from data. In next section,

we study different types of OCCs and chose the suitable one for our case.

3.2.2 Taxonomy for OCC

There are various

taxonomies proposed for

study of One Class

Classifiers. Each uses

different characteristics of

OCC to classify them.

Given figure is simplified

version with only few

examples from each class

of taxonomy proposed by

Mazhelis, O [6]. It

classifies OCCs based on

internal model used by

them. (This is a simplified version. For detailed taxonomy, refer the original paper.) For other taxonomies

please refer Khan, S.S. and Madden, M.G. [8] and Tax, D.M.J [1]. Now we explain in short about each

type of OCC.

Figure 3.1 : Taxonomy of OCC

Analysis of Problem and Literature Survey

Page 8 of 23

Density based methods

 As name suggests, this method is based on estimation of probability distribution of feature values

in whole feature space. This distribution is then used to calculate errors due to outliers as we can’t do that

directly due to absence of outliers in training set. Now we try to minimize classification error as well as

error due to outliers to get the classifier boundary. This method is not suitable for our problem as we don’t

have any mathematical modelling of disease-symptom relationship and hence no probability distribution

can be assumed.

Boundary based methods

 In this methods, OCC tries to build a boundary around the data using the training data. At same

time it tries to keep the enclosed volume as less as possible to avoid acceptance of outlier objects. This

gives a tighter boundary around training data. Now distance of testing object from this boundary can be

used to decide if test object belongs to given class or not. This techniques requires all training sets to be

present at time of deciding boundary i.e. these methods are not suitable for streaming data. As capability

to handle streaming data is key requirement in our problem, these methods are not very useful.

Reconstruction methods

 In reconstruction methods, we try to reconstruct input at the output. First step is encoding the input

and in next step we decode it. Now Euclidean distance between decoded output and original input gives

accuracy of reconstruction which is measure of membership of test object to target class. While encoding

and decoding, it is important to bottleneck the flow of test data so that model learns about concept instead

of memorizing it. This method looks suitable for our problem as it don’t require any assumption about

mathematical models and hence gives more flexibility in design. But again K-means and PCA are not very

suitable. K-means is difficult to modify for online sequential case and some parameters in that methods are

difficult to figure out in case of medical data. PCA though is more suitable for high dimensional data, is

very difficult to modify for variable dimensional data as it deals with mapping set of variables into smaller

dimensional space still preserving most of variance of data. Auto-encoders on other hand are neural

networks which are easy to modify for dynamic input size as well as streaming data. So auto-encoders was

chosen as technique to go ahead with.

Analysis of Problem and Literature Survey

Page 9 of 23

3.2.3 Basics of Auto-Encoders

 In this section we take a

short overview of auto-

encoders. Auto-encoders are

simple neural networks with

one input, one hidden and

one output layer. Hidden

layer is also called as

encoding layer. Input and

Output layers have got same

number of neurons while

hidden layer has lesser number of neurons. We try to reconstruct input at the output layer. Now coding

layer, as it has got lesser neurons, acts as a bottleneck. So it becomes important for coding layer to learn

the concept instead of memorizing the input. Now if we train network with input from only target class, it

will be able to reconstruct objects from target class much better compared to outlier objects. So error in

reconstruction can act as a measure for membership of an object to target class. Decision device is tasked

with calculation of this membership. This is basic concept behind auto-encoders. Accompanying figure

explains it.

Figure 3.2: Auto-Encoder - Basic structure

Chapter 4

Detailed Design and

Architecture

This chapter will focus on details of architecture and design of system. It will

start with high level overview of system and then it will take you through

details of each and every component explaining all its aspects.

Detailed Design and Architecture

Page 10 of 23

4.1 Basic design and Architecture

Now as we have developed a roadmap for application design and decided which technologies and

methods to use, we are in situation to delve deeper into the design and architecture of application. So let us

start by getting high level overview of application design. System architecture can be seen in following

diagram:

Figure 4.1: System Architecture for MEDEX

User will interact with system through GUI. He will provide system with general information as

age and gender of patient and then will tell about symptoms faced by patient. Now, this input is processed

by Statistical Engine (SE) with the help of Knowledge Base (KB) which is simply a database. KB stores

past history about disease-symptom relationships. After processing the input Statistical Engine (SE)

generates the list of most possible diagnoses say “Intermediate List” which it passes to OCC Engine (OE).

OCC Engine finally runs OCC’s corresponding only to diseases in the list obtained from SE (remember

that we have separate OCC for each disease!) and produces final list of all possible diagnoses along with

confidence factors. Now user selects the correct diagnosis from generated list. And this selection is used as

a label for input data i.e. we tell system that this particular input corresponds to this disease. So this labelled

input now acts as a new training set for OCC corresponding to that particular disease. It is also used to

update entries in KB. This constitutes the learning phase of application. All data about OCC’s is stored in

Detailed Design and Architecture

Page 11 of 23

OCC database (OD). Now after user selects correct diagnosis, application provides latest generic treatment

options available for that disease. This treatment is generated by Treatment Engine (TE) with the assistance

from Treatment Database (TD). All three – KB, OD and TD are implemented with database management

system (DBMS).

 In current scenario, statistical engine looks like a useless stuff. After all final list of diagnoses is

generated by OCC engine. So then why not use OCC engine alone? Why even get an intermediate list from

statistical engine and then run OCC for diseases only in that list? Think about it. We have several hundred

different diseases and hence same number of OCCs each corresponding to a separate disease. So we will

end up trying out all the possibilities exhaustively. It becomes pointless to run all this hundreds of OCCs

for every input as it is time consuming and resource intensive task. Also in most cases we will end up trying

out completely illogical possibilities. E.g. we will try out OCC for heart attack even when patient says he

has knee pain. This will waste time and is not at all suitable for real-time systems. Statistical Engine solves

the very problem with great efficiency. This is how we are tackling the problem by perfectly blending

statistical methods with machine learning and using best from both of them.

Now that we understood the overall architecture at high level, it is time to see how these components

accomplish assigned tasks. We will look at detailed design and working of each component in next section.

4.2 Detailed design of each component

4.2.1. Input

 Input consists of general information about patient like age and gender followed by symptoms faced

by them along with their intensities. So each symptom can be seen as a four tuple as : < description of

symptom, intensity of symptom, age of patient, gender of patient>. (< s, i, a, g>). And input is set of such

four tuples.

4.2.2. Knowledge Base

Knowledge Base (KB) is simply a database tasked with assisting statistical engine. ER diagram can

be seen on next page. It stores all data about disease-symptom relationship. It stores count of how many

times each input tuple appeared, each disease appeared and how many times was particular disease

diagnosed for particular input tuple. This data gives rise to statistical distribution for disease-symptoms

relationship. This distribution is then used as a foundation for statistical engine.

Detailed Design and Architecture

Page 12 of 23

Figure 4.2: ER diagram for Knowledge Base

Let us take an example to make things clearer. Consider symptom (s) head ache. Also consider

diagnosis (d) malaria. As you know head ache is one of the symptoms of malaria. But intensity of head

ache can vary from case to case. Say intensity values span the range from 1 to 5. Now KB will contain

count of how many times s and d appeared in past and how many times d was diagnosed for s with each

intensity. So KB will look like –

 50

From KB, we can derive an intensity-based distribution for d-s relation. We can divide count of

Intensity 1 i.e. 2 by total count of d i.e. 50. That gives us 0.04. We will call this intensity fraction for 1.

Similarly, we get 0.10, 0.30, 0.36 and 0.20 as intensity fractions for 2, 3, 4 and 5 respectively and so we

get the corresponding graph shown on next page.

Now, similar distribution can be obtained for age and gender. This distributions form basis for the

working of Statistical Engine.

Symptom Count

s 200

Disease Count

 d 50

Disease-Symptom

Relation

Count

Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5

d-s 2 5 15 18 10

Detailed Design and Architecture

Page 13 of 23

4.2.3. Statistical Engine

 Main purpose of statistical engine is to act as a selector for OCC’s i.e. provide list of most possible

diagnoses to OCC engine. It is also tasked with generation of missing symptoms (refer step 3 part in Chapter

2 - System Overview for definition of missing symptoms) for each possible disease. Let us see how it

accomplishes these tasks.

 As stated above, KB basically builds a distribution for disease-symptom relationship. Consider

input set containing single tuple (t) - <head ache, 3, 34, male> (description of symptom, intensity, age,

gender). Head ache is one of the symptoms of Malaria (d). Now KB will have distribution corresponding

to Head Ache (s) – Malaria (d) pair. It will also have count of how many times ‘d’ and ‘s’ appeared in past.

Now based on this distribution, we must decide how much ‘t’ contributes to diagnosis of ‘d’. For example,

from above graph, we can notice that malaria is diagnosed maximum times with intensity value of 4 and

least with intensity value 1. So if input intensity value in t is near 4, it should contribute more to diagnosis

of malaria than if it is near 1. Same is the case with age and gender. In short we should assign weights to

each input tuple-diagnosis pair that will tell how much input tuple contribute to that diagnosis. This is first

step in Statistical Engine. Let us look at it in more details:

 For weight calculations, we calculate three weights corresponding to intensity, age and gender

distribution separately and then multiply them together to get total weight. We will look at calculation of

weights corresponding to intensity as for age and gender, calculations are similar.

 While calculating weight, we need to consider few things as follows.

1. Weights for value must be proportional to fraction in distribution at that value.

2. If distribution is equal, all values should get higher weights.

3. Closer is value to peaks in distribution, better should be its weight.

0'00

0'05

0'10

0'15

0'20

0'25

0'30

0'35

0'40

Intensity 1 Intensity 2 Intensity 3 Intensity 4 Intensity 5

Intensity based distribution

Detailed Design and Architecture

Page 14 of 23

Let’s try to calculate weight for input tuple and distribution graph given above. Input intensity is 3. Now

consider intensity value 1 in distribution. We find following things at that point:

Fraction = Intensity fraction at current point = 0.04

Intensity gap = modulus (Intensity at current point – Input Intensity) = modulus (1 – 3) = 2

Fraction gap = modulus (Fraction at current point – Fraction at input intensity)

= modulus (0.04 – 0.30) = 0.26

Now we multiply all three quantities above to get a new quantity – total negative fraction at 1.

Total negative fraction at 1 = (Fraction)*(Intensity gap)*(Fraction gap) = 0.04*2*0.26

= 0.0208

Similarly, we can get Total negative fraction at all other intensities.

Total negative fraction at 2 = 0.10*1*0.20 = 0.0200

Total negative fraction at 3 = 0.30*0*0 = 0.0000

Total negative fraction at 4 = 0.36*1*0.06 = 0.0216

Total negative fraction at 5 = 0.20*2*0.10 = 0.0400

Now we add total negative fractions at all intensities to get net total negative fraction as 0.1024 and then

we divide net total intensity fraction by 4 as it is maximum value it can take and then subtract it from 1 to

get weight corresponding to intensity (wi).

wi = 1 – 0.25*(Net total negative fraction) = 1 – 0.25*0.1024 = 0.9744.

Similarly, we can calculate weights corresponding to age (wa) and gender (wg). Then we multiply them to

get total weights (wt).

wt = wi*wa*wg

 As said earlier, input is set of many symptom tuples. Now for each possible diagnosis, we get wt.

So basically, for each diagnosis we have array of wt with each element corresponding to different input

symptom. So now we are in position to calculate confidence factor for each possible diagnosis. Before we

proceed let us define history factor for disease-symptom relationship. We define it as ratio of number of

times disease d was diagnosed to number of times symptom s was seen. In current scenario it is 50/200 =

0.25.

Detailed Design and Architecture

Page 15 of 23

 Confidence factor has two components – positive CF and negative CF. For positive CF, we

multiply history factor with total weight for each symptom and then sum it up for all input symptoms tuples

and divide it with total number of symptoms.

positive CF =
∑ (𝑾𝒆𝒊𝒈𝒉𝒕)∗(𝑯𝒊𝒔𝒕𝒐𝒓𝒚 𝒇𝒂𝒄𝒕𝒐𝒓)𝑨𝒍𝒍 𝑺𝒚𝒎𝒑𝒕𝒐𝒎𝒔

𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒔

In next step, we generate list of missing symptoms by looking at KB. If some symptom appears lot

of times in diagnosis of particular disease, it can be thought as an important symptom for that disease. If

user haven’t provided that as an input symptom, it becomes missing symptom for that disease. Now we

repeat same procedure of calculating weights and history factor assuming that missing symptoms are

present. Then we proceed the same way we did for calculating positive CF. But now as these symptoms

are actually missing, that becomes negative CF.

Now finally, we are ready to get confidence factor (CF).

CF=
(𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒔)∗(𝒑𝒐𝒔𝒊𝒕𝒊𝒗𝒆 𝑪𝑭) − (𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒊𝒔𝒔𝒊𝒏𝒈 𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒔)∗(𝒏𝒆𝒈𝒂𝒕𝒊𝒗𝒆 𝑪𝑭)

(𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒔)+ (𝒏𝒖𝒎𝒃𝒆𝒓 𝒐𝒇 𝒎𝒊𝒔𝒔𝒊𝒏𝒈 𝒔𝒚𝒎𝒑𝒕𝒐𝒎𝒔)

 This way we get confidence factor for each possible diagnosis. With this confidence factor, we

choose the most probable list of diagnosis as triggering list for OCC’s.

4.2.4. OCC Engine

 OCC Engine is next step in process of diagnosis. As we saw, we have separate OCC for each

diagnosis and Statistical Engine tells us which OCC’s to trigger. Also as analyzed earlier, auto-encoders

was the best choice. But every existing model, assumes the fixed size input vector. That limitation

obviously renders the model useless for us as we have dynamism as inherent property of diagnosis process.

We can’t bypass the problem of variable input simply by mapping the input variable to fixed number of

variables as we will lose a lot of data in process and it will make the diagnosis very difficult. So we modified

an existing back-propagation method so that it can handle the dynamic input vector. Let us look at details.

 First, we associate each symptom to particular input and output units and use symptom’s intensity

values as input values. Now, we reconstruct the output and find the Euclidian Distance between input and

output vectors. Then we process it to get the class membership and confidence factor for each test case.

While modifying existing model for dynamic input handling, we must keep in mind the following points –

1. Model must accommodate new inputs without affecting stability of other trained inputs and network

as otherwise system will swing between stable and unstable states continuously rendering it useless.

2. Inclusion of new input must not make the network forget previous training.

Detailed Design and Architecture

Page 16 of 23

3. Training must not require storage of previous training sets as they will tend towards millions very

quickly.

While developing model, one very useful principle is that absence of some symptom can be considered as

presence with zero intensity. We will use this principle a lot in development of our model.

Figure 4.3: Auto-Encoders with infinite inputs

As number of input is variable and ever increasing, we assume infinitely many inputs (Refer the

figure 4.3). We assume that there are infinite input nodes for which we don’t know the association with

symptoms right now. When we find some new symptom, we associate it to some empty input node. But

once this association is done, it must be maintained in all the following test cases. Let’s take an example to

explain this. First consider completely naïve, untrained network. It has infinite input and output nodes but

we don’t know, any association i.e. we don’t know which input and output correspond to which symptom

neither we know to which they will correspond to, in future. Now suppose patient comes with head ache

and fever as symptoms and doctor diagnoses influenza. Now, in OCC corresponding to influenza, we assign

first input and output nodes to head ache and second to fever. But right now, we don’t know what third

input node corresponds to. It can in future be assigned to chills or to body ache or anything else. Now

consider another patient diagnosed with influenza and having symptoms as fever and body ache. Now, we

already have an association for fever and that will be maintained. But now we have found new symptom

related to influenza which is body ache. So we assign it to next unassociated input and output nodes i.e. to

third. This way we keep adding new inputs and training the network.

Detailed Design and Architecture

Page 17 of 23

Even if we assume infinite inputs with unknown association, it is computationally perfectly feasible

and we now explain how. As stated above, absence of symptoms can be treated as presence with zero

intensity. So even if association of symptoms with inputs is unknown, there value is known to be zero and

so there contribution to next i.e. encoding layer is also zero. In above example, we don’t know association

for fourth. It can be leg ache or back ache or anything else. But no matter what it may be, we know for sure

that because patient is not having it, its intensity and hence the input value must be zero. That basically

means that we don’t need to bother about their calculations. This keeps the calculations limited even for

infinite input size.

 When new symptom is found, we initialize its encoder weights i.e. weights from input to hidden

layer with one and decoder weights i.e. weights from hidden layer to output layer with zero. Then we train

network with input. If some symptom is unavailable, like for second patient in above example head ache

is unavailable, its value and hence contribution to next layer becomes zero. This prevents instability due to

very small training of rarely or falsely appearing symptoms and noise taking care of stability swings.

As stated earlier, we need to make training online. But it is very difficult to make backpropagation

algorithm online sequential. So after new training instead of replacing previous weight vector with new

one, we move it into direction of new weight vector with step size inversely proportional to number of total

trainings done till now. This helps in ingesting new training example without forgetting previous training

completely. This way, we accomplish all the three aims mentioned above.

4.2.5. OCC Database

 This simply is a database which assists OCC Engine in its functioning by storing all data about

OCCs like – weights and metadata.

4.2.6. Treatment Engine

 It is tasked with providing generalized treatment based on diagnosis selected by the user. This

engine simply searches the treatment database which is static database for treatment corresponding to given

disease. We don’t use any learning or statistical algorithms here as prescribing medicines is lot more

complex than identifying disease. We maintain a static manually updated and preloaded with fixed generic

treatment (i.e. we prescribe drugs and not medicines) for each disease. Providing particular treatment by

considering all complexities like drug allergies, medical history, economic factors etc. is left as a future

scope.

Detailed Design and Architecture

Page 18 of 23

4.2.7. Treatment Database

 It is simplest component which is a database with single table which stores treatment plan for each

disease. It is fixed and manually updated every time a new treatment is to be added or any treatment is to

be updated.

Chapter 5

Implementation details

Chapter aims at exploring the technologies used for implementation of various

component and routines used in application.

 Implementation Details

Page 19 of 23

Now let’s take a look at technology stack used to implement the discussed application.

5.1 Front End Development

As you can see, system is trained every time doctor uses it for diagnosis. So, more is system used,

more trained it is and better it gets. So we developed it on web platform as a browser based application so

that it can be used by many users at same time and still they will share the Knowledge Base. This means,

Knowledge Base enriched by knowledge from expert doctors will be accessible to newbie practitioners.

This will help a lot in sharing of expertise. Developing browser-based application also helps to make it

cross-platform as well as responsive to various screen sizes.

We used HTML5 with CSS3 for front end development. For CSS, we used W3 framework. We

also used JavaScript (jQuery version 1.11.3) for interactive design.

5.2 Back End Development

We have implemented all the previously discussed algorithms and subroutines using core PHP

(version 7.0.6) as we are developing it as a web-based application. For running backend codes, we used

XAMPP server (version 7.0.6) on localhost. Developed application works with two MySQL databases

(version 10.1.13), corresponding to statistical engine and OCC engine respectively.

So finally this is summary of technology stack –

1. HTML5, CSS3, jQuery (1.11.3)

2. Core PHP (7.0.6)

3. MySQL (10.1.13)

4. XAMPP server (7.0.6)

Chapter 6

Experimentations,

Results and Conclusions

This chapter gives details about data collection, data mapping and

experimentations. It finally provides the results of experimentation and

concludes with remarks.

Experimentations, Results and Conclusions

Page 20 of 23

The problem of automating medical diagnosis has not been touched upon till now. So there are no

readymade training and testing datasets available for this problem neither are there any existing software

to compare with. All existing software use static databases which are preloaded by some expert. These

software are not capable of handling dynamism on their own and requires human expertize for that. This

drawback is tackled with in our application.

6.1 Data set preparations

 Due to unavailability of training and testing data, we had to collect our own data by sitting in cabin

of medical practitioner and noting down symptoms and diagnosis for each patient. This real time data

collection was a major challenge. We decided to collect data for two most general and frequent diagnoses

– influenza and common cold. We could get only 46 cases for influenza and 59 cases for common cold.

This data was not at all sufficient for training and testing. So we studied the trends in the data. We analyzed

frequency of different symptoms. From that we could understand the significance of various symptoms in

diagnosis of that particular disease. Then we mapped them to 920 and 1180 test cases by randomly mapping

symptoms 20 times but still maintaining the original ratios and trends. We used these cases for training and

the data collected in real time was used as testing cases.

6.2 Concept of accuracy

 Also as stated earlier in overview section, instead of providing single firm diagnosis, our application

floats out list of most probable diagnoses along with confidence factor for them and then doctor choses the

correct one from that list. This requires different measure for accuracy. We will tell in how many test cases

correct diagnosis was ranked first in the list, second in the list and above second in the list. More is the

percentage in first ranking, better is the accuracy. But second rank is also quite acceptable.

6.3 Results

 As stated above, we provide results with three labels in following tables:

Results for Influenza Testing (Total cases : 46)

Rank of Influenza in list Number of test cases Percentage of test cases

First 27 59%

Second 14 30%

Third onwards/ absent 5 11%

Experimentations, Results and Conclusions

Page 21 of 23

Results for Common Cold Testing (Total cases : 59)

Rank of Common Cold in list Number of test cases Percentage of test cases

First 34 58%

Second 16 27%

Third onwards / absent 9 15%

 Notice that for both the diagnoses, correct disease was ranked first for about 60% of the times. It

was ranked second in about 30% of the cases. In remaining 10-15% cases, it was either missing or ranked

third onwards. So we can conclude that overall accuracy of system is very good considering the complex

and dynamic nature of field of diagnosis which lacks any kind of mathematical modelling. Moreover this

accuracy makes system suitable for use as on average accuracy of even human intelligence is only about

70% in diagnosis process. With this we conclude the chapter.

Chapter 7

Benefits and Scope for

future work

This chapter throws light on benefits of developed application. It also discusses

what can be done to improve current application and make it ready for

deployment.

 Benefits and Scope for future work

Page 22 of 23

Now that we took you through what we have done, it’s time to highlight what good the developed

application will do. This application will prove to be very useful for medical practitioners. Here are its

benefits:

1. It provides them with list of all possible diagnoses and hence eliminates possibility of missing some

diagnosis due to ignorance or just because they don’t have perfect memory and can’t remember

everything.

2. After selecting correct diagnosis application also provides a high level generic treatment. That can

help them in refreshing their memory before prescribing drugs to the patient. It also helps them in

getting acquainted with new treatment options very easily. This can save them a lot of time and

work.

3. The application will also help in sharing expertize between doctors. It will get trained by many

doctors as it is built on distributed platform and now a newbie practitioner will be using same

knowledge repository developed by thousands of expert doctor.

Moreover application will also help in reducing malpractices seen commonly in field of medical diagnosis

and expand its reach to under-privileged sections in community.

 Scope of automation in many fields is restricted due to inability of learning algorithms to handle

dynamism which is inherent to that field. Field of medical diagnosis is no exception. While developing this

application we devised new methods for effectively tackling problem of dynamic size of input and output

vectors with the use of statistical algorithm and modifying the existing model of auto-encoders. This

project will act as a small step towards adopting learning algorithms in problems with inherent

dynamism which is much required in current scenario.

 Though we have tried to take care of as many things as possible in this project, it will always remain

open for further development. We can introduce Natural Language Processing (NLP) module as very first

step in diagnosis to understand symptoms in much better and more humanly way. That is a huge scope for

future work. Similarly, we can introduce deep learning network after extracting features with the help of

auto-encoders to integrate age, gender and other factors more naturally than they are now. User accounting

system can also be integrated to keep track of past medical history of user and use it in subsequent diagnosis

and treatment. At last, treatment part of application needs tremendous development if we want to provide

particular treatment instead of generic one based on diagnosis, medical history of patient, drug allergies

and many other factor. This is lot of scope for future work.

Page 23 of 23

References

1. Tax, D.M.J., 2001. One-class classification: concept-learning in the absence of counter-examples

[Ph. D. thesis]. Delft University of Technology, Stevinweg, The Netherlands.

2. Gautam C., Tiwari A., and Leng Q, “On The Construction of Extreme Learning Machine for Online

and Offline One Class Classification - An Expanded Toolbox, Neurocomputing (ELSEVIER)

(Accepted)

3. Manevitz, L. and Yousef, M., 2007. One-class document classification via neural

networks. Neurocomputing, 70(7), pp.1466-1481.

4. Irigoien, I., Sierra, B. and Arenas, C., 2014. Towards Application of One-Class Classification

Methods to Medical Data. The Scientific World Journal, 2014.

5. Leng, Q., Qi, H., Miao, J., Zhu, W. and Su, G., 2015. One-class classification with extreme learning

machine. Mathematical Problems in Engineering, 2015.

6. Mazhelis, O., 2007. One-class classifiers: a review and analysis of suitability in the context of

mobile-masquerader detection. Arima Journal, 6, pp.29-48.

7. Khan, S.S. and Madden, M.G., 2009, August. A survey of recent trends in one class classification.

In Irish conference on Artificial Intelligence and Cognitive Science (pp. 188-197). Springer Berlin

Heidelberg.

8. Khan, S.S. and Madden, M.G., 2014. One-class classification: taxonomy of study and review of

techniques. The Knowledge Engineering Review, 29(03), pp.345-374.

9. Schölkopf, B., Williamson, R.C., Smola, A.J., Shawe-Taylor, J. and Platt, J.C., 1999, December.

Support Vector Method for Novelty Detection. In NIPS (Vol. 12, pp. 582-588).

10. Japkowicz, N., Myers, C. and Gluck, M., 1995, August. A novelty detection approach to

classification. In IJCAI (Vol. 1, pp. 518-523).

11. THE WASHINGTON MANUAL OF MEDICAL THERAPEUTICS (34th Edition)

Department of Medicine, Washington University, School of Medicine, St. Louis, Missouri

