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Chapter 1

Introduction

Science is the study of the physical world and it manifestations, by using

systematic observation and experimentation. Nature, on the other hand,

is the actual physical world including all natural phenomena and living

beings. Both are made up of rules that can be rooted in the concept

that governing dynamics. The numerous forms of science investigate the

nature and behavior of matter and energy on a vast range of size and scale.

So the excessive enthusiasm of science maniac people is always tends to

understand nature with science. Experimental High Energy Physics is one

of the yardsticks of science to understand the nature & its origin.

Particularly “high-energy nuclear physics” studies the behaviour of

nuclear matter in energy regimes typical of relativistic in nature. At suf-

ficient collision energies, these types of collisions are theorized to produce

the quark-gluon plasma. A high-energy collision is characterized by collid-

ing particles, which have their momenta much higher than their rest mass

and thus named as relativistic particles. A typical event of two colliding

hadrons, e.g. protons, can originate tens or hundreds of particles, from a

variety of processes.

Nuclear collisions have been playing an important role in high-energy

nuclear physics as they provide quite unique opportunity to experimental

approach of forming quark matter under extreme conditions. The Large

Hadron Collider (LHC) at CERN is currently the most powerful particle

accelerator. Since the start of data taking in 2009, the LHC has achieved

collision energies ranging from 900 GeV up to 13 TeV for protons (p-p) and

5.02 TeV for lead ions (Pb-Pb). These energies outreach those of earlier

1



built machines as for example, the Tevatron at FermiLab (USA) or the

Relativistic Hevy-Ion Collider (RHIC) at Brookhaven National Laboratory

(BNL) (USA) by a factor 4 to 14.

The spurring scientific motivations of the four main LHC experiments,

ATLAS, CMS, ALICE and LHCb are very different. Though these ex-

periments all look forward to test and enlarge the understanding of the

Standard Model of particle physics, a wide spectrum of physics topics are

covered by the individual collaborations. This spectrum contains the fol-

lowing research questions:

• Where does the mass of particles originate from ?

• What is the origin of the invisible matter in our universe, called dark

matter ?

• Is super-symmetry an explanation? What does dark energy consist

of ? Why is matter preferred to anti-matter in the present universe,

although it should have been produced in equal amounts from the

available energy after the big-bang ?

• What were the properties of matter a few microseconds after the

big-bang when neither nucleons nor atoms had yet been formed ?

While ATLAS and CMS address the first two research problems by the in-

vestigation of the famous Higgs boson 1 and the search for super-symmetry

particle candidates. LHCb is dedicated to the study of a potential matter-

antimatter asymmetry via the determination of the mixing relation of parti-

cles and anti-particles [2]. These phenomena are expected to be best visible

in p+p collisions, because in this case, the background is much smaller as

compared to Pb+Pb collisions and the feasible collision energies are larger

by a factor of three. Furthermore, for p+p, a sufficiently high luminosity

for high enough statistics in the data can be provided. To summarise, the

1The Higgs boson or more precisely its Higgs field is supposed to give mass to the
particles, which makes them distinguishable. It was recently discovered by ATLAS and
CMS at the LHC.

2



main task of these three experiments is to measure the reaction products

of p+p collisions.

The ALICE (A Large Ion Collider Experiment) apparatus, however,

was principally designed for the investigation of relativistic Pb+Pb colli-

sions. Here, the particle multiplicity is around 100 times larger than in

p+p collisions. By the means of heavy-ion collisions, ALICE addresses

questions about the state of dissolved nuclear matter during the first mi-

croseconds of the big-bang and the characteristics of matter under extreme

conditions. In the following section, the motivations for the analysis of

heavy-ion collisions are reviewed.

1.1 A brief history of heavy-ion collision

research

The first hevy-ion collisions at modestly relativistic conditions were under-

taken at the Lawrence Berkeley National Laboratory, LBNL, at Berkeley,

USA, and at the Joint Institute for Nuclear Research, JINR, in Dubna,

USSR. At the LBL, a transport line was built to carry hevy-ions from the

hevy-ion accelerator HILAC to the Bevatron. The energy scale at the level

of 1-2 GeV per nucleon attained initially, yields compressed nuclear matter

at few times normal nuclear density. The demonstration of the possibil-

ity of studying the properties of compressed and excited nuclear matter

motivated research programs at much higher energies in accelerators avail-

able at BNL and CERN with relativistic beams targeting laboratory fixed

targets. The first collider experiments started in 1999 at RHIC and LHC

begun colliding hevy-ions at one order of magnitude higher energy in 2010.

Previous high-energy nuclear accelerator experiments have studied

heavy-ion collisions using projectile energies of 1 GeV/nucleon up to 158

GeV/nucleon. Experiments of this type and called “fixed target” experi-

ments and primarily they accelerate a “bunch” of ions (typically around 106

to 108 ions per bunch) to speeds approaching the speed of light (0.999c) and
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smash them into a target of similar hevy-ions. While all collision systems

are interesting, great focus was applied in the late 1990s to symmetric col-

lision systems of gold beams on gold targets at Brookhaven National Labo-

ratory’s Alternating Gradient Synchrotron (AGS) and Uranium beams on

Uranium targets at CERN’s Super Proton Synchrotron [3].

At BNL the four primary experiments at RHIC (PHENIX, STAR,

PHOBOS, and BRAHMS) study collisions of highly relativistic nuclei. Un-

like fixed target experiments, collider experiments steer two [4] accelerated

beams of ions toward each other at (in the case of RHIC) six interaction

regions. At RHIC, ions can be accelerated (depending on the ion size) from

100 GeV/nucleon to 250GeV/nucleon. Since each colliding ion possesses

this energy moving in opposite directions, the maximum energy of the col-

lisions can achieve a centre of mass collision energy of 200GeV/nucleon for

Au+Au and 500GeV/nucleon for p+ p.

The ALICE (A Large Ion Collider Experiment) detector at the LHC

at CERN is specialized in studying Pb+Pb collisions at a centre-of-mass

energy of 2.76 TeV per nucleon. Other LHC detectors like CMS, ATLAS,

and LHCb also have hevy-ion programs. LHC is capable of accelerating

protons as well as lead ions to velocities extremly close to the speed of light.

The apparent difference between the two collision systems p+p and Pb+Pb

is that, the lead nucleus consists of 82 protons and 126 neutrons (=208 nu-

cleons), the p+p collisions are studied in order to acquire knowledge about

specific particle production mechanism from elementary reactions. Heavy-

ion collisions are the tool for investigating the nature of nuclear matter at

high temperatures as well as high-energy densities. At very high energies

or densities, a transformation of nuclear matter to a dissociated state of its

elementary constituents is expected. This state of free quarks and gluons

is called quark gluon plasma (QGP). The LHC collider at CERN operates

one month a year in the nuclear collision mode, with Pb-nuclei colliding

at 2.76 TeV per nucleon pair, about 1500 times the energy equivalent of

the rest mass. Overall 1250 valance quarks collide generating a hot quark-

gluon soup. Heavy atomic nuclei stripped of their electron cloud are called
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heavy-ions, and one speaks of (ultra)relativistic heavy-ions when the ki-

netic energy exceeds significantly the rest mass energy, as it is the case

at LHC. The outcome of such collisions is the production of very strongly

interacting particles.

In August 2012 ALICE scientists announced that their experiments

produced quark-gluon plasma with an initial temperature at around 5.5

trillion degree Kelvin, the highest temperature achieved in any physical

experiments so far[1]. This temperature is about 38% higher than the

previous record of about 4 trillion degrees, achieved in the 2010 experiments

at the Brookhaven National Laboratory(BNL). The quark-gluon plasma

produced by these experiments approximates the conditions in the universe

that existed microseconds after the Big Bang, before the matter coalesced

into atoms [5].

If we think about QGP, it is not a stationary medium but subjected

to dynamical evolution. The expansion of the system leads to a cooling fol-

lowed by the final formation of hadrons, which are particles built from the

available quarks and gluons. These newly created particles, consisting ei-

ther of three quarks (baryons) or of a quark and an anti-quark pair (mesons)

are eventually measured by a detector. In addition to the hadrons, leptons

(i.e. electrons, photons) are produced. Since the whole collision evolution

with a duration of 10−23 sec is technically not possible to be followed, ob-

servables are vital that reveal the characteristics of the medium and the

underlying processes during the different evolution phases.

In order to shed light on the characteristics of matter in a QGP state,

a lot of energy is needed to crack the nuclei and their nucleons into their

elementary particles, the quarks and gluons. Until now, the critical tem-

perature of the phase transition to the QGP has not yet been determined

exactly. Nonetheless temperature estimates yield values of 100 - 200 MeV,

roughly corresponding to 1012 K, which is a hundred thousand times hotter

than the core of the sun. Moreover, the spatial scale of a heavy-ion colli-

sion is about a few femtometer leading to extremely high-energy densities
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Figure 1.1. Schematic of space-timeevolution of Heavy-ion Collision

(pressures) as compared to ground state nuclear matter. The nature of

quark matter at extreme high-energy density, which is believed to exist in

the early universe in a few s after the Big-Bang, is one of the most inter-

esting themes not only for cosmologists but also for particle and nuclear

physicists because a new form of quark matter is theoretically expected to

be created at a high-energy density.

1.2 QGP in the laboratory:

Ultra-relativistic hevy-ion collisions

The experimental link between the QCD phase transition and the measure-

ment of temperature, pressure and energy density of the deconfined phase,

is ultra-relativistic heavy-ion collisions. At high-energy, thousands of par-

tons(quarks and gluons) produced in these collisions create a fireball in

local thermal equilibrium that rapidly expands and cools down. For high-

energy in the centre-of-mass of the collisions, the fireball is initially made

up of interacting quarks and gluons that hadronize only when the system

temperature falls below the temperature needed for the phase transition

to occur (critical temperature). As the two heavy-ions collide at very high

energies, they deposit a substantial part of their kinetic energy into a small
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region of space. Depending on the energy density achieved, the initial state

of the system will be either in the form of a QGP or a hot/dense hadronic

gas. The evolution of an heavy-ion collision with an intermediate state of

a nucleus-nucleus collision at relativistic energy passes through different

stages. Schematic picture of different staged of the collisions are shown

in Fig. (1.1). One can broadly classify the space-time evolution into the

following stages:

a.)Pre-equilibrium stage: Initial partonic collisions produce a fire-

ball in a highly excited state. In all possibility, the fireball is not in equi-

librium. Constituents of the system collide frequently to establish a local-

equilibrium state. The time takes to establish local equilibrium is called

thermalisation time.

b.) Thermalization & QGP: In the equilibrium or the thermalised

state, the system has thermal pressure, which acts against the surrounding

vacuum. The system then undergoes collective (hydrodynamic) expansion.

As the system expands, its density (energy density) decreases and the sys-

tem cool down. Assuming that the interactions of quarks and gluons are

sufficiently small at the temperatures achieved in heavy-ion collisions, the

energy density, pressure etc. can be calculated in QCD using thermal per-

turbation theory. Driven by the high internal pressure, the thermalized

QGP expands according to the laws of relativistic hydrodynamics [7]. The

most important question that arises during this part of the evolution is that

of chemical equilibration of the partons. It is generally believed that glu-

ons, because of their larger colour degeneracy equilibrate chemically much

faster than the quarks. It is found that even light quark flavours fail to

achieve chemical equilibrium during the lifetime of the plasma [8, 9].

c.) Hadronization and the mixed phase: Expansion of the

QGP proceeds till the critical temperature Tc is reached. At this instant,

the phase transition to hadronic matter starts. Through the process of

hadronization the coloured particles - quarks and gluons combine to form
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colour-neutral hadrons. The order of the transition is still a matter of

debate . In case of a possible first order phase transition the released

latent heat maintains the temperature of the system at Tc even though the

system continues to expand. This mixed phase persists until all the matter

has converted to the hadronic phase.

d.) The hadronic phase and freeze-out: Hadronic matter also

stay in thermal equilibrium. Constituent hadrons collide with each other

to maintain local equilibrium. The system expand and cools down. A

stage comes when inelastic collisions, in which hadrons changes identity,

become too small to keep up with expansion. The stage is called chemical

freeze-out. Hadron abundances remain fixed after the chemical freeze-out.

However, due to elastic collisions, local equilibrium can still be maintained

and system cools and expands with fixed hadron abundances. Eventually a

stage comes when average distance between the constituents will be larger

than the syatem size. Collisions between the constituents will be so rare

that local thermal equilibrium can not be maintained. The hydrodynamic

description hence break down. The hadrons decouple or freeze-out. It is

called kinetic freeze-out. Hadrons from the freeze-out surface will thus be

detected in the detector.

1.2.1 QCD Phase Diagram

The phase diagram of quark matter is not well known, either experimentally

or theoretically. A commonly conjectured form of the phase diagram is

shown in the Figure 1.2. It is applicable to matter in a compact star, where

the only relevant thermodynamic potentials are quark chemical potential,

µB and temperature, T. For guidance it also shows the typical values of µB

and T in heavy-ion collisions and in the early Universe. Higher µB means

a stronger bias favoring quarks over antiquarks. At low temperatures there

are no antiquarks, and then higher µB generally means a higher density of

quarks.
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Figure 1.2. A schematic of the QCD phase diagram of nuclear matter in
terms of the temperature (T) and baryon chemical potential (µB). The pos-
sible location of the critical point is indicated as the point at which the sharp
distinction between the hadronic gas and QGP phases ceases to exist.

Along the horizontal axis the temperature is zero, and the density

rises from the onset of nuclear matter through the transition to quark

matter. Compact stars are in this region of the phase diagram, although

it is not known whether their cores are dense enough to reach the quark

matter phase.

Along the vertical axis the temperature rises, taking us through

the crossover from the hadronic gas, in which quarks are confined into

neutrons and protons, to the quark gluon plasma (QGP), in which quarks

and gluons are deconfined. This is the region explored by high-energy

heavy-ion colliders such as the Relativistic Heavy-Ion Collider (RHIC) and

Large Hadron Collider (LHC).

On the basis of thermodynamical considerations and QCD calcula-

tions, strongly interacting matter is expected to exist in different states.

Its behaviour can change for different conditions of temperature and bary-

onic chemical potential (µB). The baryo-chemical potential is defined as

the energy (E) needed to increase of one unit the total number of baryons

and anti-baryons. Figure 1.2 shows an illustration of the phase diagram
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of nuclear matter, varying its temperature and baryo-chemical potential.

At low temperatures and for µB ≈ mp ≈ 940 MeV, nuclear matter is

in its standard conditions (atomic nuclei). Increasing the energy density of

the system, “heating” the nuclear matter (upward in the plot) or increasing

the baryo-chemical potential (going towards right in the diagram), a state of

QGP phase is reached. Going the other way, one obtain hadronic phase in

this state, nucleons interact and form pions, excited states of the protons

and neutrons (∆ resonances) and other hadrons. If the energy density

is further increased, a deconfined Quark Gluon Plasma (QGP) phase is

predicted. The density of gluons and quarks, in this phase, becomes so high

that partons are still interacting but not confined within hadrons anymore.

For extreme values of baryo-chemical density, nuclear matter should be in

conditions of quark colour superconductivity.

There are many paths on the phase diagram, that the phase transition

can follow, varying the temperature and the baryo-chemical potential. In

the early Universe, for example, the transition from a QGP phase to hadron

matter took place for µB ≈ 0 as a consequence of the Universe expansion

and the decrease of its temperature. In that case, the transition phase

evolved from a deconfined state of partons to hadronic matter. On the

other hand, in the formation of neutron stars, the gravitational collapse

causes an increase in the baryonic density for temperature very close to

zero.

The phase transition is characterized by how fast the free energy of

the system is varied, for a neighborhood of the transition temperature. The

transition between different states belongs to the first order, if it happens

with a discontinuos pattern in the first derivatives of the free energy. If

the phase transition occurs with discontinuos higher derivatives after the

first, it is a second order transition. Second order transitions are, for ex-

ample, the ferromagnetic transition or the superfluid transition. Phase

transitions can also occur without fast modification of the parameters of

the system, so with a continuos behaviour for the free energy and its deriva-
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tives. These transitions are called “cross-over”. In peculiar conditions of

thermodynamic parameters, the process can pass from a first to a second

order transition. These conditions are called critical points and usually two

states of matters coexist.

1.3 The QGP Signatures

There are many observable to understand the formation of QGP. Here we

outline some of the QGP signatures. The signatures of the QGP can be

divided in different categories, related to the different stages considered by

the evolution picture described before- the deconfined medium (QGP), a

possible interacting hadronic medium, and the final hadronic state [14].

1.3.1 Heavy-quark and quarkonium production

Among the hard probes that could provide direct information on the decon-

fined medium produced in the heavy-ion events, charm and bottom quarks

are very suitable to understand the dynamics of the collisions. Their pro-

duction takes place on a timescale of the order of 1/mQ, where mQ is the

heavy-quark mass. On the other hand, thanks to their long lifetime, charm

and bottom quarks can live through the thermalization phase and carry

information about the system. In order to extract information about the

plasma from the features of heavy-quarks production in heavy-ion colli-

sions it is very important to well understand their production in p+ p and

A-A interactions and compare some observables like the total production

rates, the transverse momentum distributions and the kinematic correla-

tions between the heavy quarks and antiquarks. Both the productions of

bound states of cc̄ and bb̄ (quarkonia) and of open charm and bottom will

be extensively studied by ALICE & RHIC, either as different probes of the

event evolution. The study of the correlations between the properties of

open charm and bottom and quarkonia spectra will allow to understand

the dynamics of the dense medium. In the very low pT region, which will be
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accessible to ALICE, the production of heavy quark-antiquark pairs should

increase the probability of forming quarkonia. In the region of perturba-

tive production, i.e. at large pT , the quarkonium suppression should take

place. Moreover, the different effects of enhancement in the productions of

quark-antiquark pairs and of the quarkonium suppression, should be dis-

entangled by the study of the correlations between quarkonium and open

heavy-quarks momentum spectra.

1.3.2 Open charm and beauty observation

The measurement of open charm and open beauty production allows one to

investigate the mechanisms of heavy-quarks production, propagation and,

at low momenta, hadronization in the hot and dense medium formed in

high-energy nucleus-nucleus collisions. The open charm and open beauty

cross sections are also needed as a reference to measure the effect of the

transition to a deconfined phase on the production of quarkonia. A direct

measurement of the D and B mesons yields would provide the normaliza-

tion for charmonia and bottomonia production. Finally, the measurement

of B meson production is necessary within the search for the quarkonia

suppression, in order to estimate the contribution of secondary J/ψ (from

B → J/ψ + X) to the total J/ψ yield: B mesons decay into J/ψ mesons.

Direct J/ψ production might be further suppressed by QGP because of

Debey’s screening, secondary J/ψ mesons are conceivably contributing a

large fraction to the observable J/ψ signal. The measurement of charm and

beauty production in proton-proton and proton-nucleus collisions, besides

providing the necessary baseline for the study of medium effects in nucleus-

nucleus collisions, is intrinsically interesting as a test of both perturbative

and non-perturbative sectors of QCD in a new energy domain.

1.3.3 High-pT Suppression and Jet Quenching

In 1982 Bjorken stated that an high-pT quarks or gluons might lose their ini-

tial transverse momentum while plowing through quark-gluon plasma [14].
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Hard partons traversing the hot and dense medium created in heavy-ion

collisions lose energy by gluon radiation and/or colliding elastically with

surrounding partons [25, 26]. This would have many observable conse-

quences, of which the most directly measurable would be a depletion in the

yield of high-pT hadrons [27, 28]. One of the most exciting results to date

at RHIC is that the yield of π0 at high transverse momentum in central
√

sNN=200 GeV Au+Au collisions is suppressed compared to the yield in

p + p collisions scaled by the number of underlying nucleon-nucleon colli-

sions [20]. This shown in Figure 1.3. The phenomenon is interpreted as a

consequence of the so called jet quenching effect. Nuclear effects on hadron

production in d-Au and Au-Au collisions are measured through comparison

with the yeild in p+p collisions Equation (1.1). In hadronic collisions, hard

parton scatterings occurring in the initial interaction produce cascades of

consecutive emissions of partons, called jets. The jets fragment in hadrons

during the hadronization phase. The jets lose their energy while propagat-

ing in the hot and dense medium due to the gluon radiations, resulting in

the suppression of hard jets (the so-called jet− quenching effect). Nuclear

Modification Factor, RAA is defined as:

RAA =
1/NAA

evt d
2NAA

ch /dηdpT
〈Ncoll〉 1/Npp

evtd
2Npp

ch/dηdpT
(1.1)

where η is the pseudorapidity, NAA
evt and Npp

evt are the number of A+A and

p+p events and 〈Ncoll〉 is the mean number of binary nucleon-nucleon colli-

sions. High-energy nucleus-nucleus collisions allow to study the properties

of this medium through modifications of the jet-structure:

• Suppressed particle yield: The in-medium energy loss results in a

suppression of the hard jets and in a reduction of the high-pT particles

yields.

• Impact parameter dependence: Since the characteristics and the

size of the dense medium should depend on the centrality of the initial

collision, a correlation of the jet quenching effect with the impact

parameter is expected to be observed.
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Figure 1.3. Nuclear modification factor RAA of mesons π0 (triangles), η
(circles) and direct photons (squares), as measured by PHENIX [20]

The RHIC experiments were the first to observe the suppressed pro-

duction of high-pT hadrons in central A+A collisions, i.e. Au+Au at
√

sNN=200 GeV [15, 16]. High-pT hadrons are generally produced in the

fragmentation of high-pT partons created in the early stages of a collision

but in the presence of the QGP these partons loose energy as they prop-

agate through. In effect, the hot and dense medium modifies the hadron

pT spectra, reducing the yield at high momenta. This is measured by

comparing the yield in A+A collisions to the yield in nucleon-nucleon (e.g.

p+p(p̄) at the same centre-of-mass energy per nucleon. Figure (1.4) shows

the STAR, PHENIX and the recent ALICE measurement of the so called

nuclear modification factor RAA , defined define in Eq. (1.1) In the 5% most

central Pb+Pb collisions at
√

sNN= 2.76 TeV the RAA is significantly less

than 1, reaching a minimum at pT ≈ 6 GeV/c. In the case of no suppres-

sion (or enhancement) of the high- pT hadron production the RAA would

be equal to 1.

The measurement of the RAA factor has motivated a detailed analysis

of the jet structure at RHIC which has led to the discovery of another effect

related to high-pT suppression in the plasma: jet quenching [14, 15].
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Figure 1.4. Nuclear modification factor, RAA , in central Pb+Pb collisions
at
√

sNN=2.76 TeV (ALICE) and Au-Au collisions at
√

sNN=200 GeV by the
PHENIX and STAR experiments at RHIC. The figure is taken from [17]

1.3.4 Charmonium Suppression

It was predicted by Matsui and Satz [18] that the yield of charmonium

states (cc̄) will be suppressed if the QGP is formed. Due to the effects of

Debye screening in the QGP, bound states with a large radius relative to

the Debye radius, rD , such as the J/ψ meson, will be dissociated. Because

the mass of the charm quark is much greater than that of the up, down and

strange quarks, cc̄ states are almost exclusively produced during the early

stages of the collision. If the QGP is formed, and at high enough tempera-

ture, cc̄ bound state will exhibit an apparent suppression in the final state

hadron spectra while at the same time the disassociated charm quarks en-

hance the open charm production (e.g. D± , D0). J/ψ suppression was first

confirmed at the SPS [19], and more recently at RHIC [20]. Interestingly,

while at the SPS and RHIC the suppression is at a similar level, at LHC it

is measured to be less [21]. There are several models which try to explain

this apparent enhancement in the J/ψ yield by considering recombination

of deconfined charm quarks during the hadronisation process [22, 23].

At high energy pT-specturm follow a Tsallis type of non-extensive
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statistical distribution; in the following chapter, we have made an attempt

to study the RAA in the framework of non-extensive statistics using Boltz-

mann Transport Equation with Relaxation time approximation.
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Chapter 2

Tsallis Statistics

In the present work, our quest is to study the matter formed in hadronic

and heavy-ion collision, which may be described in terms of equilibrium or

non-equilibrium statistical mechanics. At high energies, when the particle

produce this is dominated by purturbative Quantum Chromo Dynamics

(pQCD), the pT-spectra is better described by ba non-extensive Tsallis

statistics. The well-known Boltzmann equilibrium statistics is an approx-

imation of this Tsallis super-statistics [40]. The later is used to study

syatems, which are away from eqilibrium with a non-extensive parameter

q to quantify the degree of non-equilibrium. In 1988, Tsallis postulated

a generalization of the Boltzmann-Gibbs-Shannon entropy, now popurarly

called the Tsallis Entropy. Tsallis entropy is non-extensive, which means

that if two identical systems combine, the entropy of combined system is

not equal to summation of entropy of its subsystems.

2.1 Boltzmann-Gibbs Statistics

In statistical mechanics, Boltzmann’s equation is a probability equation

relating the entropy S of an ideal gas to the quantity W, which is the

number of microstates corresponding to a given macrostate:

S = kB lnW, (2.1)

where kB is the Boltzmann constant. In short, the Boltzmann formula

shows the relationship between entropy and the number of ways the atoms

or molecules of a thermodynamic system can be arranged. For an ideal gas
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of N identical particles, of which Ni are in the ith microscopic condition

(range) of position and momentum. For this case, the probability of each

microstate of the system is equal, W can be counted using the formula for

permutations:

W = N ! /
∏
i

Ni! (2.2)

where i ranges over all possible molecular conditions.

For thermodynamic systems where microstates of the system may not

have equal probabilities, the appropriate generalization, called the Gibbs

entropy, is:

S = −kB

∑
pi ln pi

This reduces to equation (2.1) if the probabilities are all equal.

2.2 Tsallis Entropy:: Generlized Version of

Boltzmann Gibbs Entropy

Traditionally the bulk of spectra in both p+ p and heavy-ion collisions are

described using a boltzmann like, thermal distribution with an inverse slope

parameter called “temprature”. The Tsallis distribution which describes

systems away from thermal equilibrium is now widely used to describe par-

ticle spectra in hadrons and heavy-ion collisions. The Tsallis distribution

describes a system in terms of two parameters; “temperature” and “q”

which measures deviation from thermal distribution. It has been shown

that the functional form of the Tsallis distribution in terms of parameter

q is the same as the QCD-inspired Hagedorn formula in terms of power

n [55].

h(pT ) = C
(

1 +
pT
nT

)−n
−→

 exp
(
−pT

T

)
for pT → 0,

p−nT for pT →∞,
(2.3)

Both n and q are related and describe the power law tail of the hadron

spectra coming from QCD hard scatterings. This was first proposed in [10]
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as the simplest formula extrapolating the large power behavior expected

from parton collisions to exponential behavior observed for low pT.

In a more general way, we can describe it as Boltzmann-Gibbs (BG)

statistics is based on the fact that the particles with in a system interact

over extremely small length scales, i.e. the interactions are purely colli-

sional. Such characteristic short range interactions allow us to view the

fluid as non-interacting and in turn, we generate the familiar results of sta-

tistical mechanics. It is currently well established that there are numerous

physical systems under which BG statistics encounters many difficulties.

Some of these physical systems which include situations characterized by

long-range interactions, long-range microscopic memories, and those in-

volving a space-time (and phase space) exhibiting a (multi)fractal struc-

ture are discussed in Ref [37]. In particular, while analysing the transverse

momentum (pT) spectra of hadrons it is found that the spectra decrease far

slower than predicted by BG statistics, and appear to follow some power-

law at high-pT. Such departures from the BG exponential are argued as

being attributable to dynamical effects. Essentially, these effects survive

the equilibration process and can show up as apparent departures from

the assumed thermal equilibrium in the form of the enhancement of the

exponential tail into power-law tail. Typically, when such observations are

made, one assumes that the statistical model is too simplistic and accounts

for the departure via inclusion of some additional (non-equilibrium) dy-

namical considerations. In an attempt to overcome at least some of the

difficulties experienced due to the shortcomings of BG statisitics, a gener-

alized form of the entropy was postulated in [38]. The form of the entropy

is given by:

S =
1−

∑W
i=1 p

q
i

q − 1
(2.4)

pi stands for probability for occupation of ith state of the system, W counts

the known microstates of the systems and q is a positive real parameter or

we can say q is a “non-extensive parameter”. It can be easily shown that

19



this newly postulated entropy is nonextensive. To show that let’s consider

we have two independent systems A and B described by the proposed

entropy in given by (2.4)

Sq(A) =
(1−

∑
i p

q
A,i)

q − 1
Sq(B) =

(1−
∑

i p
q
B,i)

q − 1
(2.5)

then the entropy of the combined system is given by:

Sq(A+B) =
(1−

∑
k p

q
A,B,k)

q − 1

=
(1−

∑
i

∑
j p

q
A,i pqB,j)

q − 1

=
(1−

∑
i

∑
j p

q
A,i pqB,j)

q − 1

=
2−

∑
i p

q
A,i −

∑
j p

q
B,j − (1−

∑
i p

q
B,j)(1−

∑
j p

q
B,j)

q − 1

=
(1−

∑
i p

q
A,i)

q − 1
+

(1−
∑

i p
q
B,i)

q − 1
− (q − 1)

(1−
∑

i p
q
A,i)

q − 1

(1−
∑

i p
q
B,i)

q − 1

= Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) (2.6)

Evidently the third term in (2.3) makes the entropy non-extensive. Fur-

thermore, if we allow for q → 1 we have:

S1 = lim
q→1

Sq

= lim
q→1

Sq

= lim
q→1

k
(1−

∑W
i=1 pip

q−1
i )

q − 1

= lim
q→1

k
(1−

∑W
i=1 pip

q−1
i )

q − 1

= lim
q→1

k
(1−

∑W
i=1 pi exp [(q − 1) ln(pi)]

q − 1
(2.7)

Then we can perform a Taylor expansion [13] of the exponential term in
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(2.4) about q = 1 to give,

S1 = lim
q→1

1−
∑W

i=1 pi[1 + (q − 1) lnPi + (q−1)2(lnPi)
2

2!
+ (q−1)3(ln pi)

3

3!
+ ......]

q − 1
,

(2.8)

and using the fact that
∑W

i=1 pi = 1, Eqs. 2.8 becomes:

S1 = lim
q→1

[
−

W∑
i=1

pi ln pi −
W∑
i=1

pi
(q − 1)(ln pi)

2

2!
−

W∑
i=1

pi
(q − 1)2(ln pi)

3

3!
+ .......

]
,

= −
W∑
i=1

pi ln pi (2.9)

Evidently from Eq. (2.9), it is apparent that as q → 1 the generalised non-

extensive Tsallis entropy tends towards the familiar extensive Shannon-

Gibbs entropy. It is clear from this, that q is some measure of the non-

extensivity of the entropy of the system. Unfortunately, it does not reveal

the cause of this departure from the standard Shanon-Gibbs entropy. This

must be deduced from the physicsl system under consideration. Using the

entropy expressed in Eqs. (2.9), we can reformulate the different distribu-

tions, at equilibrium, characterised by the different ensembles within the

framework of Tsallis statistics. In a similar vain to that of BG statistics

we maximise the Tsallis entropy subject to the constraints associated with

the particular ensemble of interest.

2.3 Difference between Tsallis and

Boltzmann and Connection between

them

We already know that Tsallis entropy is a generalization of the standard

Boltzmann-Gibbs entropy. The Tsallis entropy reduces to the Boltzmann

and Gibbs entropies when the system is extensive, but is different otherwise.

The motivation behind this is to show that the Tsallis entropy works well in
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situations where the Boltzmann and Gibbs entropies allegedly break down.

The system governed by long-range force systems like self-gravitating sys-

tems are supposed to be one examples. Non-extensive statistical mechanics

which is established by optimization of Tsallis entropy in presence of ap-

propriate constraints, can interpret properties of many physical systems.

2.3.1 The Boltzmann-Gibbs Model

For particles radiated from a small equilibrated thermal source with tem-

perature T we can apply Boltzmann-Gibbs statistics to describe an invari-

ant momentum spectrum. This gives the familiar expression in Equation

(2.10) where the chemical potential and spin-isospin-degeneracy factor has

been dropped because we are not interested in the overall scaling factor,

E
d3N

dp3
=

d3N

pTdydpTdφ
=

d3N

2πmTdmTdy
(2.10)

⇒ d2N

dmTdy
∝ mT e

−mT /T ,

where mT is the transverse mass given by
√
p2
T +m2. This model exhibits

a turnover at low-pT followed by qualitatively exponential fall-off(as seen

in Fig. (2.1)). This captures the basic behavior of the particle spectra and

gives a reasonable approximation of the pT distribution.

2.3.2 The Blast-Wave Model

In the low pT region experimentally measured transverse momentum spec-

tra are well described by the blast-wave model, which applies longitudi-

nal and transverse flow to thermal emission [43]. The model is derived

by integrating the superposition of Lorentz boosted Boltzmann-Gibbs in-

variant momenta spectra over the freeze-out hyper surface. The model

assumes boost-invariant Bjorken longitudinal expansion in a region around

midrapidity and allows for an arbitrary azimuthally-symmetric velocity

profile [44]. If temperature and transverse flow do not depend on the lon-
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gitudinal position in a longitudinally-comoving coordinate system then the

transverse momentum spectrum factorizes and can be expressed indepen-

dently of longitudinal flow as

dN

dpTpT
∝
∫ R

0

rdrmT I0

(
pT sinh ρ

T

)
K1

(
mT cosh ρ

T

)
(2.11)

where ρ is the Lorentz boost angle tanh−1 βr where βr is the surface ve-

locity for a given radius r and T is the freeze-out temperature. The shape

of thermal spectra that depends on only the two physically meaningful

parameters β and T .

2.3.3 The Tsallis Model and its connection with

Boltzmann-Gibbs

At intermediate to high-pT (pT > 1 − 2 GeV/c) the thermal assumption

of both the simple and blast-wave models breaks down as hard processes

become the dominant source of particle production. The spectra in this

region is known to exhibit power-law rather than exponential behavior [45].

A generalization of the Boltzmann distribution known formally as a q-

exponential captures this power-law behavior at high-pT and exponential

behavior at low-pT. This distribution, with or without the mT factor, is

more often called a Tsallis distribution in nuclear physics, after the Tsallis

statistics from which it is derived [46].

d2N

2πmTdmTdy
∝
(

1 +
q − 1

T
mT

)−1/(q−1)

(2.12)

Equation (2.12) gives the form of the Tsallis distribution which converges

to Equation (2.10) as the non-extensivity parameter q goes to 1. This

functional form has been shown to fit well both low and high pT spectra

at RHIC and LHC energies [43, 52, 53]. It could simply be a convenient

functional form that evolves from exponential to power-law behavior as the

physics shifts from soft to hard or it might be related to deeper physics such

as anomalous diffusion or temperature inhomogeneities in the collisions [46].
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In either case, it offers a model for fitting spectra that is more applicable

across a broad pT range, which we have discussed earlier.

2.4 Transverse Momentum Spectra

In high energy collisions particle spectra are studied by calculating the

invariant cross-section given by (2.10)

E
d3N

dp3
=

d2N

2πpTdpTdy
,

where E is the energy of the particle. The mean particle yields are usu-

ally extracted from the pT distribution of d2N
dpT dy

by using an appropriate

parametrisation.

In first approximation, the exponential-like shape of the transverse spectra

can be described using Boltzmann-Gibbs statistics [55],

d2N

2πpTdpTdy
= Ae−

mT
T (2.13)

where A is a normalisation parameter and mT =
√
m2 + p2

T is the trans-

verse mass.

A much better description of the data is provided by the Tsallis dis-

tribution [38], often referred to as Levy-Tsallis. Based on the ideas of non-

extensive thermodynamics, it is derived from the so-called Tsallis entropy

Sq a generalised case of the Boltzmann-Gibbs entropy, SBG:

S =
1−

∑W
i=1 p

q
i

q − 1

q→1

S BG = −
∑
i

pi ln pi

where q is a measure of the non-extensivity of the system, hence its di-

vergence from Boltzmann-Gibbs statistics. In the limit q → 1 the entropy

takes its usual form, Sq = SBG . The successful application of the non-

extensive thermodynamics in high energy physics, can be understood in

terms of the finite size and the non-homogeneity of the multi-particle sys-
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tems, created in elementary and heavy-ion collisions. Using equation (2.59)

which we describe in section (2.6) [58], we get,

E
d3N

dp3
=

1

2πpT

d2N

dydpT

=
dN

dy

(n− 1)(n− 2)

2πnC[nC +m(n− 2))]
(1 +

mT −m
nC

)−n (2.14)

where n → q
q−1

, nC → T+m0(q−1)
q−1

, mT =
√
p2
T +m2 is the transverse

mass. m, dN
dy

, n and C are fitting parameters. Using them we get the final

expression as follows [59],

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))

[
T

T +m0(q − 1)

]−q/(q−1)

[
1 + (q − 1)

mT

T

]−q/(q−1)

. (2.15)

Using the above equation (2.15) we compare the two distribution in fig-

ure (2.1). One can clearly see that Tsallis distribution describes well the

π+ pT spectra in p + p collisions at
√

s=900 GeV at LHC. On the other

hand, Boltzmann distribution shows a clear deviation at high-pT

Figure 2.1. Comparison of the two distributions, Boltzmann and Tsallis. The
data are p+ p collision at

√
s=900 GeV taken by ALICE experiment [21]
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2.5 Thermodynamics

The first law of thermodynamics postulates that the changes in the total

energy of a thermodynamic system must result from: heat exchange, the

mechanical work done by an external force, and from particle exchange

with an external medium. Hence the conservation law relating the small

changes in state variables, E, V , and N is

δE = δQ− PδV + µ δN, (2.16)

where P and µ are the pressure and chemical potential, respectively, and

δQ is the amount of heat exchange.

The heat exchange takes into account the energy variations due to

changes of internal degrees of freedom that are not described by the state

variables. The heat itself is not a state variable since it can depend on

the past evolution of the system and may take several values for the same

thermodynamic state. However, when dealing with reversible processes

(in time), it becomes possible to assign a state variable related to heat.

This variable is the entropy, S , and is defined in terms of the heat ex-

change as δQ = TδS, with the temperature T being the proportionality

constant. Then, when considering variations between equilibrium states

that are infinitesimally close to each other, it is possible to write the first

law of thermodynamics in terms of differentials of the state variables,

dE = TdS − PdV + µ dN. (2.17)

Hence, using Eq. (2.17), the intensive quantities, T , µ and P , can be

obtained in terms of partial derivatives of the entropy as

∂S

∂E

∣∣∣∣
N,V

=
1

T
,

∂S

∂V

∣∣∣∣
N,E

=
P

T
,

∂S

∂N

∣∣∣∣
E,V

= −µ
T
. (2.18)

The entropy is mathematically defined as an extensive and additive
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function of the state variables, which means that

S(λE, λV, λN) = λS(E, V,N). (2.19)

Differentiating both sides with respect to λ, we obtain

S = E
∂S

∂λE

∣∣∣∣
λN,λV

+ V
∂S

∂λV

∣∣∣∣
λN,λE

+N
∂S

∂λN

∣∣∣∣
λE,λV

, (2.20)

which holds for any arbitrary value of λ. Setting λ = 1 and using Eq.

(2.18), we obtain the so-called Euler’s relation

E = −PV + TS + µN. (2.21)

Using Euler’s relation, Eq. (2.21), along with the first law of thermody-

namics, Eq. (2.17), we arrive at the Gibbs-Duhem relation

V dP = SdT +Ndµ. (2.22)

In terms of energy, entropy and number densities defined as ε ≡ E/V ,

s ≡ S/V , and n ≡ N/V respectively, the Euler’s relation, Eq. (2.21) and

Gibbs-Duhem relation, Eq. (2.22), reduce to

ε = −P + Ts+ µn (2.23)

dP = s dT + n dµ. (2.24)

Differentiating Eq.(2.23) and using Eq. (2.24), we obtain the relation anal-

ogous to first law of thermodynamics

dε = Tds+ µ dn ⇒ ds =
1

T
dε− µ

T
dn. (2.25)

It is important to note that all the densities defined above (ε, s, n) are

intensive quantities.

The equilibrium state of a system is defined as a stationary state

where the extensive and intensive variables of the system do not change.
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We know from the second law of thermodynamics that the entropy of an

isolated thermodynamic system must either increase or remain constant.

Hence, if a thermodynamic system is in equilibrium, the entropy of the

system being an extensive variable, must remain constant. On the other

hand, for a system that is out of equilibrium, the entropy must always

increase. for a more detailed review, see Ref. [33].

2.5.1 Thermodynamic Consistency

The thermodynamics is characterised by four general thermodynamic laws,

which describe the universal behaviour of any system irrespective of the de-

tails of microscopic mechanisms [30]. We know that the Boltzmann entropy

is given by (for complete description (see Appendix (A)) :

SB = −g
∑
i

[fi ln fi − fi] (2.26)

Where g is the degeneracy factor and the Tsallis entropy is given by:

SBT = −g
∑
i

[f qi lnq x− fi]

f qi =

[
1 + (q − 1)

E − µ
T

]− q
q−1

(2.27)

In a more generalized way we can express it as:

Partition function for Boltzmann is the first and second laws of

thermodynamics lead to the following two differential relations as in

Eq. (2.23), (2.24), [34]:

dε = Tds+ µdn, (2.28)

dP = sdT + ndµ. (2.29)

where ε = E/V , s = S/V and n = N/V are the energy, entropy and

particle densities, respectively. Thermodynamic consistency requires that
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the following relations be satisfied

T =
∂ε

∂s

∣∣∣∣
n

, (2.30)

µ =
∂ε

∂n

∣∣∣∣
s

, (2.31)

n =
∂P

∂µ

∣∣∣∣
T

, (2.32)

s =
∂P

∂T

∣∣∣∣
µ

. (2.33)

By maximizing the entropy we can obtain expression for particle density,

energy density and pressure. All are given by corresponding integrals over

Tsallis distributions and the derivatives have to reproduce the correspond-

ing physical quantities, e.g. for Tsallis-Boltzmann one has:

nBT = g

∫
d3p

(2π)3

[
1 + (q − 1)

E − µ
T

]− q
q−1

, (2.34)

εBT = g

∫
d3p

(2π)3
E

[
1 + (q − 1)

E − µ
T

]− q
q−1

, (2.35)

PB
T = g

∫
d3p

(2π)3

p2

3E

[
1 + (q − 1)

E − µ
T

]− q
q−1

. (2.36)

These expressions should satisfy with the basic thermodynamic rela-

tions (2.30), (2.31),(2.32), and (2.33) for consistency, it has to be shown

that

nBT =
∂PB

T

∂µ
(2.37)

Let us consider

P =
−E + TS + µN

V
, (2.38)
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and take the partial derivative with respect to µ in order to check for

thermodynamic consistency, it leads to

∂P

∂µ

∣∣∣∣
T

=
1

V

[
−∂E
∂µ

+ T
∂S

∂µ
+N + µ

∂N

∂µ

]
,

=
1

V

[
N +

∑
i

− T

q − 1

(
1 + (q − 1)

Ei − µ
T

)
∂f qi
∂µ

+
Tq(1− fi)q−1

q − 1

∂fi
∂µ

]
, (2.39)

then,

∂f qi
∂µ

=
qf q+1

i

T

[
1 + (q − 1)

Ei − µ
T

]−1+ 1
1−q

,

∂fi
∂µ

=
f 2
i

T

[
1 + (q − 1)

Ei − µ
T

]−1+ 1
1−q

,

and

(1− fi)q−1 = f q−1
i

[
1 +

(q − 1)(Ei − µ)

T

]
.

Putting this into Eq. (2.39), yields

∂P

∂µ

∣∣∣∣
T

= n, (2.40)

It proves thermodynamic consistency (2.32).

Then by the relation in Eq. (2.30) can be written as:

∂E

∂S

∣∣∣∣
n

=

∂E
∂T
dT + ∂E

∂µ
dµ

∂S
∂T
dT + ∂S

∂µ
dµ
,

=

∂E
∂T

+ ∂E
∂µ

dµ
dT

∂S
∂T

+ ∂S
∂µ

dµ
dT

, (2.41)

n is kept fixed

dn =
∂n

∂T
dT +

∂n

∂µ
dµ = 0,

leading to
dµ

dT
= −

∂n
∂T
∂n
∂µ

. (2.42)
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Hence we rewrite (2.41) and (2.42) in terms of the following expressions:

∂E

∂T
=
∑
i

qEif
q−1
i

∂fi
∂T

,

∂E

∂µ
=
∑
i

qEif
q−1
i

∂fi
∂µ

,

∂S

∂T
=
∑
i

q

[
−f q−1

i + (1− fi)q−1

q − 1

]
∂fi
∂T

,

∂S

∂µ
=
∑
i

q

[
−f q−1

i + (1− fi)q−1

q − 1

]
∂fi
∂µ

,

∂n

∂T
=

1

V

[∑
i

qf q−1
i

∂fi
∂T

]
,

and
∂n

∂µ
=

1

V

[∑
i

qf q−1
i

∂fi
∂µ

]
.

Putting the above relations into Eq. (2.41), the numerator of Eq. (2.41)

becomes

∂E

∂T
+

∂E

∂µ

dµ

dT
=
∑
i

qEif
q−1
i

∂fi
∂T

−

∑
i,j

q2Ej (fifj)
q−1 ∂fj

∂µ

∂fi
∂T∑

j

qf q−1
j

∂fj
∂µ

,

=

∑
i,j

qEi (fifj)
q−1Cij

∑
j

f q−1
j

∂fj
∂µ

. (2.43)

Where Cij

Cij ≡ (fifj)
q−1

[
∂fi
∂T

∂fj
∂µ
− ∂fj
∂T

∂fi
∂µ

]
, (2.44)
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Hence by Eq. (2.41)

∂S

∂T
+
∂S

∂µ

dµ

dT
=

q
∑
i,j

[
−f q−1

i + (1− fi)q−1
]
f q−1
j Ci,j

(q−1)

∑
j

f q−1
j

∂fj
∂µ

,

=

q
∑
i,j

(Ei − µ) (fifj)
q−1Ci,j

T

∑
j

f q−1
j

∂fj
∂µ

, (2.45)

where
−f q−1

i + (1− fi)q−1

q − 1
=

(Ei − µ)

T
f q−1
i ,

hence, by substituting Eqs. (2.43) and (2.45) in to Eq. (2.41),

∂E

∂S

∣∣∣∣
n

= T

∑
i,j

EiCij∑
i,j

(Ei − µ)Cij
, (2.46)

since
∑
i,j

Cij = 0, this finally leads to the desired result

∂E

∂S

∣∣∣∣
n

= T. (2.47)

Hence thermodynamic consistency is satisfied.

It is shown that temperature and pressure within the Tsallis formal-

ism for non-extensive statistics lead to expressions which satisfy consistency

with the first and second laws of thermodynamics. Hence we showed ex-

plicitly that, the Tsallis statistics is thermodynamically consistent.
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2.6 Different forms of Tsallis Distribution

Function

Extensive and non-extensive statistical approaches have been used to char-

acterize particle spectra in terms of thermodynamic variables. Exten-

sive statistics assume thermal and chemical equilibrium of the system at

hadronic phase which lead to an exponential distribution of the particle

spectra. In experiments, the particle spectra show a power-law behavior

at high-pT. This behavior is reproduced by the non-extensive approach

with an additional parameter. In recent times, the Tsallis [38] statisti-

cal approach is widely used to describe the particle spectra obtained in

high-energy collisions with only two parameters; the temperature T and

q, known as non-extensivity parameter which is a measure of temperature

fluctuations or degree of non-equilibrium in the system. The Tsallis distri-

bution gives an excellent description of pT spectra of all identified mesons

measured in p+p collisions at
√

sNN=200 GeV [20, 46]. Here we will quan-

tify a cross connection between different versions of Tsallis distribution. In

the framework of Tsallis statistics, the distribution function is,

f(E, q) = [1 + (q − 1)
E − µ
T

]−
1
q−1 (2.48)

The expression for the average number as in Eq. (2.34) of particles using

the Tsallis expression is given by,

N = gV

∫
d3p

(2π)3

[
1 + (q − 1)

E − µ
T

]− q
q−1

(2.49)

Using the fact that E = mT cosh y and pz = mT sinh y

N = gV

∫
dpTdφdypTmT cosh y

(2π)3

[
1 +

(q − 1)(mT cosh y − µ)

T

]−q/q−1

,

(2.50)

where T is the temperature and µ is the chemical potential, V is the volume

and g is the degeneracy factor. For the Tsallis distribution the transverse
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momentum distribution can be written as,

d3N

d3p
=

gV

(2π)3

[
1 + (q − 1)

E − µ
T

]−q/(q−1)

(2.51)

in terms of transverse momentum (pT), transverse mass (mT =
√
p2
T +m2),

and rapidity (y). Let us consider it as Type-A distribution.

E
d3N

dp3
= gV

mT cosh y

(2π)3
[1 + (q − 1)

mT cosh y − µ
T

]−
q
q−1 (2.52)

or,

dN

dpTdy
= gV

pTmT cosh y

(2π)2

[
1 +

(q − 1)mT cosh y − µ
T

]q/1−q
(2.53)

Let us consider equation (2.52) Type-B distribution. At mid-rapidity(y=0),

and zero chemical potential(µ=0) it relates to [54],

d2N

dpT dy

∣∣∣∣
y=0

= gV
pTmT

(2π)2

[
1 + (q − 1)

mT

T

]q/(1−q)
E
d3N

dp3
= gV

mT

(2π)3
[1 + (q − 1)

mT

T
]q/(1−q) (2.54)

As q→1 it reduces to the standard Boltzmann distribution,

lim
q→1

d2N

dpT dy
= gV

pTmT cosh y

(2π)2
exp

(
−mT cosh y − µ

T

)
(2.55)

The parameterization given in (2.53) is so close to the one used by

the STAR, PHENIX, ALICE and CMS experiments.

d2N

dpT dy
= pT

dN

dy

(n− 1)(n− 2)

nC(nC +m0(n− 2))

[
1 +

mT −m0

nC

]−n
(2.56)

or we can write it as,

E
d3N

dp3
=

1

2πpT

d2N

dydpT

=
dN

dy

(n− 1)(n− 2)

2πnC[nC +m(n− 2))]
(1 +

mT −m
nC

)−n (2.57)
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where n → q
q−1

, nC → T+m0(q−1)
q−1

, mT =
√
p2
T +m2 is the transverse

mass. m, dN
dy

, n and C are fitting parameters. Let us consider equation

(2.57) as Type-A distribution. Hence this equation can also be understood

as an interpolation between low transverse momenta and high transverse

momenta [55]. By using Eqn. (2.57), when pT >> m (ignoring m) we can

ignore m, one gets [56],

E
d3N

dp3
∝ p−nT

which is a power-law type distribution. When pT << m we get,

mT −m =
p2
T

2m
= Eclassical

T (2.58)

E
d3N

dp3
∝ e

−EclassicalT
C

This is a Boltzmann-type thermal distribution. The parameter C in (2.57)

plays same role as temperature T . Now we obtain the simpler form of

(2.57)

E
d3N

dp3
= A(1 +

mT −m
nT

)−n

E
d3N

dp3
= A(1 +

ET
nT

)−n (2.59)

As it is seen that Equations (2.59) and (2.54) seem very similar but there

is some difference between them, i.e there is no direct match between n

and q in Equations (2.59) (2.54). But to find relation between them, let’s

assume pT >> m, then by (2.54) we can get;

E
d3N

dp3
∝ p

− 1
q−1

T (2.60)

Therefore relation between n and q is

n =
q

q − 1
(2.61)

Another treatment to find the relation between n and q can be found in

ref [58]. Now it is noted that the cross connection between Type-A and
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Figure 2.2. Fitting results for Eqs. (2.52) (2.57) for π+ in p+p collisions
at
√

=200 GeV. The solid line, dashed line, refer to Eqs. (2.52) (2.57)
respectively. The ratios of data/fit are shown at the bottom [56]. Data are
taken from STAR [43]

Type-B Tsallis distribution is that they can reproduce the particle spectra

in p+p collisions very well but Type-B gives lower temperatures than ones

given by Type-A as in [56].
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Chapter 3

Nuclear Modification Factor

RAA using Non-Extensive

Statistics

High momentum suppression of light and heavy flavours is considered to

be an excellent probe of jet-medium interactions in QCD matter created

at RHIC and LHC. Utilizing this tool requires accurate suppression pre-

dictions for different experiments, probes and experimental conditions, and

their unbiased comparison with experimental data.

Relativistic heavy-ion collisions are the means to produce the quark

gluon plasma in laboratory and study its properties. Hadrons, which are

abundantly produced in these collisions, are one of the main tools to study

the properties of this hot/dense medium produced. For these hadrons we

are using Non-extensive statistics. By using it we develope a transport

model for RAA estimation.

As we know one of the main tasks of the theory is to link experimental

observables to the different phases and manifestations of the QCD matter.

To achieve this goal, a detailed understanding of the dynamics of heavy-ion

reactions is essential. This is facilitated by transport theory which helps

to interpret or predict the quantitative features of heavy ion reactions. It

is particularly well suited for the non-equilibrium situation, freeze-out as

well as for collective dynamics. Transport models attempt to describe the

full time-evolution from the initial state of the heavy ion reaction up to the

freeze-out of all initial and produced particles after the reaction.
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3.1 Nuclear Modification Factor Overview

In Light Flavour and Heavy Flavour

In order to characterize the quark gluon plasma (QGP), we can study the

characteristics of produced mesons containing at least one heavy quark (c

or b, like cc̄ = J/Ψ, bb̄ = Υ). Comparing their final distribution to the

initial one tells us about certain properties of the QGP, such as its pressure

and density.

Heavy quarks (charm and beauty) provide sensitive probes of the

heavy-ion collision dynamics at both short and long timescales. On one

hand, heavy-flavour production is an intrinsically perturbative phenomenon

which involves large momentum transfer due to the large mass of the quarks

(mc ≈ 1.5 GeV/c2 and mb ≈ 5 GeV/c2) and, thus, takes place on a short

timescale, smaller than the formation time of the QGP. On the other hand,

the long lifetime of charm and beauty quarks allows them to live through

the thermalization phase of the plasma and to possibly interact with the

constituents of the medium.

For all of this and also as by the requirement of our model we need

the information about the transverse momentum of hadrons. The hadron

transverse momentum spectra give insight of particle production mecha-

nisms, bulk properties and evolution of system. Along with this, the quark

contents of hadrons also play a major role in understanding the interac-

tions and behavior of different types quarks inside the medium such as Light

quark and Heavy quark. The heavy quark production and their interaction

with the strongly interacting medium, formed in high-energy heavy-ion col-

lisions, is one of the topic of our consideration. Given their large masses

charm and beauty quarks are produced in hard-scattering processes with

large momentum transfer. Partons traversing the hot-dense medium pro-

duced in heavy-ion collisions suffer significant energy loss which results

in the modification of fragmentation functions and softening of particle

spectra. This modification is quantified by “Nuclear Modification Factor”
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(RAA), which is defined as the ratio of the yield in heavy-ion collision (Au-

Au, Cu-Cu or Pb-Pb) to the yield in “p+p” collisions scaled by the number

of binary collisions. The deviation of RAA from unity is a manifestation of

the medium effects.

RAA =
1

Ncoll

d2NAA/pTdydpT
d2Npp/pTdydpT

.

where the numerator is the of particle production in heavy-ion collisions,

measured as a function of pT and rapidity (y) and d2NPP/pTdydpT is the

yeild of the same process in p + p collisions and Ncoll is the number of

nucleon-nucleon collisions in the system. Heavy quarks are produced pri-

marily at early stages of heavy-ion collisions due to their large masses, and

therefore they carry information about the pre-thermalization properties of

the quark gluon plasma produced in such collisions. Our model to calculate

RAA is quite different from this method. We have used the Non-Extensive

statistical mechanics to study the behaviour of the nuclear matter created

in the heavy-ion collision. Our approach is related to transport equation,

i.e. Boltzmann Transport Equation.

3.1.1 Simplistic Boltzmann Transport Equation

(BTE) and Relaxation Time Approximation

(RTA)

The Boltzmann Transport Equation describes the statistical behaviour of

a thermodynamic system not in thermodynamic equilibrium. Boltzmann

equation is often used in a more general sense and it refers to any ki-

netic equation that describes the change of a macroscopic quantity in a

thermodynamic system. Specifically non-equilibrium statistical mechanics,

the Boltzmann equation or Boltzmann transport equation (BTE) describes

the statistical behaviour of a thermodynamic system not in thermodynamic

equilibrium. It was devised by Ludwig Boltzmann in 1872. The classic ex-

ample is a fluid with temperature gradients in space causing heat to flow
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from hotter regions to colder ones, by the random (and biased) transport

of particles. In the modern literature the term Boltzmann equation is often

used in a more general sense and refers to any kinetic equation that de-

scribes the change of a macroscopic quantity in a thermodynamic system,

such as energy, charge or particle number. Consider particles described by

f , where f is a function of position, momentum and time.

The total differential of f is:

df =
∂f

∂t
dt+

(
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

)
+

(
∂f

∂px
dpx +

∂f

∂py
dpy +

∂f

∂pz
dpz

)
=

∂f

∂t
dt+∇f · dr +

∂f

∂p
· dp

=
∂f

∂t
dt+∇f · pdt

m
+
∂f

∂p
· Fdt (3.1)

Dividing Eq. (3.1) by dt we get

df(x, p, t)

dt
=
∂f

∂t
+ ~v∇xf + F.∇pf (3.2)

Assuming the system is homogeneous and no external force is on the sys-

tem, the 2nd and 3rd term of the above equation goes to zero. So Eq. 3.2

becomes,

df(x, p, t)

dt
=
∂f

∂t
(3.3)

In this scenario it is possible to interpret the collision terms as due to drag

forces and diffusion induced by random collisions. In more precise way we

can recapitulate things as, in initial stage of collision when energy density

is very high, there is a production of heavy particles like charm quark,

means all heavy particles like J/Ψ, Υ etc. Now after this lighter particles

start their formation because there is not much energy density. Now when

medium is formed after the collision some of them may travel through the

medium(QGP)such that they loose some energy passing through medium.

So, inside the medium some high energy particles due to interaction

come to the the low energy pT because of energy loss and some low en-
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ergy particles due to energy gain come to high energy pT. There will be

something like loosing and gaining in this pT range. So we need the infor-

mation about the heavy quarks(Υ J/Ψ), etc & also information about the

medium. This is generally dictated by pQCD because the pT is very high

in the begining. So these are called probes, because by all of this we can

understand, “How the medium is behaving and energy loss here is related

to drag and diffusion like transport coefficients of the medium”.

By all this phenomena, we can quantify that, “How the medium is

behaving”. So these particles are nothing but some probe particles used

to quantify the nuclear medium effect. So here we can define Nuclear

Modification Factor (RAA) as;

RAA =
ffinal
finitial

(3.4)

where, finitial is the initial distribution of the particles during the formation

and ffinal is the distribution of the particles after the interaction with

medium.

Evolution of a thermodynamic system which is not in thermodynamic

equilibrium is governedby Boltzmann transport equation, which is given by

(3.2)

In relaxation time approximation, for deviations of distribution func-

tion f from the equilibrium state feq, by Eqn. 3.3 collision term is expressed

as

∂f

∂t
= −f − feq

τR
(3.5)

Where τR is relaxation time, which is the time taken by a non-equilibrium

system to become a equilibrium system. Putting back in Eq. 3.3

df(x, p, t)

dt
= −f − feq

τR
(3.6)
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Solving the above equation in view of initial conditions,

ffinal = feq + (finitial − feq)e
− tF
τR (3.7)

The final heavy-quark (HQ) spectra may therefore encode a ”memory” of

the interaction history throughout the evolving fireball, by operating in

between the limits of thermalization and free streaming. Now, the nuclear

modification factor is given by

RAA =
ffin
fin

=
feq
fin

+

(
1− feq

fin

)
e

−tF
τR (3.8)

where Boltzmann equilibrium distribution is given by:

feq =
gV

(2π)2
pTmT e

−mT
Teq (3.9)

As the system is in non-equilibrium state, a thermodynamically con-

sistent non-extensive distribution function is given by:

finitial =
gV

(2π)2
pTmT

[
1 + (q − 1)

mT

T

]− q
q−1

. (3.10)

Here, V is the system volume, mT =
√
p2
T +m2 is the transverse mass

and q is called the non-extensive parameter which measures the degree

of deviation from equilibrium. Using Eqs. 3.9 and 3.10(both for mid-

rapidity and for zero chemical potential) nuclear modification factor can

be calculated.

3.1.2 Tsallis-Boltzmann Distribution for RAA in

O(q − 1)

Here heavy quark because quarkonia of heavy quark-antiquark bound states

are promising probes for the QGP created in relativistic heavy-ion colli-

sions. Many studies have been carried out in recent years. These include

experimental measurements of its yield in heavy ion collisions at both the
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Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider

(LHC), as well as theoretical studies based on various models. These stud-

ies have indicated that a quantitative description of quarkonium production

in these collisions requires the understanding of its interactions in both the

produced QGP and study of the initial and final distribution. Heavy-flavor

particles are believed to provide valuable probes of the medium produced

in ultra-relativistic collisions of heavy nuclei. Taylor series expansion of

the (3.10) Tsallis distribution for O{(q − 1)}O {(q − 1)2} is showing here

using it we will calculate the Nuclear Modification Factor:

[
1 + (q − 1)

E − µ
T

]− q
q−1

' e−
E−µ
T

{
1 + (q − 1)

1

2

E − µ
T

(
−2 +

E − µ
T

)
+

(q − 1)2

2!

1

12

[
E − µ
T

]2
[

24− 20
E − µ
T

+ 3

(
E − µ
T

)2
]

+ O
{

(q − 1)3
}

+ ...} (3.11)

in (3.11) if µ = 0 then the initial distribution fin for O(q − 1) will be

fin = e−
E
T

{
1 +

(
q − 1

2

)(
E

T

)(
−2 +

E

T

)}
(3.12)

and feq will be

feq = e−βE, (3.13)

where E = mT cosh η and mT =
√
m2 + p2

T

Putting values of equation (3.12) and equation (3.13) in equation (3.8)

and using µ = 0 and η = 0 we get,

RAA =
1

1 + (q−1)
2

mT
T

(−2 + mT
T

)
+

[
1− 1

1 + (q−1)
2

mT
T

(−2 + mT
T

)

]
e

−tF
τR (3.14)

Here tF is freeze-out time & τR is the relaxation time. For J/Ψ particle the

values of tF = 0.8, τR = 0.2 are chosen to be and mass m = 3.096 GeV/c2.
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Here we plot our function RAA vs pT. To identify some interesting thing

we have to do the same procedure for different statistics. Only after that

we can came on a conclusion.
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Figure 3.1. Nuclear modification factor versus pT graph for different values of
non-extensive parameter using Tsallis Boltzmann Distribution with O(q − 1).

3.1.3 Tsallis-Boltzmann Distribution for RAA in

O(q − 1)2

Now by using the expansion of eq (3.11) up to second order we get:

fin = e
mT
T

[
1 +

(
q − 1

2

)(mT

T

)(
−2 +

mT

T

)]
+

(q − 12)

2!

1

12

(mT

T

)2

[{
24− 20

mT

T
+ 3

(mT

T

)2
}]

(3.15)

Putting equation (3.15) and equation (3.13) in (3.8)

RAA =
1

1 + (q−1)
2

mT
T

(
−2 + mT

T

)
+ (q−1)

2!

2 1
12

(
mT
T

)2
(

24− 20mT
T

+ 3
(
mT
T

)2
)

1− 1

1 + (q−1)
2

mT
T

(
−2 + mT

T

)
+ (q−1)

2!

2 1
12

(
mT
T

)2
(

24− 20mT
T

+ 3
(
mT
T

)2
)
 e−tF

τR
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This is the Eqn. (3.16) is final expression of RAA for O(q − 1)2. Hence we

can conclude that at q = 1 there no effect of order & suppression has the

same magnitude as at the q = 1 for O(q − 1).
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Figure 3.2. Nuclear modification factor versus pT graph for different values of
non-extensive parameter using Tsallis Boltzmann Distribution with O(q − 1)2

[62].

3.1.4 Tsallis Bose-Einstein Distribution for RAA in

O(q − 1)

The Tsallis Bose-Einstein distribution is,

fBET =
(
(xΦ + 1)1/2 − 1

)−x−1
, (3.16)

where Φ = E−µ
T

, x = (q − 1).

After Taylor expansion in up to O(q−1) we get the initial distribution

fBET =
1

eΦ − 1
+
xeΦΦ2 − 2(eΦ − 1) log(eΦ − 1)

2(eΦ − 1)2
(3.17)

feq =
1

eΦ − 1
(3.18)

fin = fBET (3.19)
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Using (3.17), (3.18), (3.19) in equation (3.8) we get,

RAA =
1

1 + xeΦΦ2−2(eΦ−1) log(eΦ−1)
2(eΦ−1)

[
1

1 + xeΦΦ2−2(eΦ−1) log(eΦ−1)
2(eΦ−1)

]
e

−tF
τR (3.20)

Here tF is freeze-out time & τR is the relaxation time. For J/Ψ particle the

values of tF , τR are chosen to be and mass m = 3.096 GeV/c2 . Hence we

can conclude that at q = 1 there no effect of order & suppression has the

same magnitude as at the q = 1 for O(q−1) hence the model is statistically

independent. At q = 1 it follows same as in Boltzmann.
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Figure 3.3. Nuclear modification factor versus pT graph for different values of
non-extensive parameter using Tsallis Bose-Einstein Distribution with O(q−1).

3.1.5 Tsallis Bose-Einstein Distribution for RAA in

O(q − 1)2

After the Taylor expansion upto O(q − 1)2 we get the initial distribution,

fBET =
1

eΦ − 1
+
xeΦΦ2 − 2(eΦ − 1) log(eΦ − 1)

2(eΦ − 1)2

+
x2

2!

3(eΦΦ2 − 2(eΦ − 1) log(eΦ − 1))2 − eΦΦ2(−3Φ2 − 8Φ + 4eΦ(2Φ− 3) + 12)

12(eΦ − 1)3

fin = fBET (3.21)
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Using equation (3.21), (3.18), in equation (3.8) we get

RAA =
1

1 + xeΦΦ2−2(eΦ−1) log(eΦ−1)
2(eΦ−1)

+ A

[
1− 1

1 + xeΦΦ2−2(eΦ−1) log(eΦ−1)
2(eΦ−1)

+ A

]
e

−tF
τR

This is the Eqn.(3.22) is final expression for RAA for O(q − 1)2. Here tF

is freeze-out time & τR is the relaxation time. For J/Ψ particle the values

of tF , τR are chosen to be and mass m = 3.096 GeV/c2. Hence we can

conclude that at q = 1 there no effect of order & suppression has the same

magnitude as at the q = 1 for O(q − 1) hence the model is statistically

independent.

A =
x2

2!

3(eΦΦ2 − 2(eΦ − 1) log(eΦ − 1))2 − eΦΦ2(−3Φ2 − 8Φ + 4eΦ(2Φ− 3) + 12)

12(eΦ − 1)2
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Figure 3.4. Nuclear modification factor versus pT graph for different values
of non-extensive parameter using Tsallis Bose-Einstein Distribution with O(q−
1)2.
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3.1.6 Tsallis Fermi-Dirac distribution for RAA in

O(q − 1)

Tsallis Fermi-Dirac distribution is

fFDT =
(
(xΦ + 1)1/2 + 1

)−x−1
(3.22)

where Φ = E−µ
T

, x = (q − 1) After the Taylor expansion upto O(q − 1) we

get the initial distribution,

fFDT =
1

eΦ + 1
+
xeΦΦ2 − 2(eΦ + 1) log(eΦ + 1)

2(eΦ + 1)2

feq =
1

eΦ + 1
(3.23)

fin = fFDT (3.24)

Using equation (3.24), (3.23) in equation (3.8) we get

RAA =
1

1 + xeΦΦ2−2(eΦ+1) log(eΦ+1)
2(eΦ+1)

[
1− 1

1 + xeΦΦ2−2(eΦ+1) log(eΦ+1)
2(eΦ+1)

]
e

−tF
τR(3.25)

Here tF is freeze-out time & τR is the relaxation time. For lambda particle

the values of tF = 0.8, τR = 0.2 are chosen to be and mass m = 1.15

GeV/c2. Hence we can conclude that at q = 1 there no effect of order &

suppression has the same magnitude as at the q = 1 for O(q−1) hence the

model is statistically independent.

3.1.7 Tsallis Fermi-Dirac distribution for RAA in

O(q − 1)2

fFDT =
1

eΦ + 1
+
xeΦΦ2 − 2(eΦ + 1) log(eΦ + 1)

2(eΦ + 1)2

+
x2

2!

3(eΦΦ2 − 2(eΦ + 1) log(eΦ + 1))2 − eΦΦ2(−3Φ2 + 8Φ + 4eΦ(2Φ− 3)− 12)

12(eΦ + 1)3
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Figure 3.5. Nuclear modification factor versus pT graph for different values of
non-extensive parameter using Tsallis Fermi-Dirac Distribution with O(q− 1).

feq =
1

eΦ + 1
(3.26)

fin = fFDT (3.27)

Using equation (3.26) (3.27) in (3.8)

RAA =
1

1 + xeΦΦ2−2(eΦ−1) log(eΦ+1)
2(eΦ+1)

+ C

[
1− 1

1 + xeΦΦ2−2(eΦ+1) log(eΦ+1)
2(eΦ+1)

+ C

]
e

−tF
τR

This Eqn (3.28) is the Tsallis-FD for RAA O(q − 1)2. Here tF is freeze-

out time & τR is the relaxation time. For lambda particle the values of

tF = 0.8, τR = 0.2 are chosen to be and mass m = 1.15 GeV/c2. Hence we

can conclude that at q = 1 there no effect of order & suppression has the

same magnitude as at the q = 1 for O(q−1) hence the model is statistically

independent.

C =
x2

2!

3(eΦΦ2 − 2(eΦ + 1) log(eΦ + 1))2 − eΦΦ2(−3Φ2 + 8Φ + 4eΦ(2Φ− 3)− 12)

12(eΦ + 1)2

As we know both initial and final state effects are expected to enter in the

production and propagation of heavy quarks, respectively; consequently,

they are information-rich probes. As these probes containing information

about the evolution of the medium and also,”How the medium is behaving
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Figure 3.6. Nuclear modification factor versus pT graph for different values of
non-extensive parameter using Tsallis Fermi-Dirac Distribution with O(q−1)2.

with these probe particles?”. In our model we quantify that all statistics

follow the same order and hence we can say that the model is statistically

indipendent.

In comparison with the experimental observation we have fitted our

model with the experimental data to observe the suppression/enhancement.

As it is seen that it describes the experimental data very well. In order to

match the theoretical results with the experimental we obtain data in heavy

ion collisions at LHC we have taken tF/τR, T, q as an free parameter to

fit the data. In Fig. (3.7) it is presented in terms of a nuclear modification

factor which exhibits strong suppression in the pT range around 6-7 GeV/c.

Hence we can say that there is a enegy lose of the heavy quarks due to

the medium formation. In present Fig. (3.7) it is presented in terms of

a nuclear modification factor which exhibits strong suppression in the pT

range around 6-7 GeV/c. For increasing q value this suppression becomes

higher [62].
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Chapter 4

Summary

As mentioned previously, the Tsallis distribution was derived as the single

particle distribution corresponding to a generalization of the Boltzmann-

Gibbs entropy through the introduction of the non-extensivity parameter

“q”. Whereas the Boltzmann-Gibbs distributions are found to apply to

systems which exhibit an exponential relaxation in time to a stationary

state characterized by exponentials in energy at thermal equilibrium. The

generalized form is found to apply to systems which exhibit power laws.

In this brief work we have come to the conclusion that our new form of

statistics is thermodynamically consistent. In conclusion we have formu-

lated a generalized nonextensive Tsallis entropy and statistics which in

the limit q → 1 the familiar BG statistics is recovered. Furthermore, the

generalisation has the attractive property of being thermodynamically con-

sistent, and thusly does not violate the four thermodynamic laws deemed

characteristic of all systems. This nonextensive Tsallis entropy results in a

much better fit to pT spectra than the associated BG entropy. The Tsallis

entropy gives extremely good fits to the single-species particle spectra of

various hadrons.

It does however, appear to fall somewhat short when considering

combined particle spectra, and this should be further considered. In fact,

given that Tsallis distributions appear to fit pT spectra up to extremely

high energies [39], it may be concluded that the hadronization process

obeys some generalised statistical process. Within this framework there is

still the question of the physical significance of the parameter q. Evidently,

one would expect q to depend on the microscopic mechanisms of the system,

however a rigorous approach in which a generalised entropy is derived.
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In this dissertation, our central goal has been to study and to ex-

plore properties of the QGP using heavy quarks (like charm and bottom,

as probes) in non-extensive statistics. It has been explained that the heavy

quarks, produced quite early(before the formation of QGP medium) in the

heavy ion collisions due to the hard scatterings, can be described by the

Brownian motion in the thermal bath of light quarks and gluons. The equa-

tion describing the motion of heavy quark, i.e. the Boltzmann Transport

Equation(BTE) has been discussed and solved in this work. The heavy

quark production time is smaller than the QGP lifetime and heavy quarks

can pass through the entire evolution of the fireball. The heavy quark

equilibration time is of the order of the QGP lifetime, but smaller than

the light-quark one. Since the mass of the heavy quark is bigger than the

temperature of the medium. Let us summarise the main findings of this

discourse and what we have learnt about various properties of QGP.

• The medium of QGP created in the heavy ion collisions, is assumed

to be in thermal equilibrium. Heavy quarks, which are produced in

the early hard scatterings has been used to probe the properties of

QGP. The equation of motion of heavy quark immersed in a QGP

fluid can be described by the well-known Boltzmann Transport Equa-

tion (BTE). As well solve it in the limits of Non-Extensive statistical

mechanics.

• Before calculating the different statistics for heavy quarks, we have

solve the BTE in the domain of Relaxation Time Approximation

(RTA).

• It is seen that if “q” is increasing consequently RAA is decreasing

i.e. by the Eqn. 3.8 it is said that the f − feq is the collision term

which encodes interaction of the probe with the medium. Larger the

interaction larger the energy loss, that means larger f−feq larger the

energy loss. That means larger q → larger f − feq → larger energy

loss → smaller RAA value.
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• The study of charmonium suppression(J/Ψ) has been done by using

our model with experimental data of LHC at 2.76 TeV for 0 − 90%

centrality.

We have studied the quarkonium formation in QGP by using the

approach based BTE and Relaxation Time Approximation. Measurements

of the QGP show it is a short lived state of dense, strongly interacting

matter in thermal equilibrium, that rapidly expands and cools. Pb-Pb

collisions provide a vital baseline with which we compare our theretical

model with experimental data and understand the evolution of the medium.

The above mentioned points are the gist of the work which has been

covered in this entire thesis. In view of these findings, we can conclude

that, in this dissertation, we were able to illustrate a basic picture of the

heavy quark travelling inside the medium of QGP and to develop an idea

about various properties of QGP by studying the equation of motion of

Heavy quark. In this way the heavy quark successfully can be described as

a good probe of the thermalised medium of Quark Gluon Plasma.

The pursuit of knowledge led us to a pathway of illumination where

we have tried to learn and discuss the most fundamental questions of all

the decades:“How was the universe like at the beginning just after the Big

Bang”? and “After the miniature universe has been created due to the

heavy ion collisions in the laboratories, how can we describe the medium

formed called Quark Gluon Plasma”.
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Appendix A

Appendix

A.1 Quantum Statistics

In this section we shall briefly describe the formulation of typical statistical

mechanics used in the, non-interacting hadron gas, models used to describe

the particles generated in heavy-ion collisions. When two heavy-ions col-

lide they produce what is known as a fireball. In the primordial fireball

numerous hadrons are created. In such high energy interactions, particle

numbers are not conserved. However, it is known that such interactions

do conserve the initial quantum number content of the interaction. Fur-

thermore, the centrality of the collision also affects the quantum number

content. The quantum numbers usually conserved when performing these

calculations are baryon number, B, charge, Q, and strangeness, S and occa-

sionally charm, C. Topness, T , and bottomness b are usually not included

as it is reasonable to assume that such heavy quarks are very rarely pro-

duced (at these energies). Thus the chemical potential associated with a

particular hadron species, i, in the hadron gas at freeze-out is given by

µ = µbBi+µQQi+µSSi+µCCi, where µB, µQ, µS, µC are, respectively, the

chemical potentials associated with baryon number, charge, strangeness,

and charm of the system. Evidently, the net quantum num ber content of

the system is given by:

B =
∑
i

BiNi, 0 =
∑

SiNi, Q =
∑
i

QiNi, 0 =
∑
i

CiNi

where Ni is the number of particles of specie i in the hadron gas, and the

sum is taken over both particles and anti-particles. There are three statis-
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tical ensembles, namely, the micro-canonical (MCE), canonical (CE) and

grand canonical (GCE) ensembles that are used extensively. Of these, the

MCE is the most restrictive, in that the energy and the quantum numbers

in such ensembles are fixed precisely. Somewhat less restrictive is the CE

in which relevant quantum numbers remain fixed but the energy; however,

is set on average by the temperature, T , of the system. That is to say; if

one were to measure the total energy of the system numerous times, these

calculated energies would fluctuate around the average energy of the sys-

tem (determined by the temperature). In the GCE, both the energy and

quantum numbers, respectively, are set on average by the temperature, T

, and the chemical potentials, where i represents some conserved quantum

number. With the appropriate choice of ensemble, one’s task is to compute

the partition function of the system under consideration. Once evaluated,

the partition function can be utilised to calculate the relevant thermody-

namic quantities characteristic of the fireball at freeze-out. Generally, in

the GCE, the partition function is derived via considering the transfer of

energy and particles between a system and a large reservoir. We can ob-

tain the same probability distribution function via the extremization of the

Shannon-Gibbs entropy given by:

S = −
W∑
i

pi ln pi (1.1)

where the index i labels each unique configuration (microstate) of the sys-

tem and W represents the total number of possible configurations of the

system, with the constraints,

f(pi) =
W∑
i

pi = 1, (1.2)

g(pi) =
W∑
i

Eipi = Ē, (1.3)

h(pi) =
W∑
i

Nipi = N̄ (1.4)
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The given the constraints in (1.2) to (1.4) we seek to maximize the

entropy. When maximising a multivariable functional subject to a given

number of constraints, the approach used is that of the method of Lagrange

multipliers. Consequently, the variational problem that requires solving is:

δ[S(pi)− αδf(pi)− βδh(pi)− γδh(pi)] = 0 (1.5)

Evidently (1.5) is merely a compact form of expressing W equations of the

form:

ln pn + 1 = −α− βEn − γNn (1.6)

(1.6) implifies to the following expression for the probabilities of the various

states of the system at equilibrium:

pn = Ae−(βEn+γNn) (1.7)

where 1 A = exp−α−1. Moreover, the constraint expressed in (1.2) allows

for the reformulation of A into the following :

A =

(∑
i

e−(βEi+γNi)

)−1

(1.8)

Describing the system in terms of its possible macrostates (as opposed to

microstates), (1.9) can be reformulated into the more familiar form:

A =

(
∞∑
N=0

∑
i

e−(βEi+γNi)

)−1

=
1

ZGC
(1.9)

where the index i now represents the macrostate (defined solely by the

energy and not the number of particles of the system) with energy Ei , and

N the number of particles (which is run over for each particular macrostate).

Hence, we can identify A = 1/ZGC where ZGC is the partition function of

1Evidently, this is under the assumption that a configuration is uniquely determined
by its energy and number of particles. If not, the degeneracy of the state must be
included.
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GCE by identifying the parameters β = 1
T

and γ = βµ. Evidently, we have

derived the probability distribution function for the GCE at equilibrium

via the extremization of the BG entropy under the constraints expressed in

(1.2), (1.3), (1.4), under purely statistical, non-physical, arguments. If the

given system is quantum mechanical, then it will be composed of energy

levels εν each with a given number of particles n , such that
∑
nνεν = En

and
∑
nν = N . Using this new prescription, the GC partition function is

given by:

ZGC =
∞∑
N

∗∑
{nν}

∏
ν

e−β(ενnν−µnν) (1.10)

=
∗∑
{nν}

∏
ν

e−β(ενnν−µnν) (1.11)

where
∑
{nν} =

∑
n1

∑
n2 ....

∑
nα and in (1.10) is representative of the

constraint:
∑
nν = N . Consequently one can then rewrite (1.11) as:

ZGC =
∑
{nν}

∏
ν

[e−β(εν−µ)]nν (1.12)

ZGC =
∏
ν

zν (1.13)

where z is the partition function for the vth energy level. If the system is

composed of fermions then,

zFDν = 1 + e−β(εν−µ) (1.14)

If, instead, the system is comprised of bosons, the partition function for

energy level ν is given by:

zBEν =
∞∑
nν=0

(e−β(εν−µ)nν ) (1.15)

=
1

1− e−β(εν−µ)
(1.16)
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The average population number of a given quantum state will be given by:

〈nν〉 =

∑∞
nν=0

nνe
−β(ενnν−µnν)∑∞

nν=0
e−β(ενnν−µnν)

(1.17)

= − 1

β

∂ ln zµ
∂εν

(1.18)

which in the case of fermions and bosons is given by:

〈nν〉FD,BE =
1

eβ(εν−µ) ± 1
(1.19)

where the plus and minus signs denote the average occupation number for

fermions and bosons respectively. Since the average number of particles is

given by:

N = −∂Ω

∂µ

= T
∂ lnZGC

∂µ

= ±T ∂
∑

ν ln(1± e−β(εµ−µ))

∂µ

=
∑
ν

e−β(εν−µ)

1± e−β(εν−µ)

=
∑
ν

〈nν〉 (1.20)

We can now multiply and divide by a factor of ∆pi , but since ∆pi =

2π/Li (quantum mechanical particle in a box with continuous boundary

conditions) where i = x, y, z we can rewrite (1.20) as:

N̄ =
∑
ν

V

(2π)3
〈nν〉 (∆px)(∆py)(∆pz) (1.21)

where V =
∏

i Li.Taking the limit where Li → ∞(the large volume ap-

proximation) we find that the average number of particles is given by:

N̄ = V

∫
d3p

(2π)3
〈nν〉

= V

∫
d3p

(2π)3

1

eβ(ε−µ) ± 1
(1.22)
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Using the above result, it can be easily shown that the entropy for a gas of

identical fermions/bosons is given by:

SFD,BE = −
∑
ν

[nν lnnν ± (1∓ nν) ln(1∓ nν)] (1.23)

Evidently, in the Boltzmann limit, i.e. an ideal gas of extremely low con-

centration or high temperature, the expression for the average occupation

number expressed in (1.19) reduces to:

〈nν〉B = e−β(εν−µ) (1.24)

Thus, using the expression for the Boltzmann approximation for the mean

occupation number in (1.20), the expression for the entropy in (1.23), in

the Boltzmann limit, simplifies to:

SB = −
∑
ν

[nν lnnν − nν ] (1.25)

One can show naturally in an analogous manner to the previous analy-

sis that the maximization of this particular entropy with respect to the

constraints:

g =
∑

nνεν = Ē (1.26)

h =
∑
ν

nν = N̄ (1.27)

The other statistics we can quantify by the following way;

S = −
∑

p ln p

Using quantum statistics the expression for the entropy is given by:

S = −
∏
ν

∑
nν

e−β(εν−µ)nν∏
α zα

ln

(
e−β(εν−µ)nν∏

γ zγ

)
(1.28)
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Simplifying the expression in (1.28) we obtain the following:

S = −
∏
ν

∑
nν

e−β(εν−µ)nν∏
α zα

[
−β(εν − µ)nν − ln

(∏
γ

zγ

)]

=
∏
ν

∑
nν

β(εν − µ)nνe
−β(εν−µ)nν∏

α zα
+
∏
ν

∑
nν

ln
(∏

γ zγ

)
e−β(εν−µ)nν∏

α zα

=
∏
ν

∑
nν

β(εν − µ)nνe
−β(εν−µ)nν∏

α zα
+ ln

(∏
γ

zγ

)
(1.29)

But the first term in (1.29) can be expressed as a partial derivative, namely:

T
∂ ln(

∏
ν z{nu)

∂T
=
∏
ν

∑
nν

β(εν − µ)nνe
−β(εν−µ)nν∏

α zα
(1.30)

As such using (1.29) we can rewrite (1.29) as the following:

S = T
∂ ln(

∏
ν zν)

∂T
+ ln

(∏
γ

zγ

)

=
∂

∂T
T ln

(∏
ν

zν

)
=

∂

∂T
(T lnZGC) (1.31)

We know that for fermions and bosons ZFD,BE
GC =

∏
ν(1 ± e−β(εν−µ))±1,

therefore:

lnZFD,BE
GC = ±

∑
ν

ln(1± e−β(εν−µ)) (1.32)
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Thus the entropy is given by:

SFD,BEGC =
∑
ν

{
ln(1± e−β(εν−µ))±1 + β(εν − µ)

(
e−β(εν−µ)

1± e−β(εν−µ)

)}
(1.33)

=
∑
ν

{
∓
(

1

1± e−β(εν−µ)

)
+

(
β(εν − µ)

eβ(εν−µ) ± 1

)}
=

∑
ν

{
∓
[
ln

(
eβ(εν−µ)

eβ(εν−µ) ± 1

)]
+

(
β(εν − µ)

eβ(εν−µ) ± 1

)}
=

∑
ν

{
∓
[(

eβ(εν−µ) ± 1

eβ(εν−µ) ± 1

)
ln

(
eβ(εν−µ)

eβ(εν−µ) ± 1

)](
β(εν − µ)

eβ(εν−µ) ± 1

)}
=

∑
ν

{
− 1

eβ(εν−µ) ± 1
ln

(
1

1± eβ(εν−µ)

)}
−

∑
ν

{
β(εν − µ)

eβ(εν−µ) ± 1
∓ eβ(εν−µ)

eβ(εν−µ) ± 1
ln

(
eβ(εν−µ)

eβ(εν−µ) ± 1

)
+

(
β(εν − µ)

eβ(εν−µ) ± 1

)}

Hence we get

SFD,BEGC = −
∑
ν

{nν lnnν ± (1∓ nν) ln(1∓ nν)} (1.34)

A.2 Kinematics

We introduce the basic kinetic variables used in high energy heavy-ion col-

lisions.

The energy in the CM frame can be calculated using the 4-vectors

E(E,0,0,pz). It is simply;

ECM =
√

(Eµ + Eν)2 =
√

(2E)2 (1.35)

i.e. twice the beam energy. Usually the CM energy is denoted as
√

sNN.

For heavy ion collision
√

sNN is often used instead, the
√

sNN implies the

energy per nucleon pair. Using the available energy per nucleon pair makes

it easier to compare heavy ion experiments with different kinds of nuclei.

Transverse Momentum & Energy

62



Often the momentum is divided into two terms. A transverse momen-

tum, and a pz momentum.The transverse momentum has the advantage of

being Lorentz invariant. It is defined as:

pT =
√
p2
x + p2

y (1.36)

The transverse mass is defined as:

mT =
√
m2

0 + p2
T (1.37)

where m0 is the rest mass of the particle. Energy of a given particle is

defined through the relativistic formula:

E =
√
m2
T + p2

z. (1.38)

Rapidity

In relativity, rapidity denoted by y is commonly used as a measure

for relativistic velocity. For one-dimensional motion, rapidities are addi-

tive whereas velocities must be combined by Einstein’s Velocity-addition

formula. For low speeds, rapidity and velocity are proportional, but for

higher velocities, rapidity takes a larger value, the rapidity of light being

infinite.

y =
1

2
ln
E + pz
E − pz

, (1.39)

where pz is the component of momentum along the beam axis. Rapidity has

the advantage of being additively invariant under Lorentz transformations,

while pz is not. This is the rapidity of the boost along the beam axis which

takes an observer from the lab frame to a frame in which the particle

moves only perpendicular to the beam. This also means that y is Lorentz
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invariant.

E = mT cosh y (1.40)

pz = mT sinh y

Pseudorapidity

In experimental particle physics, pseudorapidity, η, is a commonly used

spatial coordinate describing the angle of a particle relative to the beam

axis. It is defined as:

η ≡ − ln [tan θ/2]

where where tan(θ) =
√
x2 + y2/z is the angle between the particle three-

momentum p and the positive direction of the beam axis. Inversely,

θ = 2arc tan(eη)

As a function of three-momentum p, pseudorapidity can be written as;

η =
1

2
ln

(
|p|+ pL
|p| − pL

)
= arc tanh

pL
|p|

where |p| = pT cosh η, pz = pT sinh η & pL is the component of the

momentum along the beam axis (i.e. the longitudinal momentum - using

the conventional system of coordinates for hadron collider physics, this is

also commonly denoted pz).

Invariant Yeild

The differential invariant yield section is defined as the number of par-

ticles in a phase space segment, which is commonly described in cylindrical
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coordinates.

E
d3N

dp3
=

d3N

pxdpydpz

=
d3N

pTdpTdφdz

=
d2N

2πpTdpTdz

=
d2N

2πpTdpTmTd(mT sinh y)

=
d2N

2πpTdpTmT cosh ydy

=
d2N

2πpTdpTdy
(1.41)

dpT
dmT

=
d
√
m2
T −m2

0

dmT

=
2mT

2pT

dpT =
mT

pT
dmT

d3N

dp3
=

d2N

2πEmTdmTdpTdy
(1.42)
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