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Preface 

 

This report on Application of Modern Control Theory on DC-DC Converters is 

prepared under the guidance of Dr. Amod C. Umarikar. 

Through this report, we have tried to give a detailed analysis of the various control 

techniques that can be used for the voltage control of commonly-used DC-DC 

converters. We have tried to the best of our abilities and knowledge to explain the 

content in a lucid manner. We have also added the circuit schematics in Simulink 

and the output responses in both time and frequency domain to make the presentation 

more illustrative. 
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Abstract 

 

This project report documents the research on the different types of control methods 

and topologies that can be applied to the self-correcting mechanism of the output of 

common DC-DC converters, and focuses especially on the still uncharted technique 

of using State Space analysis to provide a control feedback mechanism for these 

converters. All the simulations on the various circuits were performed on Simulink 

in MATLAB. Extensive literature survey was performed to learn the various 

mathematical techniques employed to devise efficient control systems. 
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INTRODUCTION 

Voltage regulation is the need of every electrical circuit that we see in our day-to-day lives. A step-

up converter that can account for a greater range of voltage (12-48 V) is always preferable over a 

step-up converter that has a low range for voltage (24-40 V). Naturally, one would want to keep 

their microcontroller board or any other machine that uses step-up converter as its power source 

to running even when the voltage range varies for a wider range than the average. 

DC-DC converters, particularly the Boost-type converters, suffer from various inaccuracies in their 

output which is affected by the resistances of the inductors and the capacitors involved. The higher 

the order of the converter, the more there is the need of a  control feedback mechanism. Because 

of the extensive use of converters in most of the modern appliances, it is very important that 

efficient and efficacious methods are evolved and perfected to control their behavior. 

The most widely-used methods of providing compensation or control are the Root Locus technique 

and the Bode plot technique. A brief encounter with these techniques would prove – at later stages 

– that the SS method provides more flexibility and more accurate output than the classical 

counterparts. 

An important aspect of this project was to look into the observer design using SS analysis. Many-

a-times, the only sensors available for measuring states are those of the output/s, which severely 

limits our ability to devise a robust system for control. To deal with this problem, the concept of 

observers is used to estimate the required states within a band of error tolerance. 

The converters worked upon in this project are Boost-type: Second-order Boost converter, 

Quadratic Boost Converter, and SEPIC/Zeta Converter. 

Anyone working on the implementation of SS techniques to control DC-DC converters can use 

this project as a guideline. 

The key assumptions while working on this project: 

 The LC charging and discharging time constants are far greater than the operating sample time 

of the MOSFET driver.  

 The resistances of inductor and capacitor are too small and therefore neglected in the steady 

state and dynamic analysis.  

 Simulations and calculations are carried out in ideal states on MATLAB Simulink. 
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The team members were responsible for collectively documenting the progress report; therefore, 

this report covers all the aspects of the project.  

The major accomplishments of this project are: 

1. Theory: The participants of this project were involved in an extensive literature survey when it 

came to SS analysis. Apart from that, classical control techniques were also used, and their 

relevance is also enumerated here. Various mathematical models and stratagems were learnt so as 

to be employed for finding out the values of the gain blocks while using the modern control theory. 

2. Simulations: By using the various modules in MATLAB and Simulink, the control mechanisms 

were successfully simulated for DC-DC converters of second and fourth orders (Second-order 

Buck and Boost Converters, Quadratic boost converter, and SEPIC and Zeta converters). The 

desired transient and steady-state characteristics were also realized. 

The dependence of Boost converter output on just the duty cycle made the duty cycle a key factor 

in setting limits for a DC-DC converter. The constraint of Duty cycle makes it difficult to achieve 

wider range of input. This constraint is typically 20%-80%; in extremes it can be stretched till 5%-

95%. 

The theoretical analysis was verified in two stages – open loop and closed loop. The former 

verified the steady state analysis and the simulations in the latter verified the small signal analysis. 

These simulations matched the exact theoretical results which can further be used in hardware 

implementation. 
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CHAPTER 1               THE DC-DC CONVERTER 

Before the development of power semiconductors and allied technologies, one way to convert the 

voltage of a DC supply to a higher voltage, for low-power applications, was to convert it to AC by 

using a vibrator, followed by a step-up transformer and rectifier. For higher power an electric 

motor was used to drive a generator of the desired voltage (sometimes combined into a single 

"dynamotor" unit, a motor and generator combined into one unit, with one winding driving the 

motor and the other generating the output voltage). These were relatively inefficient and expensive 

procedures used only when there was no alternative, as to power a car radio (which then used 

thermionic valves/tubes requiring much higher voltages than available from a 6 or 12 V car 

battery). The introduction of power semiconductors and integrated circuits made it economically 

viable to use techniques as described below, for example to convert the DC power supply to high-

frequency AC, use a transformer—small, light, and cheap due to the high frequency—to change 

the voltage, and rectify back to DC. Although by 1976 transistor car radio receivers did not require 

high voltages, some amateur radio operators continued to use vibrator supplies and dynamotors 

for mobile transceivers requiring high voltages, although transistorized power supplies were 

available.  

While it was possible to derive a lower voltage from a higher with a linear electronic circuit, or 

even a resistor, these methods dissipated the excess as heat; energy-efficient conversion only 

became possible with solid-state switch-mode circuits. 

DC to DC converters are used in portable electronic devices such as cellular phones and laptop 

computers, which are supplied with power from batteries primarily. Such electronic devices often 

contain several sub-circuits, each with its own voltage level requirement different from that 

supplied by the battery or an external supply (sometimes higher or lower than the supply voltage). 

Additionally, the battery voltage declines as its stored energy is drained. Switched DC to DC 

converters offer a method to increase voltage from a partially lowered battery voltage thereby 

saving space instead of using multiple batteries to accomplish the same thing. 

Most DC to DC converter circuits also regulate the output voltage. Some exceptions include high-

efficiency LED power sources, which are a kind of DC to DC converter that regulates the current 

through the LEDs, and simple charge pumps which double or triple the output voltage. 

Transformers used for voltage conversion at mains frequencies of 50–60 Hz must be large and 

heavy for powers exceeding a few watts. This makes them expensive, and they are subject to 

https://en.wikipedia.org/wiki/Transformer
https://en.wikipedia.org/wiki/Rectifier
https://en.wikipedia.org/wiki/Amateur_radio
https://en.wikipedia.org/wiki/Transceiver
https://en.wikipedia.org/wiki/Cellular_phone
https://en.wikipedia.org/wiki/Laptop_computer
https://en.wikipedia.org/wiki/Laptop_computer
https://en.wikipedia.org/wiki/Battery_(electricity)
https://en.wikipedia.org/wiki/Electrical_network
https://en.wikipedia.org/wiki/LED_power_sources
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energy losses in their windings and due to eddy currents in their cores. DC-to-DC techniques that 

use transformers or inductors work at much higher frequencies, requiring only much smaller, 

lighter, and cheaper wound components. Consequently, these techniques are used even where a 

mains transformer could be used; for example, for domestic electronic appliances it is preferable 

to rectify mains voltage to DC, use switch-mode techniques to convert it to high-frequency AC at 

the desired voltage, then, usually, rectify to DC. The entire complex circuit is cheaper and more 

efficient than a simple mains transformer circuit of the same output. 

We performed the steady state analyses on buck and boost converters. A buck converter (step-

down converter) is a DC-to-DC power converter which steps down voltage (while stepping up 

current) from its input (supply) to its output (load). A boost converter, on the other hand, is a DC-

to-DC power converter that steps up voltage (while stepping down current) from its input (supply) 

to its output (load). 

 

 

 

 

 

 

 

 

 

 

 

 

 

https://en.wikipedia.org/wiki/DC-to-DC_converter
https://en.wikipedia.org/wiki/DC-to-DC_converter
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   CHAPTER 2                 CLASSICAL CONTROL 

          APPROACH 
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2.1 Equivalent block diagram for feedback control 

The Bode Plot is a classical approach of dealing with control feedback. The addition of poles and 

zeros is simple and intuitive. The main focus is on the following two parameters pertaining to a 

closed-loop system. 

 Gain margin, GM. The gain margin is the change in open-loop gain, expressed in decibels (dB), 

required at 180o of phase shift to make the closed-loop system unstable. 

 Phase margin, FM. The phase margin is the change in open-loop phase shift required at unity 

gain to make the closed-loop system unstable. 

 

𝑑𝑥
∧

(𝑡)

𝑑𝑡
= 𝐴𝑥

∧
(𝑡) + 𝐵𝑢

∧
(𝑡) + [(𝐴1 − 𝐴2)𝑋 + (𝐵1 − 𝐵2)𝑈]𝑑

∧

(𝑡) 

 

𝑦
∧

(𝑡) = 𝐶𝑥
∧

(𝑡) + 𝐸𝑢
∧

(𝑡) + [(𝐶1 − 𝐶2)𝑋 + (𝐸1 − 𝐸2)𝑈]𝑑
∧

(𝑡) 
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𝐴 = 𝐷𝐴1 + 𝐷′𝐴2 

𝐵 = 𝐷𝐵1 + 𝐷′𝐵2 

𝐶 = 𝐶𝐵1 + 𝐷′𝐶2 

𝐸 = 𝐸𝐵1 + 𝐷′𝐸2 

 

The salient features of the line-to-output and control-to-output transfer functions of the basic buck, 

boost, and buck-boost converters are summarized. In each case, the control-to-output transfer 

function is of the form 

Salient features of the small signal CCM transfer functions of some basic DC-DC converters. 

 

 

Stability 

It is well known that adding a feedback loop can cause an otherwise stable system to become 

unstable. Even though the transfer functions of the original converter, as well as of the loop gain 

T(s), contain no right half-plane poles, it is possible for the closed-loop transfer functions to contain 

right half-plane poles. The feedback loop then fails to regulate the system at the desired quiescent 

operating point, and oscillations are usually observed. It is important to avoid this situation. And 

even when the feedback system is stable, it is possible for the transient response to exhibit 

undesirable ringing and overshoot. However, a special case of the theorem known as the phase 

margin test is sufficient for designing most voltage regulators 
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The Phase Margin Test 

The crossover frequency f, is defined as the frequency where the magnitude of the loop gain is 

unity: 

II T(j2𝜋f) II = 1 => 0 dB 

To compute the phase margin ϕm, the phase of the loop gain Tis evaluated at the crossover 

frequency, 

and 180° is added. Hence, 

ϕm = 180˚ + ∠T(j2𝜋f) 

If the phase margin is positive, the feedback system is stable. 

 

2.1 Buck Converter – Classical Approach 

To illustrate the design of PI and PD compensators, let us consider the design of a combined PID 

compensator for the dc-dc buck converter system. The input voltage Vg(t) for this system has 

nominal value 28 V. It is desired to supply a regulated 14 V to a load. The load is modeled here 

with a 3Ω resistor. 

 

The quiescent duty cycle is given by the steady-state solution of the converter: 

 

Thus, the quiescent conditions of the system are known. 

The open-loop control-to-output transfer function is 

The open loop gain of the system is 

Substituting values of Gvd in the above equation  
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Circuit Diagram:  

2.2 Circuit diagram of open loop buck converter 

 

Output response: 

2.3 Output response of open loop buck converter 

 

The reference voltage was set at 15V. The response settled within 0.004 s with some steady state 

error. 
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2.4 Bode plot for open loop transfer function of Buck converter 

 

The uncompensated loop gain has a crossover frequency of approximately 1.8 kHz, with a phase 

margin of less than five degrees.  

Let us design a compensator, to attain a crossover frequency of fc = 5 kHz, or one twentieth of the 

switching frequency. From Fig. 9.26, the uncompensated loop gain has a magnitude at 5 kHz of 

approximately Tu0 (f0 /fc)2 = 0.093 => - 20.6 dB. So, to obtain unity loop gain at 5 kHz, our 

compensator should have a 5 kHz gain of + 20.6 dB. In addition, the compensator should improve 

the phase margin, since the phase of the uncompensated loop gain is nearly - 180° at 5 kHz. So a 

lead (PD) compensator is needed. Let us (somewhat arbitrarily) choose to design for a phase 

margin of 52°. According to Fig. 9.13, this choice leads to closed-loop poles having a Q-factor of 

1. The unit step response, then exhibits a peak overshoot of 16%. Evaluation of fc= 5 kHz and ө = 

52°, leads to the following compensator pole and zero frequencies: 

 

To obtain a compensator gain of 20.6 dB=> 10.7 at 5kHz, the low-frequency compensator gain 

must be 
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2.5 Bode plot of the closed loop converter transfer function of Buck converter after PD 

With this PD controller, the loop gain becomes 

It can be seen that the phase of T (s) is approximately equal to 52° over the frequency range of 

1.4 kHz to 17 kHz. Hence variations in component values, which cause the crossover frequency 

to deviate somewhat from 5 kHz, should have little impact on the phase margin. In addition, it 

can be seen from Fig. 9.28 that the loop gain has a dc magnitude of Tu0Gc0 => 18.7 dB 

2.6 Bode plot of the closed loop converter transfer function of Buck converter after PID 
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Circuit Diagram: 

2.7 Circuit diagram of closed loop Buck converter after PID 

Output Response: 

2.8 Output response of Buck converter after PID 

The reference voltage was stepped up from 14 V to 16 V at t=0.02 s. To check the effect of load, 

the load was doubled at t=0.01s. The response settled within 0.004 s with minimum error. 

 

http://0.07s/
http://0.018/
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2.2 Boost Converter – Classical Approach 

Circuit Diagram: 

2.9 Circuit diagram of open loop boost converter 

 

Output Response: 

2.10 Output response of open loop boost converter 

The reference voltage was set at 120V. The response settled within 0.02 s with some steady state 

error. 
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Bode plot: 

2.11 Bode plot for open loop transfer function of Boost converter 

Boost Converter – After PID 

2.12 Bode plot of Boost converter after PID 
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Circuit Diagram: 

2.13 Circuit diagram of closed loop boost converter after PID 

Output Response: 

2.14 Output response of Boost converter after PID 

The reference voltage was stepped up from 115 V to 125 V at t=0.02 s. To check the effect of load, 

the load was doubled at t=0.01s. The response settled within 0.004 s with minimum error. 

 

http://0.07s/
http://0.018/
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PART – B 

THE ADVANCED CONTROL METHOD 
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  CHAPTER 3         ADVANCED CONTROL THEORY 

In addition to the transform techniques of root locus and frequency response, there is a third major 

method of designing feedback control systems: the state-space method. This method involves the 

representation of the system in the form of differential equations in the state variables, which are 

essentially the minimum-required parameters of the system that we can measure/estimate to 

implement compensation.  

Models in state-variable form enhance our ability to apply the computational efficiency of 

computer-aided design tools such as MATLAB. The steps of the design method are as follows: 

 

1. Select closed-loop pole (root as referred to in classical theory) locations and develop the control 

law for the closed-loop system that corresponds to satisfactory dynamic response 

2. Design an estimator 

3. Combine the control law and the estimator  

4. Introduce the reference input  

 

After working through the central design steps, we briefly explore the use of integral control in 

state-space.  

Advantages of state-space design are especially apparent when the system to be controlled has 

more than one control input or more than one sensed output. However, in this project we shall 

examine the ideas of state-space design using the simpler single-input-single output (SISO) 

systems. The design approach used for systems described in state form is “divide and conquer.” 

First, we design the control as if all of the state were measured and available for use in the control 

law. This provides the possibility of assigning arbitrary dynamics for the system. Having a 

satisfactory control law based on full-state feedback, we introduce the concept of an observer and 

construct estimates 

of the state based on the sensed output. We then show that these estimates can be used in place of 

the actual state variables. 

Finally, we introduce the external reference-command inputs, and the structure is complete. Only 

at this point can we recognize that the resulting compensation has the same essential structure as 

that developed with the classical transform methods. 
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CHAPTER 4                       ANALYSIS TECHNIQUES 

In state space analysis, the given system is defined in terms of its state variables and linear 

differential equations along with input and output variables. The state is expressed as a vector, and 

the whole system, being LTI (Linear Time-Invariant), can be represented in terms of matrix 

equations: 

𝒅𝒙

𝒅𝒕
= 𝑨. 𝒙 + 𝑩. 𝒖          (State equation) 

𝒚 = 𝑪. 𝒙 + 𝑫. 𝒖         (Output equation) 

 

Where 𝒙 is the state vector, 𝒖 the input vector, and 𝒚 the output vector, of orders n, p, and q, 

respectively. The matrices 𝑨, 𝑩, 𝑪, and 𝑫 are of the dimensions (n × n), (n × p), (q × n), and (q × 

p), respectively. The state vector can be treated as a matrix of dimensions (n × 1), with the ith 

element equal to the ith state variable. In our case, these can be the voltage/s of capacitor/s and/or 

the currents through the inductor/s. 

 

 

Depending on the number of inductors and capacitors used, the order of the converter can be 

determined. A simple boost or buck converter employs the use of a single pair of capacitor and 

inductor, which makes it a second-order converter. Higher order converters like the quadratic boost 

converter or the SEPIC converter use two pairs of inductor and capacitor, making their order equal 

to four. The challenge with the higher order converters lies in the hindrance they cause while the 

desired closed-loop poles are being chosen; second-order approximation cannot be exercised. 

Although, unlike classical methods – which only provide with pole placement of the dominant 

poles of the closed-loop – the modern method can be used to place all the closed-loop poles at the 

respective desired locations. 
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4.1 Steady-State Analysis 

For the steady state analysis, we find the state-space model by using state-space averaging method. 

The matrices A, B and C have differing elements depending on the duty cycle portion for which 

the switch is currently in operation. The state variables can be any variables of the system so long 

as their estimation/ direct measurement can be done. This is done in the same way as done in the 

case of finding the feedback compensation using the Bode plot: first modeling the converter using 

the state variables, followed by the application of a small signal (input duty cycle), and then 

linearizing the perturbed system using approximation. Revisiting the equations derived in the last 

chapter, we can get the values of the matrices A, B, C and D for a given converter.  

 

4.2 Pole Placement 

Just like the classical methods, we can place the desired closed-loop poles using the appropriate 

feedback gain in state-space domain. But for this to be possible, there are certain conditions to be 

adhered to: 

 The system is completely state-controllable 

 The state-variables are at least estimable and are available for feedback 

 The control input is unconstrained 

  

State-controllability 

The state of a deterministic system, which is the set of values of all the system's state variables 

(those variables characterized by dynamic equations), completely describes the system at any 

given time. In particular, no information on the past of a system is needed to help in predicting 

the future, if the states at the present time are known and all current and future values of the 

control variables (those whose values can be chosen) are known. 

Complete state controllability (or simply controllability if no other context is given) describes the 

ability of an external input (the vector of control variables) to move the internal state of a system 

from any initial state to any other final state in a finite time interval. 

A system with internal state vector x is called controllable if and only if the system states can be 

changed by changing the system input. If a given system is controllable, the rank of the 

controllability should be equal to its order. 

 

 

https://en.wikipedia.org/wiki/State_space_(controls)
https://en.wikipedia.org/wiki/Deterministic_system
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The controllability matrix for the system defined by the above equations is; order (n × n): 

P  = [𝑩   𝑨𝑩    𝑨𝟐𝑩    𝑨𝟑𝑩 …   𝑨𝒏−𝟏𝑩] 

The system is controllable iff  rank(P) = n 

In general, we can say that any natural system is state-controllable, as is the case with the 

converters under consideration. 

  

Now, since we want to control the input duty cycle in accordance with the value of the state 

variables, we can describe the input matrix as: 

𝒖 = −𝑲. 𝒙 

Here, K is a (1 × n) matrix, whose n elements are to be found using mathematical techniques. 

Substituting the value of u  in the state equation, we get: 

 
𝒅𝒙

𝒅𝒕
= (𝑨 − 𝑩. 𝑲)𝒙 = 𝑨𝑪𝑳𝒙 

𝑨𝑪𝑳 = 𝑨 − 𝑩. 𝑲 

Objective: The closed loop poles should lie at which are their ‘desired locations’. Difference from 

classical approach: Not only the “dominant poles”, but “all poles” are forced to lie at specific 

desired locations. 

The gain matrix is designed in such a way that 

|𝒔𝑰 − (𝑨 − 𝑩𝑲)| = (𝒔 − µ𝟏)(𝒔 − µ𝟐) … (𝒔 − µ𝒏)                                                       

 where µ𝟏, µ𝟐 …  µ𝒏 are the desired closed-loop locations. 

There exist three major ways to solve for the feedback gain: 

4.2.1 Direct Method 

This method is suitable for low-order systems (n ≤ 3). From the above equation, simply equate 

powers on both the sides, taking 𝑲 = [𝒌𝟏 𝒌𝟐 𝒌𝟑]. The choice of closed-loop poles should be 

such that they are at least five to ten times farther away from the origin than the most dominant 

open-loop poles (eigenvalues). 
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4.2.2 Bass-Gura Method 

This method is used for higher-order systems. The system should first be expressed in first 

companion (controllable canonical) form. In controllable canonical form, the system eigenvalues 

are written down in the last row of the A matrix; an example is as follows: 

 

𝑨𝑪𝑳 =  [
0                1                0  ⋯ 0
0                0                1  ⋱ 0

 −𝑎𝑛     − 𝑎𝑛−1                     ⋯ −𝑎1   

] −

  [
0                0                0  ⋯ 0
0                0                0  ⋱ 0
𝑘1              𝑘2                    ⋯ 𝑘𝑛   

] 

      

=  [
0                1                0  ⋯ 0
0                0                1  ⋱ 0

−(𝑎𝑛 − 𝑘1 )                                        ⋯  −(𝑎1   − 𝑘𝑛   )
] 

 

If  µ𝟏, µ𝟐 …  µ𝒏 are the desired closed-loop locations,  

(𝒔 − µ𝟏)(𝒔 − µ𝟐) … (𝒔 − µ𝒏) =  𝒔𝒏 + 𝜶𝟏𝒔𝒏−𝟏 + 𝜶𝟐𝒔𝒏−𝟐 + ⋯ +  𝜶𝒏 



 Application of Modern Control Theory on DC-DC converters 

22 
 

 

This characteristic polynomial will lead to the closed-loop system matrix as: 

𝑨𝑪𝑳 =  [

0                1                0  ⋯ 0
0                0                1  ⋱ 0

 −𝛼𝑛     − 𝛼𝑛−1             
        ⋯ −𝛼1 

] 

Comparing the above two values of the closed-loop system matrix: 

[

( 𝑘1 = 𝛼𝑛 −  𝑎𝑛 )

⋮ ⋱ ⋮
( 𝑘𝑛 = 𝛼1 −  𝑎1 )

] 

4.2.3 The Ackermann Method 

𝑲 = [𝟎 𝟎 𝟎 … 𝟏]𝑷−𝟏𝝋(𝑨) 

 

 P  = [𝑩   𝑨𝑩    𝑨𝟐𝑩    𝑨𝟑𝑩 …   𝑨𝒏−𝟏𝑩] 

 𝝋(𝒔) is the characteristic equation for the closed-loop poles, which we then evaluate for 𝒔 = A 

 It is explicit that the system is controllable because we are inverting the controllability matrix 

This can be implemented easily in MATLAB using acker(A, B, L); 

L is a row matrix containing the desired closed-loop pole locations. 
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CHAPTER 5                                OBSERVER DESIGN 

 

In practice, all the states are not always available for direct measurement due to many reasons, 

which may include: 

 Non-availability of sensors 

 Use of sensors is expensive (not cost-effective) 

 The sensors are not suitable for use in the given system. For example, the system must be 

sophisticated and the sensors that are available impart high levels of noise, or may consume excess 

energy. 

For this reason, it is more practical to use a state observer that can estimate the value of a particular 

state based on the measurement of the output over a period of time. 

For this to be possible, the system must be observable, which is true iff the rank of the observability 

matrix is equal to its dimension, ie, n. 

 

Consider the system defined by the following equations: 

�̇� = 𝑨. 𝒙 + 𝑩. 𝒖          

𝒚 = 𝑪. 𝒙  

 

The observer is a subsystem to reconstruct the state vector of the plant. The mathematical model 

of the observer is basically the same as that of the plant except that we include an additional term 

that comprises the estimation error to compensate for the inaccuracies in the matrices A and B and 

the lack of the initial error. The estimation or the observation error is the difference between the 

measured and the estimated outputs. The initial error is the difference between the original and the 

estimated values of the initial state. 

𝒙⏞ = 𝑨�̃� + 𝑩𝒖 + 𝑲𝒆(𝒚 − 𝑪�̃�) 

        = (𝑨 − 𝑲𝒆𝑪)�̃� + 𝑩𝒖 + 𝑲𝒆𝒚 
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Minimum-order Observer 

When the observer plant estimates all-but-one states of the system, it is called a minimum-order 

observer. 

Since the output voltage (Vc) is always to be available for direct measurement, the other state 

variables are estimated. 

 

Derivation of minimum-order control law 

The state equation is divided into two parts as follows: One part corresponds to the measurable 

part, the other to the unmeasurable one (observed) 

 

The upper part relates the measurable to the unmeasurable variables and makes up for the output 

equation of the modified system 

 

This equation represents the dynamics of the unmeasurable portion, and also is the State equation 

of the modified system 

 

The Output equation: 

 

Comparing with the full-state observer equation (right) to get: 
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In order to eliminate the measured state (which, if noisy, can cause problems with the derivative 

block), we introduce a new variable equal to 

 

The final State equation is as depicted, with the modified matrices as shown: 

 

The modified State equation: 
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The modified Output equation: 

 

Block Diagram: 

5.1 Block diagram of a minimum-order observer 

 

With the help of this block diagram we will now design minimum-order observer for the DC-DC 

converters. 
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CHAPTER 6            APPLICATION OF ADVANCED 

            CONTROL THEORY  

 

6.1 Boost Converter – Pole Placement  

 

𝒙 = [
𝑣𝐶

𝑖𝐿
]          𝒖 = [𝑑]         𝒚 = [𝑣𝐶] 

 

𝑨 = [
−

1

𝑅𝐶

𝐷′

𝐶

−
𝐷′

𝐿

𝑅𝐿

𝐿

] = [
−960 6000

−12000 2000
]        𝑩 = [

−
𝑖𝐿

𝐶
𝑣𝐶

𝐿

] = [
−40000
5000000

]      𝑪 = [1  0] 

L = 0.5e-4 H;   C = 1e-4 F;  R = 10.42 Ω ;   𝑅𝐿 = 0.1 Ω 

 

In the above expressions, D’ = 1 – D, where D is the desired duty cycle given by 1 - 
𝑣𝑖

𝑣𝑂
;  𝑖𝐿 = 

𝑣𝑖

𝑅(1−𝐷)2
;   𝑅𝐿 is the resistance offered by the inductor. 

A new behavior, expressed by a new set of poles, must be imposed to the inner plant, with higher 

natural frequency (bandwidth) and stronger damping. 

 

If these latter are chosen as ωn  = 6000 rad and ζn = 0.7, the imposed closed-loop set of poles 

turns out to be -4.2×103 ± j4.28×103. 

 

The determinant of the matrix (sI – A + B.K)  after taking the Laplace transform on both the sides 

should give the same equation as the one specified by the desired poles. One can also find the 

value of 𝑲 by using the MATLAB function acker(A, B, L); L denotes the location of the desired 

poles in the form of a matrix. 

 

𝑲 = [1.1233  0.2519] 

 



 Application of Modern Control Theory on DC-DC converters 

28 
 

Circuit Diagram: 

6.1 Circuit diagram of boost converter after pole placement 

Output Response: 

6.2 Output response of boost converter after pole placement 

The reference voltage was stepped up from 23 V to 25 V at t=0.014 s. To check the effect of load, 

the load was doubled at t=0.01s. The response settled within 0.008 s with minimum error. 

 

  

http://0.0.0.1/
http://0.07s/
http://0.018/
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6.2 Boost Converter – Minimum-Order Pole Placement  

𝑲𝒆 = [0.0833] for the desired pole location of the observer at [0.5e4] for the same 𝑲 matrix as 

before. The Ackerman method is applied for 𝐴𝑎𝑎 , 𝐴𝑎𝑏 , 𝐴𝑏𝑎, 𝐴𝑏𝑏 , 𝐵𝑎, 𝐵𝑏 , 𝑎𝑛𝑑 𝐿𝑜, where 

𝑨 = [
𝐴𝑎𝑎 𝐴𝑎𝑏

𝐴𝑏𝑎 𝐴𝑏𝑏
];         𝑩 = [

𝐵𝑎

𝐵𝑏
] 

𝐴𝑎𝑎 =  −960     𝐴𝑎𝑏 = 6000     𝐴𝑏𝑎 =  −12000     𝐴𝑏𝑏 = 2000 

𝐵𝑎 =  −40000    𝐵𝑏 = 500000     𝐿𝑜 = 0.5𝑒4 

The MATLAB function was used as: acker(Abb’, Aab’, Lo)’ which gave the value of observer 

gain equal to 0.0833. The following figure depicts the simulation. 

 

Circuit Diagram: 

6.3 Circuit diagram of boost converter controlled using minimum-order observer 
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Output Response: 

6.4 Output response of boost converter controlled using minimum-order observer 

The reference voltage was stepped up from 23 V to 25 V at t=0.014 s. To check the effect of load, 

the load was doubled at t=0.01s. The response settled within 0.008 s with minimum error. 

 

 

 

 

 

 

 

 

 

 

 

http://0.07s/
http://0.018/
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6.3 Quadratic Boost Converter – Pole Placement  

1. Open Loop converter: - 

System Parameters: Vin = 12 V, L1 = 0.1 mH, L2 = 0.56 mH, C1 = 22 uF, C2 = 100 uF, Rl1 = 

0.047 ohm, Rl2 = 0.087 ohm, Rc1 = 0.063 ohm, Rc2 = 0.2 ohm 

Circuit Diagram: 

6.5 Circuit diagram of open loop quadratic boost converter  

Output Response: 

6.6 Output response of open loop quadratic boost converter  

The duty cycle was set at D=0.37, so the output voltage should be 30V. The response settled 

within 0.08s with significant steady state error. 

http://0.0.0.1/
http://0.0.0.56/
http://0.0.0.39/
http://0.087/
http://0.0.0.51/
http://0.0.0.2/
http://0.018/
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2. After Pole Placement 

Circuit Diagram: 

6.7 Circuit diagram of closed loop quadratic boost converter after pole placement  

Output Response: 

6.8 Output response of closed loop quadratic boost converter after pole placement 

The reference voltage was stepped up from 25 V to 30 V at t=0.1 s. To check the effect of load, 

the load was doubled at t=0.7s. The response settled within 0.02 s with minimum error 

http://0.0.0.1/
http://0.07s/
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6.4 SEPIC – Pole Placement  

1. Open Loop converter: - 

System Parameters: Vin = 9 V, C1 = 100 uF, C2 = 220 uF, L1 = 100 uH, L2 = 68 uH, Rl1 = 

0.034 ohm, Rl2 = 0.028 ohm, Rc1 = 0.8 ohm, Rc2 = 0.35ohm 

 

Circuit Diagram: 

6.9 Circuit diagram of open loop SEPIC converter  

Output Response: 

6.10 Output response of open loop SEPIC converter 

The reference voltage is set to be 32V, so the steady state output voltage should be 32V. The 

response shows significant steady state error ripple at output. 

http://0.0.0.28/
http://0.028/
http://0.0.0.8/
http://0.35ohm/
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2. After Pole Placement 

Circuit Diagram: 

6.11 Circuit diagram of closed loop SEPIC converter after pole placement 

Output Response: 

6.12 Output response of closed loop SEPIC converter after pole placement 

The reference voltage was stepped down from 30 V to 25 V at t=0.1 s. To check the effect of load, 

the load was doubled at t=0.07s. The response settled within 0.04s with minimum error 

http://0.0.0.1/
http://0.07s/
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CHAPTER 7                                           DISCUSSION 

The idea of state-space comes from the state-variable method of describing a dynamic system are 

organized as a set of first-order differential equations in the vector-valued state of the system, and 

the solution is visualized as a trajectory of this state vector in space. State-space control design is 

the technique in which the control engineer designs a dynamic compensation by working directly 

with the state-variable description of the system. We know that the ordinary differential equations 

(ODEs) of physical dynamic systems can be manipulated into state-variable form. In the field of 

Normal form mathematics, where ODEs are studied, the state-variable form is called the normal 

form for the equations. Studying equations in this form is advantageous for several reasons: 

 

 To study more general models: The ODEs do not have to be linear or stationary. Thus, by studying 

the equations themselves, we can develop methods that are very general. Having them in state-

variable form gives us a compact, standard form for study. Furthermore, the techniques of state-

space analysis and design easily extend to systems with multiple inputs and/or multiple outputs.  

 To introduce the ideas of geometry into differential equations: In physics the Phase plane of 

position versus velocity of a particle or rigid body is called the phase plane, and the trajectory of 

the motion can be plotted as a curve in this plane. The state is a generalization of that idea to 

include more than two dimensions. While we cannot plot more than three dimensions, the concepts 

of distance, of orthogonal and parallel lines, and other concepts from geometry can be useful in 

visualizing the solution of an ODE as a path in state-space. 

 To connect internal and external descriptions: The state of a dynamic system often directly 

describes the distribution of internal energy in the system. The internal energy can always be 

computed from the state-variables. We can relate the state to the system inputs and outputs and 

thus connect the internal variables to the external inputs and to the sensed outputs. In contrast, the 

transfer function relates only the input to the output and does not show the internal behavior. The 

state form keeps the latter information, which is sometimes important. 

 

The advantages of using modern control theory, hence, can be listed as follows: 

1. Convenient tool for MIMO systems 

2. Uniform platform for representing time-invariant systems, time-varying systems, linear systems 

as well as nonlinear systems 
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3. Can describe the dynamics in almost all systems (mechanical systems, electrical systems, 

biological systems, economic systems, social systems etc.) 

4. It can be performed with non-zero initial conditions. 

5. Variables used to represent system can be any variables in the system. 

6. Using this analysis, the internal states of the system at any time instant can be predicted. 

7. As the method involves matrix algebra, can be conveniently adopted for digital computers. 

8. The system can be made cost-effective by using an observer. 
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CHAPTER 8                    CONCLUSION AND SCOPE  

 FOR FUTURE WORK 

 

Having dealt with the applications of the modern control theory in depth, we arrived at the 

following conclusion. This is in addition to the advantages already listed in last chapter: 

 The state-space provides a powerful tool to deal with control feedback compensation 

 The major advantage of the modern control theory over its classical counterpart is that the former 

can be conveniently adopted for digital computers because of the involvement of matrix algebra 

 Further research into the topic will help in building more robust, efficient and efficacious control 

mechanisms for various applications 

The future work on this topic should comprise research on applying state-space analysis for even 

higher order systems using observers that can drastically reduce the costs gone into sensors. The 

modeling is going to be challenging once it is taken up for implementing on hardware. Even further 

in to the future, the hardware part can be optimized into becoming smaller and more suitable for 

use in common gadgets and appliances. By devising the most efficient control systems, it can be 

hoped to improve the cost-effectiveness of control mechanisms ranging from handheld devices 

and simulations to automobiles industry-level controllers. 
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