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Preface 

 

This report on “Computer-Aided Detection of Non-focal and Focal EEG Signals using Flexible 

Analytic Wavelet Transform” is prepared under the guidance of Dr. Ram Bilas Pachori, Associate 

Professor, Electrical Engineering, IIT Indore. 

Through this report, we have tried to present a comprehensive analysis of focal and non-focal 

electroencephalogram (EEG) signals in the flexible analytic wavelet decomposition domain. We have 

calculated a number of entropy-based features such as sure entropy, log-energy entropy and correntropy on 

the basis of their efficacy in discriminating the focal and non-focal EEG signals. The main motivation 

behind this is to classify the focal and non-focal EEG signals which can be used to detect focal EEG signals 

automatically. The proposed automatic classification system in this work can be useful for a clinician in 

assisting them while performing the diagnosis of focal epilepsy. This method presented by us is a novel 

method for the computer aided detection of focal and non-focal EEG signals with improved accuracy, 

sensitivity and specificity against the existing techniques, and therefore has a potential of a big contribution 

to the world of Biomedical Signal Processing.    

We have tried our best to explain the proposed concepts, techniques, results and conclusion in detail along 

with the comparison of our method with the already existing models. 
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Abstract 

 

A class of neurological disorder characterized by unpredictable seizures, epilepsy starts in the human brain 

and may lead to other health problems and may occur because of sickness, cerebrum damage, or unusual 

advancement of brain. According to world health organization (WHO), nearly 50 million people suffer 

with epilepsy worldwide. Approximately, more than 30% patients have generalized epilepsy which affects 

the entire brain, whereas, more than 48% patients have simple focal or dyscognitive partial epilepsy, which 

starts in a limited part of the affected area. This motivates for a research in this field to help recognize and 

locate the surgically removable epileptic zones in the brain. Study has shown that epilepsy is a neurological 

disease which is strenuous to medication. An automatic detection of focal epilepsy will help many doctors 

and patients to combat this disorder in a much efficient manner. Thus, development of an automatic 

detection system for non-focal and focal electroencephalograph (EEG) signals is very useful for epileptic 

diagnosis. In this work, we propound a 15 level flexible analytic wavelet transform (FAWT) method for 

detecting focal and non-focal EEG signals, wherein we use the 16 sub-bands produced and the original 

signal, which provides a total of 17 sub-signals corresponding to each signal. The EEG signals are collected 

from a publicly available database (Bern- Barcelona EEG database) that contains 3750 signal pairs recorded 

over approximately 80 hours with five focal epilepsy patients. This methodology employs time differencing 

of non-focal and focal EEG signals before decomposing them into sub-bands by employing FAWT. For 

feature extraction, we omit the less significant 13th sub-band signal based on Kruskal-Wallis statistical test 

and then a number of entropy measures such as correntropy, sure entropy and log energy entropy are 

extracted from the reconstructed sub-band signals. Eventually, all the three entropies are evaluated on the 

16 sub signals which give a total of 48 features. The Wilcoxon ranking method was found the most effective 

in ranking the features in the proposed methods as compared to other ranking methods like entropy, t-test, 

receiver operating characteristic (ROC), and Bhattacharya space algorithm. Statistically significant features 

with ranking are given as input to two different classifiers, K-nearest neighbor (KNN) with different 

distances namely Euclidean, cityblock, cosine and correlation, and least squares-support vector machine 

(LS-SVM) with different kernels namely radial basis function (RBF) and polynomial, along with ten-fold 

cross validation method, wherein LS-SVM with RBF as kernel function provided best classification 

accuracy. In this proposed methodology, we have achieved classification accuracy of 94.41%, in the 

automated classification of focal and non-focal EEG signals. 
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Chapter 1:  

Introduction 
 

 
1.1 General background 

 

The EEG signal is utilized to examine the electrical activity of the brain and different frequency 

components are present in those signals that makes it complex in nature. These signals represent how 

human brain works and contain information related to the neurological disorder. A class of neurological 

disorder characterized by unpredictable seizures, epilepsy may occur because of sickness, cerebrum 

damage, or unusual advancement of brain, and can lead to other health problems. According to WHO, 

nearly 50 million people suffer with epilepsy worldwide [24]. Approximately, more than 20% patients have 

generalized epilepsy which affects the entire brain, whereas, more than 60% patients have simple focal or 

partial epilepsy, which starts in a limited part of the affected area [15]. When seizures cannot be managed 

with medications, it becomes important to localize that focal epileptic zone. However, scalp EEG may 

decline to gather ictal EEG changes in focal seizures which comes up from a small or deeply allocated 

focus [15]. This motivates for a research in this field to develop signal processing based methods in order 

to recognize and locate the surgically removable focal epileptic zones in the brain [17]. 

 

1.2 Literature survey 

 

In [1], the outcomes imply that EEG signals from an epileptogenic brain are barely random, stationary and 

more nonlinear-dependent when contrasted with signals noted from non-epileptogenic brain areas. In this 

work, to examine the attributes of focal epilepsy, various non-linear arguments, such as linear correlation, 

phase synchronization and mutual information with surrogate inspection are used [14]. 

 

Several nonlinear chaotic measures, such as Renyi, Shannon, Tsallis, fuzzy, sample, log energy, phase, 

permutation entropy and central tendency measures have been presented to gather the dynamics of focal 

epileptic zones from EEG signals [20, 6, 4]. In [21], the features employed are average sample entropies 

and average variance of the intrinsic mode functions (IMFs) obtained by empirical mode decomposition 

(EMD) of EEG signals. These features are fed into least square support vector machine (LS-SVM) with 

radial basis function (RBF) as a kernel for classification of non-focal and focal EEG signals. This technique 

has been tested on 50 set of non-focal and 50 set of focal EEG signals from the entire database which was 

able to achieve an accuracy of 85%.  
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In [20], application of entropy measures on IMFs from the EMD of EEG signals are used as features, that 

is, Renyi wavelet, average Shannon wavelet, average Tsallis wavelet, average fuzzy, average phase and 

average permutation entropy based features are fed to the LS-SVM classifier to differentiate non-focal and 

focal classes. This method achieved 87% accuracy with 50 set of non-focal and 50 set of focal EEG signals. 

In [19], the detection of non-focal and focal EEG signals occupied on an integrated index is formulated 

employing discrete wavelet transform (DWT) and entropy based features. The entropy features are phase, 

fuzzy, average wavelet and permutation entropies provided to various classifiers, specifically fuzzy, K-

nearest neighbor (KNN), probabilistic neural network (PNN) and LS-SVM, to distinguish between non-

focal and focal classes. In [4], the area parameters based on central tendency measures (CTM) for various 

reconstructed phase space (RPS) plots are estimated to distinguish between 50 focal and 50 non-focal EEG 

signals, which lead to a classification accuracy of 90% and when same approach is used for 750 pairs of 

EEG signals then it was given an accuracy of 82.53%. 

 

In [6], a new method namely log energy entropy (LgEn) supported feature was acquired after employing 

the EMD and the DWT on the EEG signals. KNN classifier was used to classify the two classes (focal and 

non-focal). This method accounted for 89.4% accuracy on 3750 set of non-focal and 3750 set of focal EEG 

signals. 

 

In these works, focal epileptic EEG signals are found to be more nonlinear-dependent compared to non-

focal records. Therefore, entropy based features are considered because of their successful importance in 

detecting focal epilepsy [21, 20, 19, 6]. The log energy, correntropy and sure entropy measures together 

have not been explored for the detection of focal and non-focal EEG signals. The log energy entropy is 

also considered in [6] to differentiate focal and non-focal EEG signals. The motivation behind correntropy 

nonlinear measures comes from its previous success in non-Gaussian signal processing [11]. The 

motivation for studying behind sure entropy has come from the wavelet packet entropy used in [5]. 

 

In the present work, the main focus is to propose a new methodology for computer aided detection of the 

non-focal and focal EEG signals employing studied features. These features are tested employing K-NN 

and LS-SVM with different distance methods and kernel functions respectively. On the basis of analysis 

of these features with two different classifiers, the LS-SVM with RBF kernel function is well suited for 

characterize the focal and non-focal EEG signals. 

The rest of the organization of this report is as follow the Chapter 2 provide brief description about 

data collection, explanation about the designed methodology for classification of focal and non-focal EEG 

signals. It also provides description about the Flexible Analytic Wavelet Transform (FAWT), entropy based 

features, studied classifiers. In the Chapter 3 results and discussion have been provided. In the last, Chapter 

4 concludes the work done and it also provides scope for future work. 
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Chapter 2:  

Methodology 

2.1. Data collection 

EEG signals are acquired from Bern Barcelona database [13]. In [1], focal epilepsy is monitored among 5 

patients and all the patients went through long-range intracranial EEG recordings at the Neurology 

Department of the Bern University. There are 3750 focal and 3750 non-focal EEG signals, which were 

sampled at a sampling rate of 512 Hz for 20 seconds, corresponding to 10240 samples. The main reason 

we use this data set is that we need relevant data that can easily be shared with other researches, allowing 

all kinds of techniques to be easily compared in the same database. The data set comprised bivariate EEG 

signals and are depicted as "X" and "Y". The plot of "X" time series of a focal and non-focal EEG signal 

are shown in Fig. 2.1 and Fig. 2.2 respectively.  

2.2. Differencing of EEG signals 

 

We have applied differentiation operation to the recorded EEG signals before transforming these signals 

by FAWT method.  

 
Figure 2.1: Plot of focal and differenced focal EEG signal for “X” time series 
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Figure 2.2: Plot of non-focal and differenced non-focal EEG signal for “X” time series 

The differencing of EEG data is more suitable for further processing of focal and non-focal EEG signals, 

and also that the stationarity of the EEG signal is increased to a certain extent [3]. Fig. 2.1 and Fig. 2.2 

depicts the differencing of “X” time series for focal and non-focal EEG signals respectively. Differencing 

of a signal is given as, 

Xdiff (i) = x(i) - x(i-1) for i ϵ 1……..N-1                                  (1) 

 

Where, Xdiff is differencing signal, x is EEG signal and N is total number of EEG signal samples. 

 

2.3 Proposed methodology 

 

The proposed methodology shown in Fig. 2.3 has 8 subsections. The first subsection has been explained in 

2.2, which is about differencing of EEG signals. The second section explains about the FAWT method to 

decompose the differenced EEG signals into 15th level decomposition. The third section is comprised of 

the reconstructed signals from the sub-bands. The fourth section includes the features extraction in which 

correntropy, log energy entropy and sure entropy are evaluated. The fifth section is about the statistical test 

i.e. Kruskal-Wallis test which evaluates the p values of these extracted features. In the sixth section, we 

selected the significant features which had p values less than 0.05. In the seventh section we ranked the 

features according to different ranking methods namely, Wilcoxon, ROC, Bhattacharyya, t-test and 

entropy. In the eight section we discuss about the automated classification system which included two 
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different classifiers which are LS-SVM and KNN with different kernel functions and distances 

respectively. Finally, we are left with two different focal and non-focal classes. 

 

Figure 2.3: Block diagram of the designed methodology for classification of focal and non-focal EEG 

signals. 

 

2.4 Signal decomposition using FAWT 

 

FAWT is an effective method for analyzing the biomedical signals [9, 10]. The Hilbert transform pairs of 

atoms hosts by this transform and permits command over arguments like the redundancy, Q-factor and the 

dilation factor. FAWT delivers ability to test the signal with easily changeable arguments a, b, c, d and β, 

where, a and b are the up and down sampling arguments for low pass channel respectively and, c and d are 

the up and down sampling arguments for high pass channel respectively. β is a positive constant that 

evaluates the quality factor (QF) which is denoted as [2], 

 

                                       QF = 
2−𝛽

𝛽
                                                                            (2) 

 

These arguments can regulate the dilation factor, quality factor and redundancy of FAWT [2]. Jth level of 

FAWT can be achieved employing iterative filter bank. Every level of achievement comprises two high 

pass channels and one low pass channel. One high pass channel deals with the positive frequencies and the 

other high pass channel deals with the negative frequencies. 

Low pass filter frequency response is given as [2]: 

 

 

H(w) =  

{
 
 

 
 
3(𝑎𝑏)1/2                                        |𝑤| < 𝑤𝑝

(𝑎𝑏)
1

2𝜃 (
𝑤−𝑤𝑝

𝑤𝑠−𝑤𝑝
)                   𝑤𝑝 ≤ 𝑤 ≤ 𝑤𝑠

(𝑎𝑏)
1

2𝜃 (
𝜋−(𝑤−𝑤𝑝)

𝑤𝑠−𝑤𝑝
)            −𝑤𝑝 ≤ 𝑤 ≤ −𝑤𝑠

0                                                 |𝑤| ≥ 𝑤𝑠

                               (3) 
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High pass filter frequency response is given as [2]: 

 

 

G(w) = 

{
 
 

 
 4(2𝑐𝑑)

1

2𝜃 (
𝜋−(𝑤−𝑤0)

𝑤1−𝑤0
)        𝑤0 ≤ 𝑤 ≤ 𝑤1

(2𝑐𝑑)
1

2                                    𝑤1 ≤ 𝑤 ≤ 𝑤2

(2𝑐𝑑)
1

2𝜃 (
𝜋−(𝑤−𝑤2)

𝑤3−𝑤2
)              𝑤2 ≤ 𝑤 ≤ 𝑤3

                0                            𝑤 𝜖 [0, 𝑤0)𝑈(𝑤3, 2𝜋)

                          (4) 

 

 

where, 𝑤𝑝 = (
(1−𝛽)𝜋

𝑎
) + (

𝜀

𝑎
), 𝑤𝑠 = 

𝜋

𝑏
, 𝑤0 = 

(1−𝛽)𝜋+𝜀

𝑐
, 𝑤1 = 

𝑎𝜋

𝑏𝑐
 and 𝑤2 =

𝜋−𝜀

𝑐
, 𝑤3 = 

𝜋+𝜀

𝑐
, ε≤ 

𝑎−𝑏+𝛽𝑏

𝑎+𝑏
𝜋 . 

Then θ(w) can be given as [2]: 

 

θ (w) = 
[1 +cos(w)][2−cos(w)]1/2

2
 for w 𝜖 [0,π]                                (5) 

 

To accomplish excellent reconstruction filter bank, subsequent prerequisites must be met [2]: 

 

|𝜃(𝜋 − 𝑤)|2+ |𝜃(𝑤)|2=1(1 - 
𝑎

𝑏
) ≤ β ≤ 

𝑐

𝑑
                                (6) 

 

On the basis of these conditions, we deduce the parameters for FAWT as, J=15, a=3, b=4, c=1, d=2, and 

based on these parameters the value for β is 0.4. 

FAWT is employed to detect the weak fault signature from the rotating machinery [26] and for the 

detection of coronary artery disease (CAD) [9] [10]. MATLAB toolbox of FAWT is available at [7]. 

 

2.5. Entropy based features extraction from FAWT 

2.5.1. Log energy entropy 

The log energy entropy, which is presented in [6], is performed to evaluate the degree of EEG 

signals complexity. Log energy entropy of signal x is given by, 

𝐻LgEn(x)= ∑ (𝑙𝑜𝑔2(𝑝𝑖(x))2𝑁−1
𝑖=0                                               (7) 

 

 

2.5.2. Correntropy 

Correntropy is determined as a generalization of correlation of arbitrary processes. The correntropy 

comprises second order as well as higher order moment knowledge of the arbitrary variables [18, 11]. A 

novel parametric correntropy is explained as the correntropy between a shifted and a scaled arbitrary 
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variable. It provide a new measure of independence and is also capable to quantify the dependence 

measures among arbitrary variables [16, 32, 33]. 

 

Correntropy is a recent nonlinear and local similarity extent between two arbitrary variables X and 

Y, explained by [25]  

 

V (X, Y ) = E[<Ø(X), Ø(Y ) >] = E[k(X-Y)]                               (8) 

 

Where X=𝑋t1 and Y=𝑋𝑡2  {𝑋𝑡 ,t€T} are stochastic processes with T being an index set. Ø is a kernel mapping 

function and k(X-Y) is a shift-invariant Mercer kernel. In this methodology, the kernel function in 

correntropy is selected as the following Gaussian kernel [25]: 

k(X-Y) = exp(
-‖𝑋−𝑌‖2

2σ1
2 )                                                 (9) 

 

Where, ‖. ‖ denotes the Euclidean norm and σ1= 0.5 is placed for the kernel size of the correntopy. 

In this work, the joint probability density function (PDF) is unknown and due to the availability of 

finite number of data samples {(𝑥𝑖, 𝑦𝑖), i= 1,2,……..,N}, it leads to sample estimator of correntropy, which 

is as follows [28]: 

V (X,Y) =
1

𝑁
∑ 𝑘(𝑥𝑖 − 𝑦𝑖)
𝑁
𝑖=1       (10) 

 

2.5.3. Sure entropy 

Sure entropy is a common measuring tool for quantifying information related properties for an accurate 

representation of a given signal. Sure entropy of a signal is defined as [29], 

|𝑥𝑖| ≤ε→ E(x) = ∑ 𝑚𝑖𝑛 (𝑥𝑖
2, ε2)𝑖         (11) 

Where, the sure entropy E is a real number, x is the EEG signal and (𝑥𝑖) i
𝑡ℎ sample of EEG signal. In sure 

entropy, ε is a positive threshold value and must be greater than or equal to 0. Here, we choose ε = 0.2. 

 

2.6. Classifiers 

2.6.1. Least-squares support vector machine 

The support vector machine (SVM) is formulated by applying statistical learning theory [23]. It is a 

machine learning approach, and is efficiently utilized to identify the patterns [22]. In this approach, first 

the data is mapped into a higher dimensional input space and a hyperplane is constructed into higher 

dimensional space to discriminate the dissimilar set of patterns [22]. The LS-SVM is the least square 

formulation of the SVM. For two class classification problem in SVM, the discrimination function can be 

written as [22]: 

v(x) = sign[𝑤𝑇u(x) + b]      (12) 
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Where w, b and u(x) represent the d-dimensional weight vector, bias and mapping function, respectively. 

To optimize the hyperplane in SVM algorithm, the distance from any one of the classes to the hyperplane 

is maximized. This is an optimization issue and can be fabricated as the quadratic programming problem 

subject to inequality constraints [22]. In the present methodology, LS-SVM along with two different kernel 

function, namely polynomial and RBF are used. 

 

2.6.2. K-nearest neighbors 

 

The K-nearest neighbors (K-NN) classifier is based on the assumption that the classification of an instance 

is most similar to the classification of other instances that are nearby in the vector space [19]. K-NN does 

not rely on prior probabilities, and it is computationally efficient. The main computation is the sorting of 

training data in order to find the K-nearest neighbors for the testing data. More importantly, in a dynamic 

environment that requires frequent additions to the training data collection, incorporating new training data 

is easy for the K-NN classifier. K-NN classifier, classifies the testing data by measuring the distance from 

the near one training data. There are mainly two parameters to optimize the classification performance; 

first one is K which decides how many neighbors influence the classification. Its default value is 1 but we 

varies it from K = 1 to 5. The second parameter is distance, here, we used Euclidean, cosine, correlation 

and city-block distances to gather the optimized performance of the classifier [6].  

 

In the present method, to estimate the efficacy of the classifiers, six distinct arguments are involved, which 

are accuracy (ACC), sensitivity (SEN), specificity (SPF), positive predictive rate (PPR), negative predictive 

rate (NPR), Matthew's correlation coefficient (MCC) [30]. 
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Chapter 3:  

Results and discussion 

In this study, we have performed differencing operation to EEG signals in order to make them suitable for 

further processing. Furthermore, to increase the discrimination between these differenced EEG signals, a 

FAWT is employed to decompose these signals into fifteen sub-bands and one approximation band (15 

level decomposition). The reconstruction of these sub-bands along with signal reconstructed with all bands 

are used to evaluate nonlinear features namely log energy entropy, correntropy, and sure entropy. To 

improve the realization, statistically significant features with p <0.05 are decided using the Kruskal-Wallis 

statistical test [12], which motivated us to omit the 13th sub-band. The p values are shown in Table 3.1 for 

3750 pairs of EEG signals and the box plot corresponding to these significant features are shown in Figs. 

3.1-3.6. Now the significant features extracted, which were summed up to 48 are tested with various 

ranking methods namely t-test, entropy, Bhattacharyya space algorithm, receiver operating characteristic 

(ROC) and Wilcoxon [19]. After ranking with these methods, two well-known classifiers are used to 

perform classification i.e. LS-SVM with different kernels and K-NN with different distances. The 

classification performance of two different classifiers with all three entropy together and individually are 

shown in the Tables 3.2-3.9. The presented methodology was simulated using MATLAB. 

 

Finally, when these extracted essential features were applied to the LS-SVM classifier, it provided good 

classification. To assure the reliability of classification, ten-fold cross validation technique is used [8]. For 

performance estimation of LS-SVM classifier, six distinct type of arguments namely, ACC, SEN, SPE, 

ACC, PPV, NPV and MCC are used. The result corresponding to the maximum accuracy i.e., the method 

used by us is displayed in the Table 3.2. The maximum value of accuracy, sensitivity, specificity, PPR, 

NPR and MCC using our method are 94.41%, 93.25%, 95.57%, 95.47%, 93.41% and 0.89, respectively. 

 

In [27] classifiers are used to classify the focal and non-focal EEG signals of patients, which achieved a 

maximum accuracy of 84% using SVM classifier with RBF kernel function. In [19], entropy features are 

extracted and fed into LS-SVM classifier which reported a classification accuracy of 84%. 

 

In [21], authors used nonlinear features, entropy and variance of instantaneous frequencies as an input to 

the LS-SVM classifier. They obtained a maximum accuracy of 85% using RBF as kernel function. 

Maximum classification accuracy of 87% is achieved in [20] where, for the classification of focal and non-

focal EEG signals, entropy features were used. In [6], log-energy entropy is extracted using EMD-DWT 

and are fed to various classifiers. They achieved maximum accuracy of 89.4% using k-nearest neighbor 

(KNN) classifier. In the present work, features are extracted from reconstructed signals, and then fed to the 
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classifier. The maximum classification accuracy of 94.41% is achieved using LS-SVM classifier with RBF 

kernel. Therefore, the proposed methodology is more accurate as compared to the earlier works. 

The main advantage of our method is that, we have obtained a maximum classification accuracy of 94.41% 

on 3750 focal and 3750 non-focal EEG signals using forty eight features. The limitation of this work is 

that, we have used reconstructed signals with 14 sub-bands, one approximation sub-band and all sub bands, 

which increased the size of the feature matrix (7500x16). This technique can be utilized for other types of 

epilepsy as well as early stages of epilepsy can also be diagnosed. 

Furthermore, the performance of this work can be enhanced using different features, kernel 

functions and classifiers. 

 

Table 3.1: p value for 3750 focal and non-focal EEG signals by Kruskal-Wallis statistical test 

 

 

 

 

 

 

 

Reconstructed signal Correntropy Log energy Sure entropy 

All-bands 2.45E-72 1.54E-54 1.65E-73 

Sub-band(1) 1.22E-03 4.89E-05 0.00026364 

Sub-band(2) 1.48E-55 5.89E-58 2.37E-64 

Sub-band(3) 7.68E-64 1.76E-60 1.17E-66 

Sub-band(4) 4.16E-61 8.32E-52 1.28E-63 

Sub-band(5) 4.04E-43 1.57E-32 4.37E-47 

Sub-band(6) 4.80E-54 3.45E-44 3.45E-61 

Sub-band(7) 2.22E-28 5.32E-21 5.41E-32 

Sub-band(8) 4.22E-43 4.35E-35 3.36E-47 

Sub-band(9) 8.97E-55 3.48E-46 1.55E-58 

Sub-band(10) 1.31E-64 1.30E-56 2.66E-69 

Sub-band(11) 1.34E-38 1.50E-34 8.62E-43 

Sub-band(12) 2.81E-15 9.33E-14 2.00E-17 

Sub-band(13) 7.04E-01 0.5922634 0.71735811 

Sub-band(14) 1.35E-37 3.90E-37 8.12E-37 

Sub-band(15) 1.80E-65 1.47E-64 1.14E-64 
Approximation-band 1.70E-78 3.83E-79 4.23E-83 



19 
 

 
 

Table 3.2: LS-SVM classifier performance with correntropy, Log energy entropy and sure entropy 

involving 48 statistically significant features. 

 

Table 3.3: K-NN classifier performance with correntropy, log energy entropy and sure entropy involving 

48 statistically significant features. 

 

 

 

 

Ranking method 
Kernel 

function ACC SEN SPF PPR NPR MCC 
Parameter for 

kernel 

T-test RBF 94.36 93.31 95.41 95.31 93.45 0.89 1.40 

Entropy RBF 94.35 93.25 95.44 95.34 93.42 0.89 1.40 

Bhattacharya RBF 94.40 93.31 95.49 95.40 93.47 0.89 1.20 

ROC RBF 94.39 93.25 95.52 95.42 93.42 0.89 1.30 

Wilcoxon RBF 94.41 93.25 95.57 95.47 93.41 0.89 1.40 

T-test Polynomial 93.27 91.71 94.83 94.66 91.97 0.87 3.00 

Entropy Polynomial 93.45 91.73 95.17 95.00 92.02 0.87 3.00 

Bhattacharya Polynomial 93.21 91.47 94.96 94.80 91.77 0.86 3.00 

ROC Polynomial 93.60 91.87 95.33 95.18 92.14 0.87 3.00 

Wilcoxon Polynomial 93.37 91.60 95.15 94.99 91.91 0.87 3.00 

Ranking 
method Distance     ACC     SEN      SPF PPR NPR MCC 

Number of nearest 
neighbors 

T-test Euclidean 93.09 91.12 95.07 94.87 91.48 0.86 4.00 

T-test Cityblock 93.35 91.25 95.44 95.25 91.62 0.87 3.00 

T-test Cosine 93.20 91.20 95.20 95.00 91.55 0.86 4.00 

T-test Correlation 93.13 91.36 94.91 94.73 91.68 0.86 4.00 

Entropy Euclidean 93.12 91.09 95.15 94.95 91.45 0.86 4.00 

Entropy Cityblock 93.57 91.92 95.23 95.08 92.19 0.87 4.00 

Entropy Cosine 93.15 91.20 95.09 94.91 91.54 0.86 4.00 

Entropy Correlation 93.09 91.15 95.04 94.85 91.49 0.86 4.00 

Bhattacharyya Euclidean 93.05 91.01 95.09 94.89 91.37 0.86 4.00 

Bhattacharyya Cityblock 93.33 91.28 95.39 95.20 91.64 0.87 4.00 

Bhattacharyya Cosine 93.20 91.12 95.28 95.09 91.48 0.86 4.00 

Bhattacharyya Correlation 93.01 91.15 94.88 94.70 91.48 0.86 4.00 

ROC Euclidean 93.12 90.91 95.33 95.13 91.31 0.86 4.00 

ROC Cityblock 93.25 91.44 95.07 94.90 91.75 0.87 4.00 

ROC Cosine 93.23 91.36 95.09 94.90 91.69 0.87 4.00 

ROC Correlation 93.05 91.17 94.93 94.73 91.51 0.86 4.00 

Wilcoxon Euclidean 93.12 90.85 95.39 95.18 91.26 0.86 4.00 

Wilcoxon Cityblock 93.44 91.41 95.47 95.29 91.76 0.87 4.00 

Wilcoxon Cosine 93.24 91.09 95.39 95.18 91.47 0.87 4.00 

Wilcoxon Correlation 93.36 91.60 95.12 94.98 91.91 0.87 4.00 
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Table 3.4: LS-SVM classifier performance with log energy entropy involving 16 statistically significant 

features  

Ranking 
method 

Kernel 
function ACC SEN SPF PPR NPR MCC Parameter for kernel 

T-test RBF 94.19 92.96 95.41 95.30 93.14 0.88 1.00 

Entropy RBF 94.31 92.91 95.71 95.59 93.12 0.89 1.00 

Bhattacharya RBF 94.25 92.80 95.71 95.58 93.01 0.89 1.00 

ROC RBF 94.23 92.83 95.63 95.52 93.03 0.89 1.00 

Wilcoxon RBF 94.21 92.85 95.57 95.45 93.05 0.88 1.00 

T-test Polynomial 92.71 90.99 94.43 94.24 91.29 0.85 4.00 

Entropy Polynomial 92.56 90.53 94.59 94.37 90.92 0.85 4.00 

Bhattacharya Polynomial 92.48 90.43 94.53 94.31 90.82 0.85 4.00 

ROC Polynomial 92.76 90.91 94.61 94.41 91.25 0.86 4.00 

Wilcoxon Polynomial 92.49 90.56 94.43 94.21 90.92 0.85 4.00 

 

Table 3.5: K-NN classifier performance with log energy entropy involving 16 statistically significant 

features  

Ranking 
method Distance  ACC  SEN    SPF PPR NPR MCC 

Number of nearest 
neighbors 

T-test Euclidean 93.16 90.96 95.36 95.16 91.35 0.86 4.00 

T-test Cityblock 93.52 91.84 95.20 95.06 92.12 0.87 4.00 

T-test Cosine 92.63 90.72 94.53 94.34 91.09 0.85 4.00 

T-test Correlation 89.11 87.33 90.88 90.55 87.79 0.78 5.00 

Entropy Euclidean 93.03 90.88 95.17 94.97 91.27 0.86 4.00 

Entropy Cityblock 93.44 91.57 95.31 95.13 91.88 0.87 3.00 

Entropy Cosine 92.63 90.80 94.45 94.25 91.17 0.85 4.00 

Entropy Correlation 89.00 87.41 90.59 90.29 87.81 0.78 4.00 

Bhattacharyya Euclidean 93.05 90.88 95.23 95.02 91.28 0.86 4.00 

Bhattacharyya Cityblock 93.57 91.71 95.44 95.27 92.03 0.87 4.00 

Bhattacharyya Cosine 92.61 90.75 94.48 94.29 91.08 0.85 4.00 

Bhattacharyya Correlation 88.99 87.44 90.53 90.27 87.83 0.78 4.00 

ROC Euclidean 93.15 90.99 95.31 95.10 91.38 0.86 4.00 

ROC Cityblock 93.61 91.84 95.39 95.23 92.14 0.87 4.00 

ROC Cosine 92.63 90.64 94.61 94.40 91.00 0.85 4.00 

ROC Correlation 89.03 86.96 91.09 90.73 87.50 0.78 5.00 

Wilcoxon Euclidean 93.01 90.80 95.23 95.03 91.22 0.86 4.00 

Wilcoxon Cityblock 93.64 91.79 95.49 95.33 92.09 0.87 4.00 

Wilcoxon Cosine 92.64 90.80 94.48 94.28 91.14 0.85 4.00 

Wilcoxon Correlation 89.00 87.63 90.37 90.13 87.98 0.78 3.00 
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Table 3.6: LS-SVM classifier performance with correntropy involving 16 statistically significant features 

 

Table 3.7: K-NN classifier performance with correntropy involving 16 statistically significant features 

Ranking method Distance       ACC       SEN       SPF  PPR NPR MCC 

Number 
of 
nearest 
neighbors 

T-test Euclidean 90.13 88.59 91.68 91.42 88.95 0.80 3.00 

T-test Cityblock 91.15 89.52 92.77 92.57 89.88 0.82 4.00 

T-test Cosine 90.49 89.41 91.57 91.40 89.68 0.81 4.00 

T-test Correlation 90.52 89.60 91.44 91.29 89.80 0.81 4.00 

Entropy Euclidean 89.96 88.45 91.47 91.21 88.82 0.80 3.00 

Entropy Cityblock 90.96 89.12 92.80 92.55 89.53 0.82 4.00 

Entropy Cosine 90.59 89.47 91.71 91.52 89.73 0.81 4.00 

Entropy Correlation 90.31 89.60 91.01 90.91 89.77 0.81 4.00 

Bhattacharyya Euclidean 90.01 88.93 91.09 90.91 89.18 0.80 4.00 

Bhattacharyya Cityblock 90.89 89.01 92.77 92.51 89.43 0.82 4.00 

Bhattacharyya Cosine 90.52 89.49 91.55 91.39 89.73 0.81 4.00 

Bhattacharyya Correlation 90.36 89.52 91.20 91.06 89.73 0.81 4.00 

ROC Euclidean 90.16 88.80 91.52 91.30 89.11 0.80 4.00 

ROC Cityblock 91.21 89.44 92.99 92.74 89.81 0.82 4.00 

ROC Cosine 90.51 89.49 91.52 91.37 89.71 0.81 4.00 

ROC Correlation 90.33 89.71 90.96 90.88 89.85 0.81 4.00 

Wilcoxon Euclidean 90.12 88.80 91.44 91.21 89.11 0.80 4.00 

Wilcoxon Cityblock 91.01 89.01 93.01 92.74 89.48 0.82 4.00 

Wilcoxon Cosine 90.67 89.55 91.79 91.61 89.80 0.81 4.00 

Wilcoxon Correlation 90.36 89.57 91.15 91.02 89.75 0.81 4.00 

 
 

 

 

 

 

 

 

Ranking 
method 

Kernel 
function ACC SEN SPF PPR NPR MCC 

Parameter for 
kernel 

T-test RBF 92.95 91.52 94.37 94.23 91.77 0.86 1.00 

Entropy RBF 92.99 91.57 94.40 94.26 91.82 0.86 1.00 

Bhattacharya RBF 93.12 91.57 94.67 94.51 91.84 0.86 1.00 

ROC RBF 92.83 91.55 94.11 93.96 91.78 0.86 1.00 

Wilcoxon RBF 92.95 91.57 94.32 94.18 91.80 0.86 1.00 

T-test Polynomial 92.47 90.83 94.11 93.93 91.13 0.85 4.00 

Entropy Polynomial 92.69 91.07 94.32 94.14 91.37 0.85 4.00 

Bhattacharya Polynomial 92.73 91.25 94.21 94.06 91.52 0.86 4.00 

ROC Polynomial 92.55 90.96 94.13 93.95 91.26 0.85 4.00 

Wilcoxon Polynomial 92.59 91.33 93.84 93.70 91.56 0.85 4.00 
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Table 3.8: LS-SVM classifier performance with sure entropy involving 16 statistically significant 

features 

 

Ranking 
method 

Kernel 
function ACC SEN SPF PPR NPR MCC 

Parameter for 
kernel 

T-test RBF 91.45 89.55 93.36 93.11 89.96 0.83 1.00 

Entropy RBF 91.56 89.76 93.36 93.14 90.14 0.83 1.00 

Bhattacharya RBF 91.55 89.65 93.44 93.22 90.06 0.83 1.00 

ROC RBF 91.40 89.49 93.31 93.05 89.89 0.83 1.00 

Wilcoxon RBF 91.52 89.76 93.28 93.06 90.11 0.83 1.00 

T-test Polynomial 89.63 87.68 91.57 91.26 88.17 0.79 3.00 

Entropy Polynomial 89.57 87.55 91.60 91.28 88.07 0.79 3.00 

Bhattacharya Polynomial 89.79 87.95 91.63 91.32 88.41 0.80 3.00 

ROC Polynomial 89.56 87.76 91.36 91.06 88.21 0.79 3.00 

Wilcoxon Polynomial 89.51 87.71 91.31 91.00 88.14 0.79 3.00 

 

 

Table 3.9: K-NN classifier performance with sure entropy involving 16 statistically significant features 

 

Ranking Method Distance     ACC      SEN      SPF PPR NPR MCC 

Number 
of 
nearest 
neighbors 

T-test Euclidean 89.57 86.77 92.37 91.95 87.50 0.79 5.00 

T-test Cityblock 90.65 88.67 92.64 92.36 89.11 0.81 4.00 

T-test Cosine 88.60 86.85 90.35 89.99 87.33 0.77 4.00 

T-test Correlation 86.52 86.61 86.43 86.48 86.60 0.73 4.00 

Entropy Euclidean 89.77 87.01 92.53 92.10 87.73 0.80 5.00 

Entropy Cityblock 90.60 88.45 92.75 92.43 88.95 0.81 4.00 

Entropy Cosine 88.81 87.04 90.59 90.27 87.52 0.78 4.00 

Entropy Correlation 86.17 86.11 86.24 86.26 86.15 0.72 3.00 

Bhattacharyya Euclidean 89.71 87.17 92.24 91.84 87.82 0.80 5.00 

Bhattacharyya Cityblock 90.71 87.71 93.71 93.30 88.42 0.82 5.00 

Bhattacharyya Cosine 88.79 87.12 90.45 90.16 87.56 0.78 4.00 

Bhattacharyya Correlation 86.19 86.11 86.27 86.26 86.14 0.72 4.00 

ROC Euclidean 89.81 87.20 92.43 92.02 87.86 0.80 5.00 

ROC Cityblock 90.69 88.69 92.69 92.40 89.13 0.81 4.00 

ROC Cosine 88.68 87.09 90.27 89.97 87.50 0.77 4.00 

ROC Correlation 86.51 86.59 86.43 86.47 86.60 0.73 4.00 

Wilcoxon Euclidean 89.73 87.63 91.84 91.49 88.14 0.80 4.00 

Wilcoxon Cityblock 90.45 88.08 92.83 92.47 88.63 0.81 4.00 

Wilcoxon Cosine 88.68 87.12 90.24 89.94 87.55 0.77 4.00 

Wilcoxon Correlation 86.28 86.21 86.35 86.35 86.28 0.73 4.00 
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Figure 3.1: Box plots of reconstructed signals from all bands and 1st - 2nd detailed sub-bands in first, 

second and third row respectively for correntropy, log-energy entropy and sure entropy in first-third 

column respectively. 

 

Figure 3.2: Box plots of reconstructed signals from 3rd to 5th detailed sub-bands in first, second and 

third row respectively for correntropy, log-energy entropy and sure entropy in first-third column 

respectively. 
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Figure 3.3: Box plots of reconstructed signals from 6th to 8th detailed sub-bands in first, second and 

third row respectively for correntropy, log-energy entropy and sure entropy in first-third column 

respectively. 

 

Figure 3.4: Box plots of reconstructed signals from 9th to 11th detailed sub-bands in first, second and 

third row respectively for correntropy, log-energy entropy and sure entropy in first-third column 

respectively. 
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Figure 3.5: Box plots of reconstructed signals from 12th to 14th detailed sub-bands in first, second and 

third row respectively for correntropy, log-energy entropy and sure entropy in first-third column 

respectively. 

 

 

Figure 3.6: Box plots of reconstructed signals from 15th detailed sub-band and one approximate band in 

first and second row respectively for correntropy, log-energy entropy and sure entropy in first-third 

column respectively. 

 

 

 

 

 

 

 



26 
 

 
 

Table 3.10: Comparison of the classification performance of the proposed work with the existing work. 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Authors, Year, Reference Features Classification method 
Classification 
accuracy (%) 

Zhu et al. (2013) [27] Delay permutation entropy SVM RBF Kernel 84% 

Sharma et al. (2015) [19] DWT, Entropy measures SVM least square method 84% 

Sharma et al. (2014) [21] EMD, ASE, AVIF SVM least square method 85% 

Sharma et al. (2015) [20] EMD, Entropy measures SVM least square method 87% 

Das et al. (2016) [6] EMD-DWT, log-energy entropy KNN city-block distance 89.4% 

Bhattacharyya et al. (2016) [4] RPS, CTM LS-SVM method 90% 

Sharma et al. (2016) [31] 
Orthogonal wavelet filter banks, 

Entropy measures LS-SVM method 94.25% 

Present work 
FAWT, correntropy, log-energy 

entropy and sure entropy 
LS-SVM method with RBF 

kernel 94.41% 
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Chapter 4:  

Conclusions and scope for future 

 

A significant part of the population is affected by epilepsy which hinders their inclusion in the society. This 

provides a motivation for a research to come up with novel ideas for taking this challenge. The epilepsy is 

a serious brain related disease and the patients suffering from it are increasing day by day. Undetected 

epilepsy may lead to long term complications, causing severe disorder problems. Early detection of 

epilepsy may save the patients from these serious disorder issues. In the present work, only focal epilepsy 

is considered. FAWT method is used to decompose the differencing focal and non-focal EEG signals into 

sub-bands. 

From these sub-bands, reconstructed signals are obtained which is used for feature extraction, namely 

correntropy, log energy entropy and sure entropy. Statistically significant features, decided using Kruskal-

Wallis statistical test, are used as an input to the different classifiers for the discrimination of focal and non-

focal EEG signals. Ten-fold cross validation algorithm is involved to confirm the reliability of the 

classifiers. The best classification accuracy of 94.41% is acquired using RBF kernel function with LS-

SVM. The primary benefit of the proposed methodology is that it can help in automatically identifying the 

focal epileptic area of a patient with high accuracy and devoid of personal errors which in turn will reduce 

the work load of the clinicians.  

In future work, several new features can be studied and may be utilized with the extracted features 

in the present work so that the classification accuracy may be further improved. Also, some new kernel 

functions may be defined and used with LS-SVM classifier. Artificial neural network (ANN) and other 

classification techniques may also be used with the proposed features.  

The proposed methodology can also be applied for other physiological signals like 

phonocardiogram (PCG), electromyogram (EMG) and electrocardiogram (ECG) etc. 
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