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Preface 

 

This report on “Automated Classification of Abnormal EMG Signals using Tunable-Q 

Wavelet Transform" is prepared under the guidance of Dr. Ram Bilas Pachori. 

 

Through this report we have tried to give a detailed outline of a novel method for the 

classification of EMG Signals into normal, amyotrophic lateral sclerosis (ALS) and 

myopathy. This work aims to provide an effective mechanism for identification of 

neuromuscular disorders at early stage in order to help patients get better treatment and 

hopefully save many priceless lives. We have reached better accuracy than existing methods. 

 We have tried to the best of our abilities and knowledge to explain the content in a lucid 

manner. We have also added graphs and figures to make it more illustrative. 
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Abstract 

Neuromuscular diseases can be assessed using Electromyogram (EMG) signals. In this work, 

a novel technique is presented to classify the EMG signals into various categories such as 

amyotrophic lateral sclerosis (ALS), normal and myopathy. The proposed method 

decomposes EMG signals into its constituent motor unit action potentials (MUAP) and then 

uses different extracted features for training a random forest classifier. Time domain features 

such as amplitude, rise time are directly applied on the MUAPs while we have reconstructed 

the signal from constituent sub-band after applying TQWT in order to extract entropy based 

features. Weka toolbox is used to classify the signals using random forest classifier. Results 

of two-class classification are shown for ALS versus normal; ALS versus myopathy and 

normal versus myopathy to establish the effectiveness of the method. The proposed technique 

provides promising classification accuracy in order to be useful for medical application and 

help in early detection of the neuromuscular disorders to help many patients find a better way 

of treatment. 
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Chapter 1 

Introduction 

 

Electromyogram (EMG) is recording of electrical activities of the muscles. The EMG signals are frequently 

used in human computer interfacing and also have various applications in industrial and clinical fields. These 

signals exhibit nonstationary nature and includes complex and large variations. EMG signals contain 

information about the functioning of muscle. It also carry status of the muscle. Such information can be used 

for the diagnosis of various neuromuscular diseases like: amyotrophic lateral sclerosis (ALS) and myopathy 

[1]. 

ALS is a rapid progressive and fatal neuromuscular disease. It severely affects the functioning of both motor 

neurons. It may lead to degeneration and possible damage to neurons. In this disease, muscles may become 

smaller and weaker, ultimately resulting in body paralysis. General population affected by ALS is of age 

group 40 to 70 years [1]. However, it can also affect people of another age groups. Due to ALS, respiratory 

failure is also possible which may lead to death of the victim, usually after 3-5 years from the onset of 

disease. Another muscular disease that involves muscular cramp, stiffness, spasm and dysfunction is 

Myopathy, which affects skeletal muscles’ fiber. Myopathy generally stops muscles to work properly. It 

affects the muscles present at the center of body. However, it does not leads to death of the muscles [1]. 

Thus, the EMG signals can be used to for the diagnoses and identification of the patients suffering from 

either of the diseases. 

1.1  The purpose of this work 

There are many neuromuscular disorders that affects the spinal cord, nerves or muscles. From clinical point 

of view, detection of these diseases at their early stage is an important step for proper cure and treatment of 

these diseases. Usually, clinical laboratory test is performed for the detecting them. At initial stage, the 

symptoms of myopathy and ALS appears similar to the symptoms of other diseases. Therefore, it is difficult 

to diagnosis these diseases at early stages [2]. Recently, EMG signals based techniques are used for the 

detection of ALS and myopathy diseases. These neuromuscular abnormalities can be identified from the 

analysis of the recorded EMG signal.  

Traditionally, neurophysiologists assess these diseases on the basis of properties of motor unit action 

potential MUAPs like: shape of the MUAP and its audio characteristics [2]. This shows the importance of 



2 
 

the MUAPs in the detection process of the diseases. Manual detection of the abnormalities using 

characteristics of MUAPs requires experienced and skilled neurophysiologist. Despite the satisfactory 

assessment of the MUAPs by the neurophysiologist, the detection of these abnormalities, may not be 

sufficient for accurate detection of the nuance deviations. Also, the mixed patterns in the MUAPs are also 

hard to detect with manual assessment. It is, therefore, necessary to perform analysis of MUAPs, 

quantitatively in order to account for these variability in the abnormal patterns. 

The analysis of the time-series exhibiting non-stationary nature can be effectively performed using Wavelet 

Transform (WT). It provides information of signal in both time and frequency domain, simultaneously [3]-

[7]. The proper feature extraction scheme is necessary for the better performance of the classification. 

Neuromuscular disease classification based on the EMG signal characteristic can be either direct [1] or 

MUAP based [3]-[7] methods. In direct method, for the purpose of classification, analysis of the EMG signal 

classification is performed by breaking the signal into non-overlapping frames. The frames can be composed 

of multiple MUAPs. Now, each frame is used to extract the features and ultimately, the features extracted 

from each frame are used for the classification. On the other hand, in MUAP based method, firstly, the signal 

is decomposed into its constituent MUAPs and then, the extracted MUAPs are used for further analysis and 

feature extraction. The important features of the MUAPs, which carries the information related to 

neuromuscular disorders are: shapes and firing rates of MUAPs present in EMG signals [8]. 

1.2  Motor unit action potential 

The combined unit of muscle fibers and associated motor neurons is known as motor unit [8]. Motor unit 

generates electrical potential upon electrical or neurological activation. The generation of MUAP is caused 

by the firing of muscle fibers on the activation of associated motor neuron. Thus, EMG signal is a 

biomedical signal of complex nature. The complex nature of EMG signal can be attributed to the anatomical 

and physiological properties of muscles. The nervous system controls the muscles’ activity. The EMG 

signals can be recorded using electrodes placed at skin surface over the muscles or inserting needle 

electrodes into the muscles. The recording where the electrodes are placed at the skin surface over the 

muscles can be classified as surface EMG. The recorded EMG signal comprises the combined action 

potential due to the activities of all the muscle fibers underlying the skin. On the other hand, EMG recorded 

by inserting needle electrodes is known as intramuscular EMG. Using intramuscular EMG, the action 

potential generated from individual muscle of the single motor unit can be recorded. 
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1.3  Proposed method 

In this work, initially, the EMG signals were decomposed into its constituent MUAPs and then those are 

used for the classification process. The classification of MUAPs into normal, myopathy and ALS can be 

performed by analyzing various time based features such as amplitude, duration, area and rise time are used 

in this work. Also, Tunable Q-factor Wavelet Transform (TQWT), with different Q-values, is applied on the 

MUAPs, to acquire features corresponding to different frequency components. The features, such as 

entropies, which measures the complexity of the signals, have been then applied to the different decomposed 

wavelets. The feature matrix is then given as input to the classifier, which classifies them as Normal, ALS or 

Myopathy. The block-diagram of the proposed method is depicted in Figure 1.1. 

 

Figure 1.1: Block diagram of the proposed method 
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Chapter 2 

EMG Database and MUAP Extraction 

 

The database used in this work and MUAP extraction algorithm from the EMG signal is briefly described in 

the following section: 

2.1  Data acquisition and signal filtering 

The data was acquired from the EMGLABs [9] database, which is available online. In the database, EMG 

signals corresponding to three different classes are available. These classes are normal (control), myopathy 

and ALS. In the control group EMG signals are recorded from 4 females and 6 males subjects with age 

ranging from 21-37 years. 6 out of 10 were in very good physical shape, and the remaining except one were 

in general good shape. No subject in the control group had any history of neuromuscular disorders. In the 

myopathy group, EMG signals are recorded from 2 females and 5 males patients with age ranging from 19-

63 years. All 7 patients exhibit sign of clinical and electrophysiological myopathy. In the ALS group EMG 

signals are recorded from 4 females and 4 males patients with age ranging from 35-67 years. These patients 

shows the clinical signs compatible with ALS. 5 out of these 8 patients, died within a few years after onset of 

the disorder [9]. 

The EMG signals were recorded using concentric needle electrodes. The sampling frequency used was 

23,437Hz. The digitization was done using a 16 bit analog to digital (A/D) converter. The amplification 

factor used was 4000. Filters were used to get the signal in the frequency from 2 Hz to 10 kHz only. Low 

level of contraction was maintained to acquire to signals. The needles used had a standard leading of area 

0.07 mm2.  

The typical signals of the three classes are shown in Figure 2.1:  
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Figure 2.1: EMG signals pattern from top to bottom (a) Normal (b) ALS (c) Myopathy 

2.2  MUAP extraction 

MUAPs are extracted from the EMG signals. The MUAP extraction algorithm consist of two stages namely, 

segmentation and clustering. The block diagram of MUAP extraction steps is shown in Figure 2.2. The 

procedure for MUAP extraction is expressed as follows [8]: 

1. Segmentation: The EMG signal is segmented in the time-intervals containing MUAPs known as 

segments. A segment can have one MUAP. It can also have superimposed MUAPs known as 

compound segments. The parts of EMG signal not containing MUAP are known as baseline. 

2. Clustering: In this step, similar looking segments are grouped together to form a cluster. A group 

may have multiple number of segments. A group with five or more segments is categorized as 

potential class (PCL). From each PCL a template is chosen to represent the PCL. A representative 

template is selected from each PCL. An active MUAP of the EMG signal is represented by this 

selected template. 
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Figure 2.2: Block diagram representation of MUAP extraction: Segmentation and clustering 

2.2.1  Segmentation 

In the segmentation stage, a signal 𝑣(𝑛) is partitioned into segments containing MUAP. For the 

segmentation, a window Nd, of 5.6 ms is used and the variance in the window is calculated using [8]: 

𝑣𝑎𝑟(𝑗) =
1

𝑁 + 1
∑ 𝑣2(𝑗 + 𝑖) − (

1

𝑁 − 1
∑ 𝑣(𝑗 + 𝑖)

𝑛

𝑖= −𝑛

)

𝑛

𝑖=−𝑛

2

 

If the variance in a window is more than a threshold thrd value, then it is considered as a segment. It may 

have either a single MUAP or it can be a compound segment consisting of many superimposed MUAPs. 
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Amplitude density function obtained from the normalized variance signal is used to carry out threshold 

estimation. A local maximum present in the density function is used to represent similar-sized MUAPs. 

Threshold is determined as the first local minimum obtained, when starting the search from the origin. It is 

assumed at the origin, that the smallest MUAPs are assumed to be distinguished from the noise. The 

segment-delimiting threshold thrl is obtained from [8]: 

thrl = 0.15 (thrd - blmv) + blmv 

In the above expression, blmv represents the mean obtained from the baseline variance. blmv is computed by 

presegmenting the EMG signal with thrl = thrd/3. 

 

2.2.2  Clustering 

The acquired segments are then grouped with similar segments. Similarity between two segments is 

computed depending upon the distance between two segments. If s1 and s2 are the two segments, for 

instance, and e is their difference then the distance between them is given by [8]: 

𝑑𝑖𝑠𝑡(𝑠1, 𝑠2) =
𝑣𝑎𝑟(𝑒)

𝑟𝑚𝑠(𝑠1) + 𝑟𝑚𝑠(𝑠2)
 

Here, parameter 𝑣𝑎𝑟 is the variance of the signal and parameter 𝑟𝑚𝑠 represents root mean square. Before 

calculating the distance, the signals are time aligned so that we get minimum residual (𝑒 = 𝑠1 − 𝑠2). If a 

group has more than five segments then it can be a potential class. For each potential class, an average 

segment is chosen which represents the class. These chosen segments represents the MUAPs. 

MUAPs have been extracted using the above mentioned method. In the next chapter the signal processing 

techniques involved to classify the EMG signals into ALS, normal and myopathy groups has been explained. 
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Chapter 3 

Tunable-Q Wavelet Transform 

 

TQWT [10] contains a chain of two channel filter banks with low pass output connected to input of the next 

filter bank. It has the property of perfect reconstruction. It is dependent on three parameters, namely the Q 

factor, the redundancy and the number of stages used. At every stage, the high pass output is taken as the 

coefficient for that stage and for the last stage, both the outputs are taken as two separate coefficients. 

 

3.1  Parameters of the transform 

The parameter 𝑄 denotes the amount of sustained oscillations of the wavelet. It is a measure of oscillatory 

nature of the wavelet. For an oscillatory pulse, we have [10]: 

𝑄 =  
𝑤𝑐

𝐵𝑊
 

where 𝑤𝑐 is the centre frequency of the signal and 𝐵𝑊 is the bandwidth. 

The redundancy (𝑟) is the over-sampling rate, i.e., the net sampling rate over the input signal's sampling rate. 

Taking 𝑓𝑠 as the sampling rate of the signal, and α𝑓𝑠  and  𝛽𝑓𝑠 as the sampling rates for low and high pass 

filters of the two channel filter,  then, for a filter of J bands, the filtering rate at sub-band j (j ≥ 1) is 𝛽𝛼𝑗−1𝑓𝑠  

which when summed over all the levels gives 
𝛽

1+𝛼
𝑓𝑠  and hence the over-sampling rate is given by [10]: 

𝑟 =
𝛽

1 − 𝛼
 

 

The number of stages (J) denotes the number of filter banks used. Since we have two outputs from the last 

filter so we have a total of J +1 sub-bands for the wavelet. 
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An example of 3 stage TQWT filter is as follows: 

 

Figure 3.1: Three-staged TQWT using dual channel filter bank [10] 

 

In the Figure 3.1, the high pass output at first and second stage is passed to the next stage and the high pass 

filter output is taken as coeff1 and coeff2 respectively. Also, both the outputs from the third stage are taken 

as two different coefficients, coeff3 and coeff4. 

 

3.2  Determining the required parameters 

We needed to decompose the signal into oscillatory and non-oscillatory components. So, we decided to use 

TQWT two times with different parameters, once corresponding to the oscillatory component and other time 

to extract the non-oscillatory components. 

 

The graph of energy of sub-bands for different 𝑄 values with the same ‘𝑟’ and ‘J’ values is shown in Figure 

3.2. We found out that for lower 𝑄 values, the energy is distributed among all the sub-bands. Also, as we 

increase the value of 𝑄, the energy is concentrated at the sub-band with lower frequencies and the difference 

between energy levels of low and high frequency sub-bands increases drastically. In the plot shown below in 

Figure 3.2, sub-band 1 represents highest frequency component and sub-band 11 represents lowest frequency 

component. 
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Figure 3.2: MUAP and energy level of sub-bands for different 𝑄 values and same J and 𝑟 values 

 

We decided to use 𝑄 = 2 for the second TQWT transform as the energy levels of higher frequency sub-bands 

were approximately zero for 𝑄 > 2.  

 

 

Figure 3.3: MUAP and energy level of sub-bands for different J values and same 𝑄 and 𝑟 values 
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Also, since the energy distribution depends on the number of levels used in TQWT, so we tried different 

levels of TQWT and found out that higher levels gave better energy distribution of the sub-bands, as shown 

in Figure 3.3, was to be used for further processing. The TQWT Toolbox used, however, errors out if the 

levels used is too high. So an optimal level was found by trial and error. 

 

After looking at the graphs mentioned above Figure 3.2-3.3 and going through many trial and error runs, we 

decide to use two separate TQWTs, one with 𝑄 = 1; 𝑟 = 3; J = 10 and the other with 𝑄 = 2; 𝑟 = 3; J = 14. 

Figure 3.4-3.5 are the signals and their when TQWT with 𝑄 = 1; 𝑟 = 3; J = 10 is applied on ALS, normal and 

myopathy signals: 

 

 

Figure 3.4: Wavelet coefficients obtained after applying TQWT on an ALS MUAP 
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Figure 3.5: Wavelet coefficients obtained after applying TQWT on a normal MUAP 

 

Figure 3.6: Wavelet coefficients obtained after applying TQWT on a myopathy MUAP 
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Chapter 4 

Feature Extraction 

 

Feature extraction refers to the procedure of forming a set of measurable properties of the dataset. This helps 

in reducing the dimensionality of data by extracting a few values which collectively describe the same data, 

and preferable reduce any unwanted or redundant information. This eases the processing of data. It also helps 

for better understanding of the data from a human’s point of view. 

 

Mostly, when the data to be processed is large, there is a lot of redundant information and leads to waste of 

processing time. Also, that can lead to confusion during the classification stage. Hence, feature extraction is 

preferred for classification rather than directly using the input signal values for the same. For any given 

classification task, we select the desired features such that the desired task can be performed using the most 

relevant features.  

 

Here, we have used time domain based features alongside entropy based features to cover a large set of 

detectable features. We have applied several time domain based features directly on the MUAPs and entropy 

based features on the reconstructed signals obtained from the sub-bands of TQWT. 
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Figure 4.1: Time domain based Features [8] 

4.1  Time domain based features 

The following features, shown in Figure 4.1, are applied on the MUAPs directly: 

i) Amplitude: Amplitude difference between maximum negative and maximum positive peaks [11]-[12]. The 

formula is: 

𝑎𝑚𝑝 = max(𝑥) − min (𝑥)   

where x is the signal. 
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ii) Duration: To calculate the modified duration of the MUAP from the extracted MUAP, threshold is 

calculated using the formula [11]-[12]: 

𝑡ℎ𝑟𝑒𝑠 =
max(𝑥)

15
 

The threshold is capped to be between 10 and 20 µV. After this, (y = thres) line is drawn and the first and 

last points where the signal crosses this line are recorded. The time difference between the first and last 

points where the MUAP crosses this threshold line is defined as the rectified duration. 

iii) Area:  The integral of the MUAP is calculated over the rectified duration obtained [11]-[12]. It is done by 

using trapezoidal method of finite integration as the MUAP is a discrete signal. 

𝑎𝑟𝑒𝑎 =  ∫ 𝑥(𝑡)𝑑𝑡
𝑡2

𝑡1

 

where (t1, t2) is the rectified duration. 

 

iv) Rise time: Time difference between maximum positive peak and the minimum negative peak [11]-[12] is 

used as rise time for this study. It is given as: 

𝑟𝑡 = 𝑎𝑏𝑠 (𝑡(𝑥(𝑡) = max(𝑥)) −  𝑡(𝑥(𝑡) = min(𝑥))) 

where abs is the absolute value function. 

 

v) Phases:  We create 2 lines at ± 25 µV and count the number of times the signal crosses these lines, let this 

be 𝑛𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔 [11]-[12]. Phases are defined as: 

𝑝ℎ𝑎𝑠𝑒𝑠 =
𝑛𝑐𝑟𝑜𝑠𝑠𝑖𝑛𝑔

2
 

 

vi) Turns: Turns are defined as the number of times when the difference between 2 extrema is more than 25 

µV. We calculate all the extrema of the signal (both minima and maxima) [11]-[12]. If the difference 

between 2 consecutive extrema is more than 25 µV then it is counted as a turn. 
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vii) Spike duration: It is the time difference from the first to the last positive spike [12]. It calculates all the 

times at which positive peaks occur and then calculate the difference between the maximum and minimum 

values. 

𝑠𝑝𝑑𝑢𝑟 = max(𝑡𝑝𝑜𝑠𝑝𝑒𝑎𝑘𝑠) − min (𝑡𝑝𝑜𝑠𝑝𝑒𝑎𝑘𝑠) 

where  

𝑡𝑝𝑜𝑠𝑝𝑒𝑎𝑘𝑠 = { 𝑡 ∶ 𝑥(𝑡) > 0 𝑎𝑛𝑑
𝑑𝑥

𝑑𝑡
= 0 } 

 

viii) Spike area:  The integral of the MUAP is calculated over the rectified spike duration obtained [12]. It is 

done by using trapezoidal method of finite integration as the MUAP is a discrete signal. 

𝑠𝑝𝑎𝑟𝑒𝑎 =  ∫ 𝑥(𝑡)𝑑𝑡
𝑡2

𝑡1

 

where (t1, t2) is the rectified spike duration. 

4.2  Entropy based features 

Entropy is generally considered as a measure of disorder in a system in thermodynamics. For a given signal, 

it represents the information content of a signal. In information theory, entropy is used to measure 

complexity of a time series. 

We apply TQWT on MUAPs and then use each of the subbands separately to reconstruct the signal using 

inverse-TQWT. On each of the reconstructed signal, we apply entropy based features to calculate the 

complexity inherent in the signal. 

The following entropy features [13] are used: 

i) Approximate entropy:  It measures complexity in time domain [14]. It quantifies the probability that a 

signal will repeat itself. So, with a tolerance r, it repeats for d points and also for the next d + 1 points [15]. 

We define vector X for a given signal x as [13]-[16]: 

𝑋(𝑖) = { 𝑥(𝑖), 𝑥(𝑖 + 1), . . . . , 𝑥(𝑖 + 𝑑 + 1) }   1 ≤ 𝑖 ≤ 𝑁 − 𝑑 + 1 

Approximate entropy is then defined as follows [16, 17]: 

𝐴𝑝𝐸𝑛(𝑑, 𝑁, 𝑟) =  𝜑𝑑(𝑟) −  𝜑𝑑+1(𝑟) 
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where 𝜑 is defined as [13]-[16]: 

𝜑𝑑(𝑟) =
1

𝑁 − 𝑑 + 1
 ∑ 𝐶𝑖

𝑑(𝑟)

𝑖

 

where C is the correlation integral for two vectors X(i) and X(j) which is defined as [13]-[16]: 

𝐶𝑖
𝑑(𝑟) =

1

𝑁 − 𝑑 + 1
𝑁𝑖

𝑟      𝑖 = 1, 2, 3, . . . . , 𝑁 − 𝑑 + 1 

where 𝑁𝑖
𝑟 represents the number of vectors X(j) whose distance from the vector X(i) is less than r. 

ii) Sample entropy:  Sample entropy builds upon ApEn to measure complexity of a series. It is independent 

of length of the signal and helps improve the consistency by removing the self matches than occur in 

calculation of ApEn. Using the vectors X(j)  as defined for ApEn, the sample entropy is defined as [13]-[16]: 

𝑆𝑝𝐸𝑛(𝑑, 𝑟, 𝑁) =  − ln (
𝐴𝑑(𝑟)

𝐵𝑑(𝑟)
) 

Where: 

𝐴𝑑(𝑟) =
1

𝑁 − 𝑑
 ∑ 𝐶𝑖

𝑑+1(𝑟)

𝑁−𝑑

𝑖=1

 

𝐵𝑑(𝑟) =
1

𝑁 − 𝑑
 ∑ 𝐶𝑖

𝑑(𝑟)

𝑁−𝑑

𝑖=1

 

and 

𝐶𝑖
𝑑(𝑟) =

1

𝑁 − 𝑑
 𝐶𝑖        𝑖 = 1, 2, . . . . , 𝑁 − 𝑑  

where  𝐶𝑖 is the count such that distance between X(i) and X(j) does not exceed r. 

 

iii) Spectral entropy:  Spectral entropy is evaluated using normalized Shannon entropy and measure 

complexity of the signal in frequency domain. It uses Fourier transform to get the power spectral density of 

the signal in order to calculate energy and hence entropy. Normalized power is calculated by dividing power 

of each component by total power as [13]: 

𝑝𝑓 =
𝑃𝑓

∑ 𝑃𝑓
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Then spectral entropy is defined as [13]: 

𝑆ℎ𝐸𝑛 =  ∑ 𝑝𝑓 log (
1

𝑝𝑓
)

𝑓

 

 

iv) Renyi entropy:  It measures spectral complexity of the time series. It is measured by using normalised 

Shannon entropy. The formula for Renyi’s entropy is [13]: 

𝑅𝑒𝑛𝐸𝑛(𝛼) =
1

1 − 𝛼
 log (∑ 𝑝𝑓

𝛼

𝑖

) 

In this work, we use Renyi’s quadratic entropy, i.e., RenEn with α = 2, 

𝑅𝑒𝑛𝐸𝑛(2) = − log (∑ 𝑝𝑓
𝛼

𝑖

) 

v) Fuzzy entropy:  It measure the fuzziness of a data by using the distance measure. It measures the similarity 

in terms of subset-hood (sub-message-hood) of a data. It is also, sometimes, used as conditional probability. 

We define vector X for a given signal x as [18]: 

𝑋(𝑖) = { 𝑥(𝑖), 𝑥(𝑖 + 1), . . . . , 𝑥(𝑖 + 𝑑 + 1) } − 𝑥0(𝑖)   ;   1 ≤ 𝑖 ≤ 𝑁 − 𝑑 + 1 

Where x0 is defined as [18]: 

𝑥0(𝑖) =
1

𝑚
∑ 𝑥(𝑖 + 𝑗)

𝑑−1

𝑗=0

 

Fuzzy Entropy is then defined as follows [18]: 

𝐹𝑧𝐸𝑛(𝑑, 𝑁, 𝑟) =  ln (𝜑𝑑(𝑛, 𝑟)) −  ln (𝜑𝑑+1(𝑛, 𝑟)) 

where 𝜑 is defined as [18]: 

𝜑𝑑(𝑟) =
1

𝑁 − 𝑑
 ∑ (

1

𝑁 − 𝑑 − 1
∑ 𝐷𝑖𝑗 

𝑁−𝑑

𝑗=1,𝑗≠𝑖

)

𝑁−𝑑

𝑖=1
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where 𝐷𝑖𝑗 is the exponential [18]: 

𝐷𝑖𝑗 = exp {− 
(𝐿𝑖𝑗)

𝑛

𝑟
}  

Here, 𝐿𝑖𝑗 is the distance between vector X(i) and X(j). 

 

The feature matrix hence obtained is then sent to the classifier to classify the data into the required 

categories. It contains a total of 138 features, 8 time-domain features and 5 entropy features on each of the 26 

reconstructed signals from the two TQWT wavelets. 
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Chapter 5 

Classification 

Classification is used to identify the group in which a new observation belongs. This identification is based 

upon apriori knowledge of a dataset with similar observations for which we know the category of each 

observation. For example, a dataset of cancer patients containing information about doses, recovery etc for 

patients can be used to identify if a new patient will make recovery given the doses of drugs that he is 

subjected to.  

It is considered as supervised learning in the field of machine learning [19] because we use a training dataset 

for which we already know the correct results. If it is unsupervised then it is called clustering which involves 

finding out inherent similarity or distance in the data for grouping into various categories. 

Features, described as a set of quantifiable properties, which may be integral or real valued, are used to 

classify the set of observations into different groups. Some classifiers use a distance function to compare an 

observation to previously known observations. 

A classification algorithm is known as a classifier. It is basically a mathematical function that finds the most 

likely group to which an observation belongs. The classifier that we are using is called Random Forest 

Classifier. 

5.1  Random forest classifier 

The method of random decision forests [20] uses random decision trees, which constitute of a forest, and 

restricts them to fixed feature dimensions. Upon such restriction, this method obtains higher accuracy and 

also doesn’t suffer from overfitting. It has also been shown that any method with splitting trees gains the 

same benefits if it randomly forces the trees to be insensitive to some features [21]. An explanation for 

random forest classification to be resistant to overtraining can be given using Kleinberg's theory of stochastic 

discrimination. 

It incorporates the idea that for continuing the growth of a decision tree, randomly visiting the available 

decisions leads to more natural decision making process. This is further extended by using a set of tress, 

among which, the training data is randomly distributed to fit for each node/tree. Since this method uses a set 

of trees for the classification procedure, hence it is called ‘random forest classifier’. 
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The use of many random decision trees is quite beneficial as even if a test data is wrongly classified by a few 

of the trees, taking the mode of the results by all the trees helps in avoiding false results. 

Due to all these benefits, we chose to use this classifier for our dataset. 

 

5.2  Weka classification toolbox 

Waikato environment for knowledge analysis (Weka) [22] is a machine learning software developed at the 

University of Waikato, New Zealand. It is widely used for educational and research purposes as it is a free 

software and provides a wide variety of machine learning and data mining tools. It has a lot of features and 

can be used to perform classification, among many other things, given a set of features. 

It was aimed towards agricultural domains in its earlier days but later on it started including tools that have 

application in many different areas. Moreover, its portable nature and helpful GUI has contributed in its wide 

acceptance.  

A feature matrix was obtained after applying all the features on the MUAPs. It was written in arff format 

which is understood by weka. Weka toolbox was later used to classify the dataset using random forest 

classifier. 

We used 66% of the data to train the classifier and rest of the data was used for testing. 10-fold verification 

was also used to verify the results. 
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Chapter 6 

Results and Discussion 

In this chapter, we have included the results obtained by applying proposed method on the EMGLabs 

database. The results are presented and briefly discussed in the following sections. 

6.1  Results 

In the proposed method, firstly, MUAPs are extracted from the EMG signals. From the database, a total of 

4112 MUAPs are extracted from total of 935 EMG signals. 1051 MUAPs are extracted from 320 EMG ALS 

signals; 1429 MUAPs are extracted from 300 normal EMG signals; and 1632 MUAPs are extracted from 

315 myopathy EMG signals. The typical examples of MUAPs extracted from the EMG signals of normal, 

ALS and myopathy class are shown in Figure 6.1. The MUAP segments are decomposed using TQWT. The 

TQWT parameters used to decompose EMG signals are: 𝑄 = 1; 𝑟 = 3; J = 10 and 𝑄 = 2; 𝑟 = 3; J = 14. The 

entropy features are extracted from the obtained sub-bands. Several time based features like amplitude, time 

duration, area, turns, phases, spike duration and spike area are computed directly from MUAPs without 

TQWT decomposition. The final features set is formed by combining all the features computed from the 

TQWT sub-bands and time based features computed from MUAPs. The size of input feature set is 

4112x138. For the purpose of classification, random forest classifier has been used. For the performance 

evaluation, total number of MUAPs are divided in two parts: 66% for training and 34% for testing. In other 

case 10-fold cross-validation is also performed. In machine learning, a classification is evaluated on the basis 

of many factors. Accuracy is the most important factor for measuring the success of the classification. 

Accuracy is defined as the ratio of number of correctly classified subjects to number of total subjects. For 

medical purposes, specificity is considered to be the dominant factor in determining the usefulness of a given 

method. Specificity represents the number of correctly classified normal subjects to the total number of 

normal subjects. Healthy person is expected to not be falsely told to have disease and waste his time and 

resources on treatment of a disease which he doesn’t even affected by. The results obtained for 66% training 

data and 34% testing data are presented in Table 6.1. The results obtained for 10 fold cross-validation are 

given in Table 6.2. 
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Figure 6.1: Sample MUAPs extracted from EMG signal from left (a) ALS (b) Normal (c) Myopathy 

 

 

Table 6.1: Classification accuracy and specificity of different class group using 66% training and 34% testing data 

 ALS  

versus  

Myopathy 

ALS 

versus 

Normal 

Myopathy 

versus 

Normal 

Accuracy 93.58% 89.16% 82.41% 

Specificity - 95.65% 76.60% 
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Table 6.2: Classification accuracy and specificity of different class group using 10 fold cross-validation 

 ALS  

versus  

Myopathy 

ALS 

versus 

Normal 

Myopathy 

versus 

Normal 

Accuracy 94.42% 87.40% 81.14% 

Specificity - 94.92% 81.77% 

 

6.2  Discussion 

We have considered three cases of two class classification. In first case classification is performed between 

ALS and myopathy. In the second case, classification is performed between ALS and normal and in the third 

case, classification is performed between myopathy and normal. The classification accuracy for ALS versus 

myopathy was highest. The obtained classification accuracy is significant improvement over previous work 

[1]. 

This can enable detection of exact disease for a patient whose muscles are not responding well and hence can 

help decide the path for further treatment. This will enable save lives for myopathy patients. For ALS 

patients, this can help decide the right way to proceed as ALS is lethal and patients consider different factors 

such as monetary factors to decide the type of treatment to take. The accuracy for normal versus ALS and 

normal versus myopathy is also good and can help doctors to decide if the patient is healthy or not. In case 

the patient is not healthy then the correct type of disease can be found using ALS versus myopathy classifier. 
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Chapter 7 

Conclusion and Future Work 

In this work, a method is presented to detect ALS and myopathy neurological disorders from EMG signals. 

TQWT is used for the decomposition of the MUAPs. The entropy features extracted from the sub-bands of 

MUAPs are found significantly effective for the detection and diagnosis of the neuromuscular diseases. The 

results obtained with the proposed methodology is compared with existing method. The results shows the 

superiority of the proposed method over existing method. 

This work improves upon existing literature for particular disease detection. The accuracy for normal versus 

abnormal cases can be improved in further works. This work still provides significant results to be useful for 

practical purposes. Once a patient is confirmed to have deteriorating muscles, then too the confirmation 

regarding the type of disorder can help a lot to make proper choice for getting better treatment and out work 

provides significant result for classification of the 2 types of disorders (ALS and myopathy).  

Future work comprises of, making a system that could allow real-time acquisition and classification of 

signals in order to help doctors diagnose patients, make a suitable GUI for the system to allow ease of access, 

exploring different transforms which might help in bringing out better features to work with, and exploring 

other frequency domain features which might help in better classification of the signals. 
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