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SYNOPSIS 

Metallic glasses (MGs) have shown attractive mechanical properties such as high yield strain 

(~2%), high strength (~ 2Gpa), excellent corrosion resistance and exeptional forming ability 

making them a potential candidate for structural as well as functional applications including 

medical implant, micro/nano-electromechanical devices, sports equipements, aerospace and 

defence industry (Telford, 2004). However, MGs exhibit localization of plastic strain in 

narrow bands, called as shear band, and fail in brittle manner under tensile loading due to 

unhindered propagation of crack inside a predominant band (Schuh et al., 2007). The lack of 

tensile ductility in MGs impedes their employment as structural material, which has 

motivated researchers to explore various strategies to improve plastic deformation in MGs 

such as synthesiging nanoglass (NG) architecture (Ivanisenko et al., 2018), NG-MG 

composites (Adibi et al., 2016; Sha et al., 2017) and MG cellular structures (Sarac and 

Schroers, 2013b; Zhang et al., 2016). 

NGs are comprised of glassy grains separated by fine interfaces which exhibits low 

density (Sopu et al., 2009; Ritter et al., 2011) and excess free volume (Fang et al., 2012). 

Consequently, multiple shear bands nucleate from these interfaces which are distributed over 

the entire volume of the material leading to enhanced tensile ductility in NGs. Recent 

indentation experiments show that NGs exhibit a higher hardness, H, than the melt spun MGs 

of identical composition (Franke et al., 2014; Nandam et al., 2017). The high H in NG is 

attributed to the Zr rich dense core surrounded by Cu rich interfaces carrying excess free 

volume (Nandam et al., 2017). However, it is not clear as to why H should increase in the 

presence of free volume rich interfaces. Experimental and numerical studies of indentation on 

MGs show that the reasons for high H in these materials is intimately connected with the 

pressure sensitive plastic flow taking place beneath the indenter (Patnaik et al., 2004), and H 

appears to increase with the pressure sensitive index, 𝛼 which quantified the pressure 

sensitivity (Narasimhan, 2004). Given the amorphous structure of NGs with glassy grains and 

interfaces, the plastic flow of NGs could be expected to be pressure sensitive which may be 

the reason for high H observed in these materials although it has not been investigated in 

detail.  

Therefore, finite element simulations are performed using the pressure insensitive 

(Von-Mises) and pressure sensitive (extended Drucker Prager) plasticity model to analyze the 

indentation behavior of SC75Fe25 NGs and MGs. The 𝛼 for NG and MG ribbons are 

determined by fitting the P vs. h curves reported in literature, and 𝛼 for glassy interface has 
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also been determined by modeling the microstructure of NGs. Results show that simulation 

𝑃 − ℎ curve obtained by Von Mises criterion (refer curve pertaining to 𝐾 = 1 and 𝛼 = 00 in 

Fig. 1(a)) deviates significantly from experimental data suggesting that Von Mises criterion 

does not describe the yield behavior in NGs. However, the curve obtained using extended 

Drucker Prager plasticity model exhibits good agreement with experimental data (refer 

curves corresponding to 𝐾 = 1 and 𝛼 = 15 − 200 in Fig. 1(a)). This suggests that the yield 

behavior in Sc75Fe25 NG is characterized more accurately by pressure sensitive extended 

Drucker Prager plasticity model. In fact, 𝛼 for NG is found to be around three times higher 

than that of MG identical composition (refer curves corresponding to 𝛼 = 120 and 40 in Fig. 

1(b)) making former harder than the latter. The indentation simulations performed by 

modeling the microstructure of NG (i.e. grains and interfaces) show that 𝛼 for glassy 

interface is much higher than the grains in Sc75Fe25 NG. 

Further, the hardness in MGs observed to decrease with increase in the indentation 

load which is commonly referred to as the indentation size effect (ISE). It has been proposed 

that the concentration of the geometrically necessary flow defects (GNFDs) such as free 

volume (Lam and Chong, 2001) or shear clusters (Yang et al., 2007) increases with decrease 

in indentation depth, which causes enhancement in flow stress of the material. However, it is 

not clear why the flow stress should increase with increase in flow defects. Some authors 

disagree with ISE in MGs and have suggested that it is an experimental artifact (Huang et al., 

2010) or caused by friction between work piece and indenter (Pang et al., 2012). As pointed 

out above that the pressure sensitivity in NGs is higher than MG. In this view, a fundamental 

question” what is the effect of pressure sensitivity on the ISE in glasses” arises. It must be 

noted that this issue is not investigated and answer to this question would shed light on the 

mechanism governing ISE in NGs and MGs. Therefore, nanoindentation experiments are 

performed at different peak loads on a binary 𝑐𝑢60𝑍𝑟40 NG and MG. Further, to clearly 

understand the subsurface deformation behavior, bonded interface experiments are performed 

using a Vickers indenter. The complementary finite element simulations of nanoindentation 

are also performed by employing the finite strain viscoplastic constitutive theory for 

amorphous metals (Anand and Su, 2005). 
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Figure 1 (a) Normalized indentation load, 𝑃/𝐸𝑅2 versus normalized depth, ℎ/𝑅 curves for 

NG corresponding to different values of 𝛼 and 𝐾, along with the experimental data of Liu et 

al. (2018). (b) Corresponding curves for NG and MG ribbon along with the experimental data 

of Franke et al. (2014). 

The bonded interface experiments reveal smooth and almost semi-circular shaped 

shear bands in MG, while the formation of wavy shear bands is observed in NG. Further, the 

primary shear band densities in the MG are higher than that in NG, while the plastic zone size 

below the indenter is larger in the latter than the former. Furthermore, nanoindentation 

experiments show that NGs and MGs exhibit ISE (refer Fig. 2), while ISE is more 

pronounced in the latter than former. The finite element simulations show that less 

pronounced ISE in NG than MG is caused by the slower free volume generation leading to 

slower softening during indentation in the former than the latter. Also, the value of friction 

coefficient, 𝜇 for NG is higher than MG due to higher 𝜇 for interfaces in the former. Further, 

the higher 𝜇 retards the free volume generation and hence softening resulting in less 

pronounced ISE in NG.  
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Figure 2 Dependence of indentation hardness, 𝐻 calculated at the end of the holding stage, 

on the maximum indentation depth, ℎ𝑚𝑎𝑥 for NG and MG along with corresponding 𝐻 values 

obtained from the finite element simulations. 

A considerable effort has been made to understand the deformation behavior of NGs 

under tensile, compressive and indentation loading. However, a few studies have been 

undertaken to under the fracture response of NGs. The crack tip plasticity and fracture 

toughness in MGs are found to be significantly influenced by mode-mixity (Tandaiya et al., 

2009). However, such investigation has not been performed for NGs which is essential 

because complex loading in actual applications may lead to mixed-mode fracture in NG 

components. Therefore, 2D plane strain, small scale yielding (SSY), finite element analysis 

on the stationary crack in NG and MG under mixed mode loading conditions are performed 

using the constitutive model of Anand and Su (2005). Results show that the crack tip 

plasticity are markedly affected by mode-mixity for both NG and MG. For given mixed mode 

loading, the plastic zone size in front of notch tip is larger in NG than MG. Further, the 

strain-based fracture criterion predicts that NGs may not show significant higher fracture 

toughness in comparison to MG with identical composition, though they exhibit significant 

larger tensile ductility.  

 It must be mentioned that NGs with larger thickness cannot be synthesized due to 

limitation of present manufacturing techniques. Therefore, the idea of developing laminate 

composites with alternative layers of NG and MG have been proposed to achieve large tensile 

ductility without compromising strength significantly (Adibi et al., 2016; Sha et al., 2017). 

Sha et al. (2017) demonstrated from MD simulations that the deformation behavior of such 

NG-MG composites transitions from shear localization to superplastic flow when MG layer 
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thickness is reduced below a threshold level which they correlated to the glassy grain size of 

the NG layers. However, it is not clear as to why and how the glassy grain size of the NG 

layer controls the threshold thickness of MG layer. To address this issue, 2D plane strain 

finite element simulations of tensile loading on NG-MG laminate composites are performed 

using a thermodynamically consistent finite strain non-local plasticity model (Thamburaja, 

2011). Results show that interaction stress associated with flow defects such as shear 

transformation zones (STZs) plays a pivotal role in the deformation response of laminate 

composites. Also, shear band width in these materials scales with intrinsic material length 

associated with the interaction stress. Further, the material length with respect to MG layer 

thickness governs the transition in deformation behavior. The results provide insights about 

the underlying deformation mechanism. 

 Further, cellular MGs have been fabricated which are found to be an alternative 

choice for structural and functional applications owing to light in weight, good energy as well 

as noise absorption capacity and enhanced plastic deformation (Sarac and Schroers, 2013b). 

Sarac and Schroers (2013b) have reported transition in deformation mode from global failure 

caused by localization in a shear band to the local failure by damage confined to few cells 

with reduction in relative density of specimen from a large to moderate value. The mode of 

deformation again changes over to the collective buckling of ligaments through row by row 

collapse when the relative density is decrease to a sufficiently lower level. Similarly, the 

atomistic simulations (Zhang et al., 2016) on nanoscale cellular MGs have also reported 

transition from localized but confined to few cells to almost homogeneous deformation with 

increasing cell size. They have also shown strain localization in a dominant shear band for 

cell spacing above a threshold value which was correlated to shear bandwidth in monolithic 

MG of identical composition. However, it is not clear from these simulations as to why and 

how the shear band thickness in monolithic MG controls the threshold cell-spacing. To 

address this issue, 2D plane strain finite element simulations of compressive loading are 

performed on nanoscale cellular MGs using the plasticity model of Thamburaja (2011). The 

finite element simulations successfully predict the two transitions in deformation mode as 

observed in atomistic simulations and experiments. Further, results show that the transition in 

deformation behavior is governed by the ratio of cell-wall thickness to the intrinsic material 

length associated with interaction stress. Also, the moderate change in sample size has 

marginal effect on the deformation response of MG cellular structure. 
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 In closing, the present thesis is focused on understanding the deformation and fracture 

behavior in NGs and MG structures. The insights gained would provide guidelines in 

developing NGs, NG-MG composites and cellular MG structures capable of showing larger 

plastic deformation for practical engineering applications. 

The organization of the present thesis is as follows: 

In Chapter 1, the brief introduction of MGs and NGs and mechanism of plastic deformation 

in MGs are discussed. Further, pertinent literature review, issues for investigation and 

objective and scope of thesis also presented. 

In chapter 2, axisymmetric finite element indentation simulations are performed using 

extended Drucker Prager plasticity model. The 𝛼 for NGs and MGs is determined.    

In chapter 3, Micro and nanoindentation experiments on NG and MG are performed and 

important results from the experiments are also discussed. The complementary finite element 

nanoindentation simulations are performed using the amorphous metals constitutive model 

proposed by Anand and Su (2005) to elucidate the underlying mechanism governing ISE in 

NGs.   

In chapter 4, Mixed mode (I and II) loading of a stationary crack in NGs and MGs is studied 

through finite element simulations under 2D plane strain, SSY condition using constitutive 

model of Anand and Su (2005). The effect of the presence of interfaces on crack tip plasticity 

and fracture toughness is examined. 

In chapter 5, tensile loading of NG-MG nanolaminate composites are analyzed through 2D 

plane strain finite element simulations using a thermodynamically consistent finite strain 

based non-local plasticity model (Thamburaja, 2011). The physical origin of the threshold 

level of MG layer thickness for transition in deformation behavior from localized to 

superplastic flow in NG-MG nanolaminate composite is studied.  

In chapter 6, compressive loading of nanoscale cellular MGs are analyzed using the model of 

Thamburaja (2011) and the effect of cell- spacing and role of interaction stress associated 

with flow defects such STZs on the deformation behavior of nanoscale cellular MGs is 

discussed. 

In chapter 7, the important conclusions drawn from the chapter 2-5 are summarized and the 

possible further works are also discussed. 
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CHAPTER 1 

Introduction 

Metallic glasses (MGs) have gained much attention due to many attractive mechanical 

properties such as high elastic limit, high strength, excellent corrosion resistance, and 

significant fracture toughness (Schuh et al., 2007) making them a potential candidate for 

structural as well as functional applications including medical implant, micro/nano 

electromechanical devices and cellular structures for packing purposes (Telford, 2004; 

Miracle et al., 2008; Schuh et al., 2007; Liu et al., 2014; Liu et al., 2016). However, MGs 

exhibit localization of plastic strain in narrow bands, called as shear band, and fail in brittle 

manner under tensile loading due to unhindered propagation of crack inside a predominant 

band. The lack of tensile ductility in MGs impedes their employment as structural material 

(Schuh et al., 2007), which has motivated researchers to explore various strategies to improve 

plastic deformation in MGs such as synthesizing MG composites (Hofmann et al., 2008; Qiao 

et al., 2016; Wang et al., 2020), nanoglass (NG) architecture (Ivanisenko et al., 2018), NG-

MG laminate composites (Adibi et al., 2016; Sha et al., 2017) and MG cellular structures 

(Sarac et al., 2012; Sarac and Schroers, 2013b; Chen et al., 2014; Liu et al., 2016; Zhang et 

al., 2016). MG composites exhibit significant tensile ductility, but their strength is 

compromised considerably due to lower yield strength of the soft phases making them less 

viable choice (Schuh et al., 2007; Qiao et al., 2016).  

NGs which are synthesized from MGs have been reported to exhibit significantly large 

ductility under tensile loading (Wang et al., 2015). The laminate NG-MG composites with 

alternate layers of NGs and MGs have also been reported to show enhanced tensile ductility 

(Sha et al., 2017). Consequently, there has been considerable scientific curiosity in 

understanding the deformation and fracture behavior of these materials. A few experiments 

and atomistic simulations performed in the past have provided some insights on the 

underlying mechanics/mechanism of deformation and fracture in NGs (Sopu et al., 2009; 

Ritter et al., 2011; Adibi et al., 2013, 2014; Franke et al., 2014; Sha et al., 2014) and NG-MG 

composites (Adibi et al., 2016; Sha et al., 2017). Yet, there are several unresolved issues 

which need to be addressed for the safe deployment of these materials in actual applications. 

In particular, NGs are reported to be harder than MGs with identical composition (Nandam et 

al., 2017), and their hardness is noticed to drop with increase in load, though mechanistic 

reasons for these behaviors are not explained in the literature. In addition, the effect of mode 
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mixity on the evolution of crack tip plasticity and the fracture toughness in NGs are not 

investigated till now. Further, the deformation behavior of NG-MG laminate composites 

transitions from localized to superplastic flow, though mechanistic reasons are not well 

understood. The cellular MG structures have also been synthesized and they showed 

enhanced plasticity, but the mechanics of the deformation behavior is not well understood. In 

the view of above discussion, indentation experiments and complementary finite element 

simulations are performed on NGs as well as MGs in this thesis. In addition, deformation 

behavior of NG-MG laminate composites and cellular MGs are analyzed through finite 

element simulations. The relevant background is briefly presented below.    

1.1 Plastic deformation in amorphous metals 

The plastic deformation in amorphous metals like MGs is believed to occur through local 

atomic rearrangement of clusters of around 30-100 atoms under the application of shear stress 

(Argon 1979) as displayed in schematic shown in Fig 1.1(a). These clusters are known as 

shear transformation zone (STZs) and are considered to be as flow defects responsible for 

plastic deformation in MGs. Spaepen (1977) looked plastic deformation in MGs as 

consequence of creation of excess free volume (i.e., material exhibits dilatation) due to the 

jump of an atom into smaller interstitial space in their immediate neighborhood under the 

application of shear stress (refer schematic Fig 1.1(b)). The model proposed by Spaepen 

(1977) is commonly referred to as “Free volume model”. Although there is difference in 

atomic motion perceived in the above models, the operation of STZs as well as atomic jump 

leads to generation of local free volume which is associated with local inelastic dilatation 

making macroscopic plastic flow in MGs pressure sensitive (Narasimhan, 2004; Patnaik et 

al., 2004).         

Figure 1.1 Schematic showing the microscopic deformation mechanisms proposed for MGs. 

(a) A shear transformation zone (STZ model) (Argon 1979) and (b) local atomic jump model 

(Free volume model) (Spaepen, 1977). Figures are taken from Schuh et al. (2007).    
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Above glass transition temperature,   , MGs exhibit viscous flow in which profuse 

activation of the STZs occurs and their stress fields relaxes instantaneously resulting in the 

homogeneous deformation (Schuh et al., 2007). On contrary, at high applied stress and at the 

temperature well below   , the plastic deformation in MGs localizes in the form of narrow 

bands which are known as shear bands. The shear bands exhibit accumulation of large STZs 

and excess free volume which results in flow softening during the deformation (Sopu et al., 

2009). The large accumulation of free volume also leads to crack nucleation inside a shear 

band. Thus, almost all MGs fail catastrophically immediately after commencement of plastic 

yielding under tensile loading due to crack propagation inside a predominant shear band. 

However, under the constraint loading such as compression and indentation, significant 

plastic deformation is observed due to nucleation of multiple shear bands (Lu and 

Ravichandran, 2003; Patnaik et al., 2004; Schuh et al. 2007). Further, the deformation of 

MGs is found to be sensitive to loading rate at temperature near    or in supercooled liquid 

regime (Liu and Ravichandran, 2003). On the other hand, it is almost rate insensitive at room 

temperature (Bruck et al., 1996; Subhash et al., 2002; Lu and Ravichandran, 2003).  

1.2 Constitutive model in MGs  

Several constitutive models (Vaidyanathan et al., 2001; Huang et al., 2002; Patnaik et al., 

2004; Anand and Su, 2005; Gao, 2006; Yang et al., 2006; Thamburaja and Ekambaram, 

2007; Jiang and Dai, 2009; Thamburaja, 2011) have been proposed to characterize the 

deformation behavior of MGs. The brief descriptions of these models are reviewed in this 

section. Vaidyanathan et al. (2001) and Patnaik et al. (2004) employed pressure/normal stress 

sensitive Mohr-Coulomb and extended Drucker Prager plasticity model to investigate the 

plastic deformation in MGs, respectively. These models can capture tension-compression 

anisotropy in the yield strength in MGs, but fails to capture the free volume induced 

softening, which is most important characteristic of amorphous metals. By extending the free 

volume theory of Spaepen (1977) to multi-axial stress states, Huang et al. (2002) proposed a 

model within small strain framework which considered free volume in MGs to evolve due to 

stress-driven creation, annihilation, and diffusion of free volume. Jiang and Dai (2009) 

proposed non-local, small strain, coupled thermo-mechanical plasticity model to investigate 

the shear band instability in MGs subjected to thermal, mechanical, or combined loading 

conditions. Although models of Huang et al. (2002) and Jiang and Dai (2009) have 
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incorporated an intrinsic material length scale, these are not consistent with law of 

thermodynamics and also developed using small strain formulation. 

Anand and Su (2005) proposed a thermodynamically consistent finite deformation 

Mohr-Coulomb type plasticity model for MGs which has been shown to capture the 

deformation behavior of MGs under bending, compression, tension and indentation. In 

addition, this model has been reported to successfully predict the shear band patterns near the 

notch root under mixed mode (I and II) loading (Tandaiya et al., 2009). Anand and Su (2007) 

extended this constitutive model to study the deformation behavior of MGs at high 

homologous temperature regime and showed that the revised model successfully captures the 

major features of strain rate dependent stress-strain curves. However, this model does not 

have an intrinsic material length scale, hence unable to predict the size-dependent response in 

MGs as reported by nano-tension experiments (Jang and Greer, 2010).  

Thamburaja and Ekambaram (2007) proposed a thermodynamically consistent, finite 

deformation, non-local plasticity model using free volume theory of Spaepen (1977). In this 

model, the evolution of free volume is assumed to be governed by four fundamental 

mechanisms: free volume diffusion, free volume creation by plastic shearing and hydrostatic 

stress and free volume annihilation by structural relaxation. This model was found to be 

suitable to predict the deformation behavior of MGs near and above the glass transition 

temperature. To analyze the deformation behavior of MGs at room temperature, Thamburaja 

(2011) modified the constitutive theory of Thamburaja and Ekambaram (2007) which has 

been successfully shown to capture the size-dependent deformation behavior in MGs 

(Thamburaja, 2011; Singh and Narasimhan, 2016; Dutta et al., 2018), MG composites (Shete 

et al., 2016, 2017; Dutta et al., 2020), Nanaglasses (Singh et al., 2014).  

1.3 Review of pertinent literature  

1.3.1 Instrumented indentation Test 

Instrumented Indentation Test (IIT) is widely used to estimate the mechanical properties such 

as hardness and young’s modulus of material (Oliver and Pharr, 2004). In this test, the 

indentation load,   and indentation depth,   are continuously recorded and plotted as   vs 

  curve during the experiments. Oliver and Pharr (2004) proposed a methodology to calculate 

hardness,   and young’s modulus,   of material from     curve which is commonly 

known as Oliver - Pharr method. To this end, contact stiffness,  , projected area of contact, 
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   and reduced modulus,    need to be determined. The equations required to calculate these 

parameters are taken from the work of Oliver and Pharr and are briefly discussed below. The 

contact stiffness,   is determined by taking the slope of unloading portion of     curve and 

it is defined as:  

Further,    is given by: 

where,   is the half tip angle, for Berkovich indenter        . The depth    is the contact 

depth and it can be determined by:  

Here,      and       are maximum applied load and indentation depth, respectively, while 

  is a constant which depends on the indenter geometry, it is taken as 0.75 for Berkovich 

indenter. Once    is estimated, the hardness is determined as: 

The reduced modulus can be determined as:  

Here, the constant   depends upon the indenter geometry and for Berkovich indenter it is 

generally taken as 1.034. After estimating     Young’s modulus of the specimen can be 

determined as: 

Here,   is Poisson’s ratio. The subscript   and   in above equation denotes the specimen and 

indenter under investigation, respectively.  

The advantages of IIT are: (1) Mechanical properties of small samples like thin films 

and ribbons can be easily estimated. (2) This technique is non-destructive in nature as it 

makes a small impression on the surface.  
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1.3.2 Deformation response of MGs  

In this section, the deformation response with primary focus on the indentation and fracture 

response of MGs is discussed. 

1.3.2.1 Indentation Response of MGs 

Vaidyanathan et al. (2001) performed micro and nanoindentation experiments as well as 

complementary finite element simulations using various constitutive models on Zr-based bulk 

MG. They showed that finite element predictions of indentation response and shear band 

patterns around the imprint corroborate well with the experimental data when Mohr-Coulomb 

yield criterion with friction coefficient,        was employed (refer Figs. 1.2(a)-(c)). 

Narasimhan (2004) modified the expanding cavity model of Johnson’s (1970) by employing 

the Drucker Prager yield criterion to explain the mechanics of indentation in pressure 

sensitive solids. This modified theory predicts that the plastic zone size beneath the indenter 

enhances with increase in pressure sensitivity index,  . Also, the mean contact pressure and 

constraint factor,       
  (  

  being compressive yield strength) increases with increase 

in  . Patnaik et al. (2004) determined from spherical indentation and complementary finite 

element simulations that       and     for Zr- based bulk MG. Keryvin (2007) has also 

reported   is greater than 3 for Pd- and Zr- based bulk MG irrespective of the indenter 

geometry. 

 

Figure 1.2 (a) Experimental and simulated indentation load vs indentation depth curve. The 

Top view of indentation impressions observed from (b) experiment and (c) simulations using 

Mohr-coulomb yield criterion, respectively. Images are taken from Vaidyanathan et al. 

(2001). 
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  The hardness is frequently observed to decrease with increase in the indentation load 

during the indentation experiments equipped with geometrically self-similar pyramidal 

indenters such as Vickers and Berkovich indenters, which is commonly referred to as the 

indentation size effect (ISE) (Jang et al., 2011). The ISE in crystalline materials is considered 

to be caused by various factors such as surface roughness (Gerberich et al., 2002), the friction 

between the indenter facets and test sample (Li et al., 1993), and strain hardening caused by 

the increase in the density of the geometrically necessary dislocations (GNDs) during initial 

stages of indentation (Nix and Gao, 1998). However, it is well accepted fact that the ISE in 

crystalline materials is mainly governed by the GNDs induced strain hardening. Interestingly, 

the ISE-like behavior has also been observed in bulk MGs which are free from dislocations 

and exhibit strain softening (Lam and Chong, 2001; Ramamurty et al., 2005; Manika and 

Maniks, 2006; Yang et al., 2007; Steenberge et al., 2007; Li et al., 2008, 2009; Fornell et al., 

2009; Xu et al., 2014; Xue et al., 2016; Li et al., 2017; Zhou et al., 2019). For example, 

Wright et al. (2001) observed drop in the indentation hardness of Zr-based bulk MG with an 

increase in indentation load which they attributed to the reduction in intrinsic material 

resistance for shear band nucleation with increasing loads.  

 Steenberge et al. (2007) performed nanoindentation experiments on as-cast and 

thermally relaxed Zr-based bulk MGs and reported more pronounced ISE in the former than 

in the latter (refer Fig. 1.3). They expressed the hardness in terms of strain rate and initial free 

volume by invoking the flow equation of Spaepen (1977) and Argon (1979) and explained 

that ISE in MGs is caused by increase in free volume during indentation. They further argued 

that the accumulation of free volume during indentation was less pronounced due to lesser 

initial free volume in the relaxed glass resulting in less pronounced ISE in them. Jang et al. 

(2011) hypothesized that ISE in MGs is caused by increase in plastic zone, hence enhanced 

activities of STZs below the indenter with increase in indentation load. Further, to explain the 

ISE in Zr-based bulk MGs, Lam and Chong (2001) and Yang et al. (2007) proposed 

analytical models by adopting the perspective of strain gradient plasticity theory analogous to 

the Nix-Gao model for crystalline materials. They argued that the concentration of the 

geometrically necessary flow defects (GNFDs) such as free volume (Lam and Chong, 2001) 

or shear clusters (Yang et al., 2007) increases with decrease in indentation depth which 

causes enhancement in flow stress and hence hardness.  
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Figure 1.3 The variation of hardness,  , calculated at the end of holding stage with respect to 

maximum indentation depth,        reported by Steenberge et al. (2007). 

In contrast to the above studies, Huang et al. (2010) showed that the ISE in bulk MGs 

can be effectively eliminated by considering the pile-up effect at different indentation loads 

and hence they deduced that the ISE in bulk MGs is an experimental artefact. Pang et al. 

(2012) performed nanoindentation experiments on binary          MG thin film and 

reported almost negligible ISE. They applied proportional specimen resistance (PSR) model 

to explain the indentation response and deduced that the friction between indenter facets and 

test specimen was negligible which resulted in negligible ISE in MG thin film. On the 

contrary, Rauf et al. (2018) reported significant ISE in MG thin films and melt-spun ribbons 

of          and         . 

1.3.2.2 Fracture response in MGs  

Conner et al. (1997) determined the mode I fracture toughness,     of Zr-based MG as  

     √  from three-point bend fracture experiments. Flores and Dauskardt (2006) 

reported that mode II fracture toughness,      of these glasses is significantly higher than    . 

Tandaiya et al. (2009) performed mixed mode (I and II) fracture experiments and 

complementary finite element simulations on Zr-based bulk MG to investigate the 

deformation behavior under mixed mode loading conditions. They noticed that the upper part 
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of notched surface sharpens while the lower part blunts under mixed mode loading. They also 

found that the crack tip fields are markedly influenced by mode mixity. Further, they noticed 

shear bands emanating from notch tip were straight and extending over long distance ahead 

of notch in mode II dominant loading (refer Fig. 1.4(a)). On the other hand, they witnessed 

profuse shear bands with increase in mode I contribution (refer Fig. 1.4(b)). In addition, they 

revealed fracture toughness increases with increasing the mode-I loading component. 

Narayan et al. (2015) also reported higher     than      in Zr- based MGs. By contrast, Chen 

et al. (2019) noticed stable plastic flow and large bearing loads due to enhancement in density 

of shear bands with increase in mode II loading component.      

  

Figure 1.4 The optical micrographs showing shear bands near the notch tip region in Zr-

based MG subjected to (a)      (pure mode II loading) and (b)        . Images are 

taken from the work of Tandaiya et al. (2009). 

1.3.3 Ductility enhancement in MGs  

The lack of tensile ductility in MGs impedes their employment as structural material (Schuh 

et al., 2007), which has motivated researchers to explore various strategies to enhance the 

plastic deformation in MGs such as synthesizing MG composites (Hofmann et al., 2008; Qiao 

et al., 2016; Wang et al., 2020), MG laminate composites (Kim et al., 2011), nanoglass (NG) 

architecture (Ivanisenko et al., 2018). The MG composites are developed by introducing soft 

crystalline phases by controlling the crystalization-kinetics, by adding fibers/particles of 

crystalline materials in a glassy matrix (Qiao et al., 2016) or by suction casting a glassy phase 

in a foam of crystalline material (Wang et al., 2020). Multiple shear bands nucleate from 

glass-crystalline phase interfaces which either cut through or get deflected by them causing 

nucleation of secondary and tertiary shear bands leading to delayed localization and enhanced 

(a) (b) 
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tensile ductility in MG composites. However, the strength of such composites is 

compromised considerably due to lower yield strength of the soft phases. An alternate 

approach to achieve good tensile ductility in MGs is synthesizing Nanoglasses (NGs) 

architecture and developing laminate composites with alternate layers of two different 

materials. The pertinent literature is reviewed in the following sections.   

1.3.3.1 Deformation behavior of Nanoglasses 

Nanoglasses (NGs) were synthesized for the first time by Jing et al. (1989) using inert gas 

condensation (IGC) followed by cold compaction at high pressure of around 5 GPa. It was 

revealed through Mossebauer spectroscopy that NGs are comprised of dense amorphous 

regions, commonly referred to as glassy grains, separated by fine amorphous glassy interfaces 

(Jing et al., 1989). The transmission electron microscopy (TEM) has also shown that NGs 

manufactured by different methods such as multi-phase electron deposition technique (Guo et 

al., 2017, 2019; Li et al., 2018), magnetron sputtering (Chen et al., 2013) and cold 

compaction (Fang et al., 2012; Nandam et al., 2017, 2020) consists of nanoscale dense glassy 

grains separated by glassy interfaces (refer Fig 1.5(a) and (b)). The average size of the grains 

is reported to be around 5-20 nm depending on the compositions and the manufacturing 

techniques, while the interfaces width is around 1~2 nm (Ivanisenko et al., 2018). It is 

important to note that glassy grains and interfaces are amorphous in nature which has been 

confirmed through the selected area electron diffraction (SAED) and the high-resolution 

transmission electron microscope (HRTEM) (refer Fig. 1.5(a) and (b)). It has been shown that 

interfaces in NGs exhibit excess free volume (Sopu et al., 2009; Ritter et al., 2011) or lower 

density (Fang et al., 2012) and defective short-range order (Ritter et al., 2011).  
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Figure 1.5 (a) The transmission electron microscope (TEM) image of the Ni-based NGs. The 

dark and light contrast areas correspond to the glassy grains and glassy interfaces, 

respectively. The inset shows the corresponding selected area diffraction (SAED) pattern. (b) 

the high-resolution transmission electron microscope (HRTEM) image of Ni-based NGs (the 

insets display SAED patterns of both glassy grain and glassy interface regions). Images are 

taken from Li et al. (2018). 

    

Figure 1.6 (a) The tensile stress-strain curves of the Sc-based NG and MG. (b) The tensile 

specimen of NG after test. (c) The tensile specimen of MG after test. Images are taken from 

Wang et al. (2015). 

 NGs have been reported to exhibit significant large tensile ductility, unlike MGs 

which fails in a brittle manner under tensile loading (Wang et al., 2015; Liu et al., 2018; Li et 

al., 2018). For example, Wang et al. (2015) reported around 17% plastic strain and failure 
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through necking in           NGs, whereas they noticed almost negligible plastic strain and 

catastrophic failure through shear band in MGs with identical composition during in-situ 

tension experiments (refer Fig. 1.6). The molecular dynamics (MD) simulations have shown 

that ductility in NGs enhances with decrease in grain size and eventually they exhibit 

superplastic flow for grain size below a threshold level (Adibi et al., 2013, 2014; Sha et al., 

2015). Singh et al. (2014) explained through continuum simulations by employing the model 

of Thamburaja (2011) that the spatial distribution of stress arising due to interaction between 

flow defects such as STZs plays a pivotal role in the deformation behavior of NGs. They 

showed that the ratio of intrinsic material length associated with this interaction stress and 

grain size governs the transition from localized to superplastic flow in NGs. 

Nandam et al. (2017) performed nanoindentation experiments on          binary 

NGs and MG ribbon, and reported smooth indentation load,   vs. depth,   curves with no 

noticeable displacement bursts (refer Fig. 1.7). They reported a hardness value of 7.4 GPa for 

NG, while 6.7 GPa for MG ribbon. Franke et al. (2014) have also reported a higher hardness 

and reduced modulus in          NG. They argued that high affinity of Sc to oxygen leads 

to the contamination of NG samples with oxygen leading to an increase in Er, although the 

mechanistic reason for higher H of NGs is not discussed in detail. On the other hand, the 

hardness of Ni-based NG thin films (Guo et al., 2019) and Pd-based NGs (Nandam et al., 

2020) are reported to be lower than their MG counterparts. This was rationalized through 

higher initial free volume in Ni-based NG thin films and the presence of weaker       

metallic bonds in the interfaces of Pd-based NGs. Recently, Sharma et al. (2021b) reported 

higher ISE in as prepared than that in annealed          NGs. They showed by employing 

the hypothesis of Steenberge et al. (2007) that the different softening characteristic in as-

prepared and annealed NGs resulted in different ISE in these materials. 

It must be mentioned that though a considerable amount of research has been devoted 

to understand the deformation behavior of NGs, a few works have been undertaken in 

investigating their fracture behavior. Sha et al. (2014) analyzed the tensile response of 

notched samples of Cu-based NGs through atomistic simulations and reported that the notch 

size with respect to the grain size governs the transition in deformation behavior from 

localized to superplastic flow. 
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Figure 1.7 Representative indentation load,   vs depth,   curves of MG ribbon, as-prepared 

NG and annealed NG. Pop-ins were not observed in NG samples while it was noticed in MG 

ribbons (indicated by arrows). The image is taken from Nandam et al. (2017). 

1.3.4 Tensile deformation of nanolaminate composite  

As discussed earlier, a good tensile ductility in MGs can be achieved by synthesizing 

laminate composites with alternative layers of two materials. Kim et al. (2011) investigated 

tensile behavior of nanolaminate with alternating layers of           thick          MG 

and       thick nanocrystalline Cu and reported marginal enhancement in ductility of 4% 

without compromising strength when the critical MG layer thickness fall 

below         Therefore, one of the major research challenge is to find a suitable layer 

material that can hinder or accommodate the shear bands resulting in improved ductility 

without compromising strength. Adibi et al. (2016) performed MD simulations of tensile 

loading on MG-MG as well as NG-MG nanolaminate composites. They noticed that the 

presence of planer soft interface between MG layers in MG-MG laminate composites delayed 

strain localization while in the case of NG-MG laminate composites, both planar interface 

and NG layer contribute to the plastic deformation leading to high plastic strains of 15%. 

Another important observation made by Adibi et al. (2016) was that NG-MG composites 

failed through necking as opposed to shear banding in the case of MG-MG composites. Sha 

et al. (2017) also reported tensile deformation of laminate composites markedly affected by 

thickness of NG and MG layers. They noticed that laminate composite with thinner NG layer 

shear bands initiated from NG layer which propagate into MG layer with increase in applied 
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load. On the other hand, for the laminate composite with thicker NG layer shear bands were 

always confined in the NG layer. Also, peak stress attained in these composites don’t follow 

rule of mixture. Further, they reported a transition in deformation behavior from shear 

localization to superplastic flow in composites having multiple NG and MG layers, when MG 

layer thickness was reduced below a threshold level which they correlated to the glassy grain 

size of the NG layers. 

1.3.5 Deformation response of cellular MG structures 

In the last decade, cellular MGs have been fabricated which are found to be an alternative 

choice for structural and functional applications owing to light in weight, good energy as well 

as noise absorption capacity and enhanced plastic deformation (Sarac et al., 2012; Sarac and 

Schroers, 2013b; Chen et al., 2014; Liu et al., 2016). Indeed, Sarac et al. (2012) performed 

uniaxial in-plane compression experiments on cellular structures of bulk MG and other 

materials. They noticed that energy absorbing capacity of MG based cellular structure is 

superior than that of other materials. Sarac and Schroers (2013b) synthesized hexagonal 

cellular structures from Zr- based bulk MG and investigated the effect of the relative density 

cellular structures on their deformation behavior under quasi-static compressive loading. 

They revealed three distinctive deformation modes: collective buckling of ligaments through 

row by row collapse in specimens with very low relative density to local failure by damage 

confined in few cells for intermediate values of density. On the other hand, they found global 

failure with nearly negligible global plasticity due to localization in a shear band in samples 

with large density. In addition, they noticed nonlinear behavior of peak stress attained in the 

samples with respect to relative density. Zhang et al. (2016) also reported a transition from 

localized plastic deformation but confined to few cells to almost homogeneous deformation 

in nanoscale MG cellular structures from atomistic simulations by increasing cell size. They 

have also demonstrated that a dominant shear band forms when cell spacing along diagonal 

direction increases beyond a critical level which they correlated with the shear band thickness 

in monolithic MG of identical composition. 
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1.4 Issues for investigation 

Based on the literature reviewed in section 1.3, the following issues have been identified for 

investigation in this thesis.   

1.4.1 Pressure sensitive plastic flow in NGs 

Recent indentation experiments show that NGs exhibit a higher hardness than MGs of 

identical compositions (Franke et al., 2014; Nandam et al., 2017). Nandam et al. (2017) 

attributed the high hardness of NGs to the presence of Zr rich dense core surrounded by Cu 

rich interfaces carrying excess free volume. However, it is not clear as to why hardness 

should increase in the presence of free volume rich interfaces. Further, as discussed in section 

1.3.2.1, higher hardness,   in MGs is intimately connected with the pressure sensitive plastic 

flow taking place beneath the indenter and   appears to increase with the pressure sensitive 

index  . Given the amorphous structure of NGs with glassy grains and glassy interfaces, the 

plastic flow of NGs could be expected to be pressure sensitive which may be reason for high 

hardness observed in these materials although it has not been investigated in detail. It is 

important to mention that no finite element simulations have been performed till now to study 

the pressure sensitive behavior of NGs. In this connection, following questions arise: what is 

value of   for NG compared to their MG counterpart? Does the glassy grains and glassy 

interfaces have the same  ? If not, what are the differences between them? 

1.4.2 Indentation size effect in NGs and MGs 

As mentioned in section 1.3.2.1, there in consensus in the literature on the ISE in the MG 

ribbons which suggest that understanding of the mechanics of ISE in these materials is far 

from complete. Further, the indentation experiments on as prepared and annealed NGs by 

Sharma et al. (2021b) suggest that the internal microstructure of NGs has marked effect on 

the deformation behavior and hence ISE in them. Given the completely different 

microstructures of NGs and MGs, the ISE in the former is expected to be significantly 

different than the latter with identical composition, though it has not been investigated till 

now. Further, as pointed earlier that the pressure sensitivity of NGs might be significantly 

different than that of MGs. However, the effect of pressure sensitivity on the ISE in glasses is 

not investigated and thus, the mechanism governing ISE in NGs and MGs is not well 

understood. 
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1.4.3 Mixed mode (I and II) fracture response in NGs  

Sha et al. (2014) were performed atomistic simulations on notched samples of NGs under 

pure mode-I loading conditions. However, in practical application, structural components are 

generally subjected to complex stress fields/multi-axial states of stress, which may prone to 

mixed mode fracture. For example, even in unidirectional loading condition, the crack 

initiated from the flaws would be oriented at an arbitrary angle to the loading direction. These 

factors emphasize the requirement of a detailed study of fracture mechanism under mixed 

mode loading conditions on a given material. In addition, the contrasting trends on the crack 

tip plasticity in bulk MGs under mixed mode loading conditions presented in section 1.3.2.2 

motivates to study the fracture response of NGs as these are synthesized from MGs only. The 

finite element simulations of mixed mode (I and II) fracture would help gaining the primary 

understanding on the development of the crack tip plasticity in NGs. This information may 

provide guidelines in performing fracture experiments on NGs in near future. However, such 

continuum study of mixed mode (I and II) fracture on NGs have not been undertaken till 

now. 

1.4.4 Tensile deformation of NG- MG nanolaminate composite  

MD simulations have shown that NG-MG laminate composites can exhibit significantly large 

tensile ductility (Adibi et al., 2016; Sha et al., 2017). In addition, Sha et al. (2017) reported 

peak stress attained in NG-MG laminate composites not following the rule of mixture, 

whereas they did not explain the mechanistic reasons for this trend. Further, they also 

reported a transition in deformation behavior from shear localization to superplastic flow in 

laminate composite having multiple NG and MG layers, when MG layer thickness is reduced 

below a threshold level which they correlated to the glassy grain size of the NG layer. 

However, it is not clear from these simulations as to why and how the glassy grain size of NG 

layer controls the threshold thickness of MG layer. The finite element simulations using a 

non-local plasticity model would help understanding the deformation of NG-MG laminate 

composites from a mechanics viewpoint. However, no such finite element simulations on 

these composites have been undertaken till now. 
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1.4.5 Deformation and failure mechanism of nanoscale cellular structure of 

MGs 

Cellular MGs have been found to be a potential candidate for structural and functional 

applications due to their attractive properties such as high strength to weight ratio, excellent 

energy absorption and enhanced plastic deformation. As mentioned in section 1.3.5, the peak 

stress attained in cellular structure of MGs varies nonlinearly with respect to their relative 

density (Sarac et al., 2012; Sarac and Schroers, 2013b), whereas the mechanistic reason for 

this behavior is not well understood. Zhang et al. (2016) reported a transition from localized 

plastic deformation but confined to few cells to almost homogeneous deformation in 

nanoscale MG cellular structures from MD simulations by increasing cell size. They have 

also demonstrated that a dominant shear band forms when cell spacing along diagonal 

direction increases beyond a critical level which they correlated with the shear band thickness 

in monolithic MG of identical composition. However, it is not clear from these simulations as 

to why and how the shear band thickness in monolithic MG controls the threshold cell 

spacing. In the context of MG cellular structures, although some understanding on the 

deformation behavior has been gained through experiments and atomistic simulations, the 

mechanistic reasons for above noted transitions are not well understood. The continuum 

simulations on MG cellular structures using non-local plasticity theory may help explaining 

the mechanistic reasons for the transition in their deformation behavior. However, such 

simulations have not been performed.    

1.5 Objective and scope of the thesis 

Based on issues identified in the previous section, the objectives of the current work are 

framed as follows: 

 To perform axisymmetric finite element indentation simulations using the pressure 

insensitive (Von-Mises) and pressure sensitive (extended Drucker Prager) plasticity 

model with associated flow rule to analyze the indentation behavior of          NGs 

and MGs. 

- To determine the pressure sensitive index,   for NG and MG by fitting 

simulated     curves with the corresponding experimental data. 

- To determine   for glassy interfaces by modeling the microstructure (i.e., 

discrete grains and interfaces) of NGs. 
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 To perform micro- as well as nano-indentation experiments and complementary finite 

element simulations on binary          NG and MG to investigate ISE in both 

alloys. 

- To clearly understand the subsurface deformation behavior from bonded 

interface experiments through micro indentation. 

- To elucidate the underlying mechanism governing ISE in NGs through 

finite element nanoindentation simulations by employing a finite strain 

viscoplastic constitutive theory for amorphous metals. 

 To conduct finite element simulations of crack initiation in NGs and MGs under 

mixed mode (I and II) loading conditions using constitutive model for amorphous 

metals proposed by Anand and Su (2005). 

- To study the evolution of crack tip plasticity in the NG and MG under 

mixed mode (I and II) loading conditions. 

- To estimate the plastic zone size and fracture toughness in NGs and MGs 

for various mode mixity.  

 To conduct 2D plane strain finite element simulations of tensile loading on NG-MG 

nanolaminate composites using a thermodynamically consistent finite strain based 

non-local plasticity model proposed by Thamburaja (2011).  

- To find the mechanistic reasons for peak stress attained in NG-MG 

laminate composite not following the rule of mixture. 

- To examine the role played by interaction stress between the flow defects 

(STZs) on the deformation response of the nanolaminate composite. 

- To investigate the physical origin of the threshold level of MG layer 

thickness corresponding to transition in deformation behavior from 

localized to superplastic flow in NG-MG nanolaminate composite.  

 To conduct 2D plane strain finite element simulations of compressive loading on 

nanoscale cellular MGs using thermodynamically consistent finite strain non-local 

plasticity model of Thamburaja (2011).  

- To investigate the effect of cell-wall thickness and the role played by 

interaction stress associated with flow defects such as STZs on the 

deformation behavior of nanoscale cellular MGs.   

- To investigate the effect of change in specimen size on the deformation 

mechanism of nanoscale cellular MGs. 
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All the simulations and experiments reported in this thesis are performed under the 

assumptions of quasi static, monotonic loading at room temperature under isothermal 

conditions. 

1.6 Organization of thesis 

The remaining parts of the thesis are organized as follows: 

In chapter 2, axisymmetric finite element indentation simulations are performed using 

extended Drucker Prager plasticity model. The values of   for NGs and MGs are determined. 

Also, the mechanistic reasons for higher hardness in NGs than MGs are explained.    

In chapter 3, micro and nanoindentation experiments on NG and MG are performed and 

important results from the experiments are also discussed. In addition, the complementary 

finite element nanoindentation simulations are performed using the amorphous metals 

constitutive model proposed by Anand and Su (2005) to elucidate the underlying mechanism 

governing ISE in NGs.   

In chapter 4, mixed mode (I and II) loading of a stationary crack in NGs and MGs is studied 

through finite element simulations under 2D plane strain, SSY conditions using the same 

constitutive model as in Chapter 3. The effect of mode mixity on the evolution of crack tip 

plasticity in NGs is investigated and it is compared with that of MGs. The variation of 

fracture toughness with mode mixity in NGs and MGs is also estimated using a critical strain-

based failure criterion.  

In chapter 5, tensile loading of NG-MG nanolaminate composites are analyzed through 2D 

plane strain finite element simulations using a thermodynamically consistent finite strain 

based non-local plasticity model. The physical origin of the threshold level of MG layer 

thickness corresponding to transition in deformation behavior from localized to superplastic 

flow in NG-MG nanolaminate composite is studied.  

In chapter 6, compressive loading of nanoscale cellular MGs are analyzed using the same 

constitutive model as in chapter 5 and the effect of cell wall thickness and the role played by 

interaction stress associated with flow defects such as STZs on the deformation behavior of 

nanoscale cellular MGs is discussed. 
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In chapter 7, the important conclusions drawn from chapters 2-5 are summarized and the 

possible further works are also discussed. 

The governing equations in expanding cavity model for sphero-conical indenter are discussed 

in Appendix A. In addition to this, estimation of young’s modulus for glassy interfaces using 

iso-strain and iso-stress conditions are discussed.  
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CHAPTER 2 

Investigation of pressure sensitive plastic flow in nanoglasses from finite 

element simulations 

2.1 Introduction 

Nanoglasses (NGs), are found to exhibit good amount of tensile ductility compared to their 

parent materials, metallic glasses (MGs). The increase in ductility is intimately connected to 

the underlying “microstructure” of these materials which typically comprises of glassy grains 

separated by amorphous boundaries often referred to glassy interfaces (Jing et al., 1989; Sopu 

et al., 2009; Chen et al., 2011; Ritter et al., 2011; Fang et al., 2012; Chen et al., 2013; Gleiter 

2013; Franke et al., 2014; Guo et al., 2017; Liu et al., 2018; Li et al., 2018; Adjaoud and 

Albe, 2019). It has been argued that the glassy interfaces facilitate nucleation of multiple 

shear bands, thereby avoiding the shear localization and improvement in tensile ductility 

(Adibi et al., 2013; Singh et al., 2014; Wang et al., 2015).  

 Recent indentation experiments on 𝐶𝑢50𝑍𝑟50 binary system show that NGs exhibit a 

higher hardness than MG ribbons of identical composition (Nandam et al., 2017), which has 

been attributed to the Zr rich dense core surrounded by Cu rich interfaces carrying excess free 

volume. However, it is not clear as to why hardness should increase in the presence of free 

volume rich interfaces. Franke et al. (2014) have also reported a higher hardness in NGs than 

MGs, but they did not discuss the mechanistic reason for this behavior. A large number of 

experiments and numerical studies conducted on MGs shows that the reasons for high 

hardness in these materials is intimately connected with the pressure sensitive plastic flow 

taking place beneath the indenter (Vaidyanathan et al., 2001; Patnaik et al., 2004; Schuh and 

Nieh, 2004; Ramamurty et al., 2005; Keryvin 2007; Prasad et al., 2007; Keryvin, 2008; 

Keryvin et al., 2008; Fornell et al., 2009; Prasad et al., 2009, Rodriguez et al., 2012; Aliaga et 

al., 2013; Chen et al., 2013b; Bhattacharyya et al., 2015) and hardness appears to increase 

with the pressure sensitive index 𝛼 which quantified the pressure sensitivity (Narasimhan, 

2004). Given the amorphous structure of NGs with glassy grains and glassy interfaces, the 

plastic flow of NGs could be expected to be pressure sensitive which may be the reason for 

high hardness observed in these materials although it has not been investigated in detail.  

Therefore, in this chapter, finite element simulations of indentation are performed using the 

pressure insensitive (Von-Mises) and pressure sensitive (extended Drucker Prager) plasticity 
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model to analyze the indentation behavior of SC75Fe25 NGs and MG ribbons. The 

organization of this chapter is as follows. The constitutive model is briefly described in 

section 2.2, and modeling details are explained in section 2.3. Finally, the important results 

obtained from this study are discussed in section 2.4. 

2.2 Constitutive model 

The advantage of using extended Drucker Prager constitutive model is that it can be reduced 

to original Drucker Prager model as well as to Von-Mises model by choosing appropriate 

material parameters (Abaqus 2017). Further, from a numerical implementation perspective, 

the extended Drucker Prager yield criterion is easier because it consider second and third 

invariant of deviatoric stress. Also, it obeys an associative flow rule with continuous varying 

normal. Furthermore, this model can be used to check the influence of shape parameter, 𝐾 on 

yield surface.  

The yielding in the material is assumed to be governed by extended Drucker Prager yield 

criterion is given as (Abaqus 2017) 

Where, 

In above equations, (𝜎1, 𝜎2, 𝜎3) are principal stresses of the stress tensor 𝜎𝑖𝑗. 𝜏̅, 𝜎𝑚 and 

𝜎𝑦
𝑐  are Mises equivalent stress, hydrostatic stress and compressive yield strength of material, 

respectively. Further, 𝐽2 and 𝐽3 are second and third invariant of deviatoric stresses of stress 

tensor. The parameter 𝛼 and 𝐾 are pressure sensitive index and shape parameter of yield 

surface. Note, Eq. (2.1) represents as conical surface in principal stress space whose apex lies 

on hydrostatic tension axis. The shape of yield surface on deviatoric plane (𝜋 plane) is non-

circular and its shape is controlled by 𝐾. To maintain convexity of yield surface 𝐾 should be 

greater than 0.778. Further, Eq. (2.1) reduces to original Drucker Prager yield function with 

𝐾 = 1.0, which represents circular yield surface. While, Eq. (2.1) reduces to the pressure 
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insensitive Von- Mises yield function for 𝐾 = 1.0 and 𝛼 = 00. In this study most of the 

simulations are performed with 𝐾 = 1.0 , whereas few simulations are undertaken with 𝐾 =

0.8 to assess the effect of shape of yield surface on indentation response. 

2.3 Modeling aspects 

The axisymmetric finite element simulations of Berkovich indentation on cylindrical 

specimens are performed using ‘Berkovich equivalent’ conical indenter with spherical tip (R 

= 200 nm) and semi-apex angle of 70.30 which has identical projected area to depth function 

to that of standard Berkovich indenter (Lichinchi et al., 1998). Fig. 2.1(a) displays finite 

element discretization of sample using four-node quadrilateral axis symmetric elements 

in 𝑟 − 𝑧 plane along with the indenter geometry. The size of the specimen is chosen as 40 

(𝐿𝑠/𝑅) × 30 (𝐻𝑠/𝑅) to ensure that plastic zone is well contained below indenter so that 

boundary effects on indentation response could be minimized (Patnaik et al., 2004). Further, 

all nodes on the bottom and left side edges are constrained to move in 𝑧 and 𝑟 direction, 

respectively, while a constant displacement rate is applied to the rigid indenter through a 

reference point RP attached to it (refer Fig. 2.1(a)).  
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Figure 2.1 (a) 2D Axisymmetric finite element model of cylindrical specimen along with 

‘Berkovich equivalent’ conical rigid indenter with half cone angle of 70.30 employed in 

indentation simulations. (b) Finite element model of cylindrical sample considering 

microstructure of NG in a region A, while homogenized NG in region B. (c) Enlarged view 

of region A and a grain whose size is characterized by length 𝑑1 and 𝑑2. 

A highly refined mesh is employed to capture larger strain gradient below the 

indenter. Furthermore, contact between indenter and specimen is assumed to be frictionless. 

In this chapter, on NG two types of indentation simulations are performed, in first type of 
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simulation microstructure of NG is not modeled and homogeneous NG is considered (refer 

Fig. 2.1(a)), While in second type of simulation microstructure of NG (i.e., discrete glassy 

grains and glassy interfaces) is modeled (refer Fig. 2.1(b)). The modeling details for the latter 

will be discussed in section 2.4. 

The constitutive behavior of NG and MG is assumed to be governed by the plasticity 

model described in section 2.2 and the aim of present study is to determine 𝛼 for Sc75Fe25 

NGs synthesized by Liu et al. (2018), Franke et al. (2014) and Wang et al. (2015) by fitting 

simulated indentation load, P vs. depth, h curves to the experimental data reported by 

respective authors. Although composition of NGs of all three authors is identical, indentation 

response has been found to be marginally different due to marginal difference in their yield 

properties. Therefore, to avoid confusion, NGs of Liu et al. (2018), Franke et al. (2014) and 

Wang et al. (2015) are referred to as NG1, NG2 and NG3, respectively. Further, to compare 

the pressure sensitivities of NG and MG, 𝛼 of Sc75Fe25 MG ribbon is also determined by 

fitting experimental data of Franke et al. (2014) and Wang et al. (2015). NGs and MGs are 

assumed to exhibit elastic perfectly plastic response. The compressive yield strain, 𝜖𝑦
𝑐 =

𝜎𝑦
𝑐

𝐸
(𝐸 is Young’s modulus) of NG1, NG2 and NG3 are taken as 0.02, 0.014 and 0.013, 

respectively (Liu et al., 2018; Franke et al., 2014; Wang et al., 2015), while for MG ribbon, it 

is approximated to 0.02 (Franke et al., 2014; Wang et al., 2015). Further, Poisson’s ratio is 

taken as 0.36 for both NGs and MG (Schuh et al., 2007).  

2.4 Result and discussion 

Fig. 2.2(a) Displays the normalized indentation load, 
𝑃

𝐸𝑅2, versus normalized depth, 
ℎ

𝑅
 curve 

obtained from finite element simulation on NG1 for different values of 𝛼 and 𝐾 is plotted 

against the experimental curve reported by Liu et al. (2018). It can be seen that for 𝐾 = 1 and 

𝛼 = 0𝑜, the curve deviates significantly from experimental data suggesting that Von-mises 

criterion does not describe the yield behavior in NGs. While the curves corresponding to 𝐾 =

1 and 𝛼 = 15 − 20𝑜 shows good agreement with experimental data except for the marginal 

differences in values of load for smaller ℎ/𝑅. This suggests that the yield phenomena in 

Sc75Fe25 NG is characterized more accurately by pressure sensitive extended Drucker Prager 

plasticity model.  
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Figure 2.2 (a) Normalized indentation load, 𝑃/𝐸𝑅2 versus normalized depth, ℎ/𝑅 curves for 

NG1 corresponding to different values of 𝛼 and 𝐾, along with the experimental data of Liu et 

al. (2018). (b) Corresponding curves for NG2 and MG ribbon along with the experimental 

data of Franke et al. (2014). (c) Corresponding curves for NG3 and MG ribbon along with the 

experimental data of Wang et al. (2015). 

Fig. 2.2(b) compares indentation load, P vs. depth, h response of NG2 and MG ribbon 

with experimental results of Franke et al. (2014). Note that curves corresponding to 𝛼~12𝑜 
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and 4𝑜 for NG2 and MG, respectively, corroborate better with experimental data suggesting 

that 𝛼  for SC75Fe25 NGs is much higher than SC75Fe25 MG ribbon. Further, 𝛼 for NG3 and 

MG synthesized by Wang et al. (2015) is determined to be around 15𝑜 and 6𝑜, respectively 

(refer Fig 2.2(c)). Thus, it can be concluded that value of 𝛼 is ~12 − 20𝑜 for Sc75Fe25 NG, 

while it is~ 4 − 6𝑜  for MG ribbon. In other words, indentation response of Sc75Fe25 NGs is 

more pressure sensitive than MG with identical composition. Comparison of curves for 𝐾 =

1 and 0.8 in Fig. 2.2(a) and (b) suggest little influence of shape of yield surface on 

indentation response of NGs consistent with the literature observations (Patnaik et al., 2004). 

In Fig. 2.3 variation of normalized hardness, 𝐻/𝜎𝑦
𝑐  (also referred to as constraint 

factor, C) with normalized indentation strain, 𝐸𝑎/𝜎𝑦
𝑐𝑅 for NG1 (with 𝛼 = 20𝑜) and MG 

ribbon (with 𝛼 = 4𝑜) predicted by finite element simulations and expanding cavity model 

(ECM) proposed by Narasimhan (2004) are displayed. The governing equations in expanding 

cavity model for sphero-conical indenter are numerically integrated by considering geometry 

of indenter to be spherical at low contact loads, while conical shape at higher indentation 

loads (refer Appendix A.1 ). The value of C for NG1 reported by Liu et al. (2018) is also 

marked by ‘o’ symbol in Fig. 2.3. Note that predictions of finite element simulations and 

expanding cavity model are in good agreement for NG1, and they differ by less than 10% for 

MG ribbon. The values of C for NG1 and MG increases with 𝐸𝑎/𝜎𝑦
𝑐𝑅 during early stages of 

loading, and at around 𝐸𝑎/𝜎𝑦
𝑐𝑅 = 20, C for NG1 reaches very close to that of experimentally 

measured value. Although, such comparison could not be made for MG ribbon due to lack of 

experimental data, the value of C for MG ribbon at 𝐸𝑎/𝜎𝑦
𝑐𝑅 = 20 in Fig. 2.3 is comparable 

to that for Zr-based bulk MG reported by wright et al. (2001) from Berkovich indentation and 

falls within the range of 𝐶 for MGs suggested by Schuh et al. (2007). It is important to note 

that values of C of NG1 are higher than MG ribbon which can be explained by noting 

higher 𝛼 in the former. Expanding cavity model predicts that C in pressure sensitive solids 

increases with increase in 𝛼 (Narasimhan, 2004; Patnaik et al., 2004; Bardia and Narasimhan, 

2006; Subramanya et al., 2009) and/or decrease in 𝜖𝑦
𝑐  (Gao et al., 2006). Since 𝜖𝑦

𝑐  of NG1 and 

MG ribbon is almost identical, hence higher C in NG1 is solely attributed to higher 𝛼. Thus, 

it can be concluded that Sc75Fe25 NGs exhibit higher C than Sc75Fe25 MG ribbon because of 

their higher 𝛼. 
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Figure 2.3 The variation of normalized hardness, 𝐻/𝜎𝑦
𝑐  with normalized indentation strain, 

 𝐸𝑎/𝜎𝑦
𝑐𝑅 predicted by finite element simulations and expanding cavity model (Narasimhan, 

2004). 

 

Figure 2.4 Contour plots of equivalent plastic strain, 𝜖̅𝑝 corresponding to ℎ/𝑅 = 0.6 for (a) 

NG1 and (b) MG ribbon. 

To understand the effect of 𝛼 on plastic strain distribution below indenter, contour 

plots of equivalent plastic strain, 𝜖̅𝑝 at ℎ/𝑅 of 0.6 are shown in the undeformed configuration 

for NG1 and MG ribbon (with 𝛼 = 4𝑜) in Figs. 2.4(a) and (b), respectively. As 

expected, 𝜖 ̅𝑝 is maximum just below indenter, but decreases with increase in 𝑧 (Prasad et al., 

2011). Comparison of Figs. 2.4(a) and (b) indicates that plastic zone size in NG1 is 

marginally larger than MG. To confirm this, variation of 𝜖̅𝑝 with 𝑧 along the line 𝑟 = 0 is 

plotted in Fig 2.5(a). Note that 𝜖 ̅𝑝 at 𝑧 = 0 is higher in MG than NG1, while it drops more 

rapidly with increasing 𝑧 in the former than latter. Assuming that material at a point has 
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yielded if 𝜖̅𝑝 > 0.005, it can be noticed that plastic zone size, 𝑟𝑝
𝑁𝐺1 in NG1 is larger than 

plastic zone size, 𝑟𝑝
𝑀𝐺  in MG (inset diagram, Fig. 2.5(a)). These observations are found to be 

true for NG2 and NG3 also (refer Fig. 2.5(b) and (c)). Thus, the present study reveals that 

plastic zone size in NGs is larger than MG having identical composition which is because of 

higher 𝛼 in NGs. 

 

Figure 2.5 (a) Variation of equivalent plastic strain, 𝜖̅𝑝 along the depth of specimen of NG1 

and MG ribbon (b) and (c) corresponding plots for specimen NG2 and MG ribbon and 

specimen NG3 and MG ribbon, respectively. 

As noted above, higher 𝐶 and larger 𝑟𝑝 in NGs are due to their high 𝛼, which might be 

because of presence of free volume rich glassy interfaces. Therefore, a fundamental question 
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“what is value of 𝛼 for interfaces in NGs?” arises. To address this, finite element simulations 

of indentation on NG1 are repeated by modeling the microstructure of NG (i.e. glassy grains 

and glassy interfaces), as displayed finite element model in Fig. 2.1(b). Since 𝛼 is expected to 

influence deformation only after commencement of plastic yielding, microstructure is 

modeled only in the region (region ‘A’ in Fig. 2.1(b)) just underneath indenter, while a 

homogenized NG is considered outside this region i.e., region ‘B’ (Fig. 2.1(b)). Note that 

region A is significantly larger than 𝑟𝑝
𝑁𝐺1   noted in Fig. 2.5(a). Following (Singh et al., 2014), 

shape of the glassy grains is assumed to be hexagonal, and their size is characterized by 

dimensions 𝑑1and 𝑑2 along 𝑟 and 𝑧 directions, respectively (Fig. 2.1(c)). Here, 𝑑1 and 𝑑2 are 

chosen as 9 and 11 nm, respectively, to achieve average grain size of 10 nm, as observed in 

experiments (Liu et al., 2018), while interface width is taken as 1 nm (Liu et al., 2018) which 

results in a volume fraction of glassy grains, 𝑉𝑓
𝑔

 = 0.73. The material in regions A and B are 

assumed to follow extended Drucker Prager plasticity model, as discussed in section 2.2. The 

𝜖𝑦
𝑐  and 𝛼𝑁𝐺1 for homogenized NG in region B are taken to be 0.02 (as used previously) and 

15𝑜  (determined in Fig. 2.2(a)), respectively. Further, assuming almost identical chemical 

composition and free volume distribution in glassy grains and parent MG, which were used to 

produce NGs, the yield properties of the former can be considered similar to that of the latter. 

Therefore, 𝜖𝑦
𝑐  and pressure sensitive index, 𝛼𝑔 for glassy grains are taken as 0.02 (Franke et 

al., 2014; Wang et al., 2015), and 4𝑜  (determined in Fig. 2.2(b)), respectively. However, 𝜎𝑦
𝑐 

of glassy interface is taken 15% lower than that of glassy grains (Ritter et al., 2011; Singh et 

al., 2014; Wang et al., 2015; Li et al., 2018). Assuming that modulus follows rule of mixture, 

𝐸 for glassy interfaces is determined by employing iso-strain and iso-stress conditions (refer 

Appendix A.2), and simulations performed using 𝐸 predicted by former and latter approaches 

are named as Simulation M and N, respectively. In addition, another set of simulations are 

performed by taking E for glassy grains as well as glassy interfaces identical to that of 

homogenized NG in region B. These simulations are named as Simulations L. The value of 

pressure sensitive index, 𝛼𝑖 for glassy interfaces is determined by fitting simulated 

indentation load-depth curves to the experimental data for NG1 (Liu et al., 2018). 

Fig. 2.6(a) shows comparison of experimental indentation load, P vs. depth, h curves 

(Liu et al., 2018) with the simulated ones obtained from Simulations L, M, and N by 

employing different 𝛼𝑖 values. Note, all three simulations predict almost identical indentation 

response for a given 𝛼𝑖. Also, finite element results for a 𝛼𝑖~30𝑜 are in good agreement with 
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experimental data indicating the fact that 𝛼 for glassy interfaces is much higher than the 

glassy grains in Sc75Fe25 NGs. This may be attributed to the presence of excess free volume 

in these regions which could be the raison d’etre for increased plasticity of NGs. Further, 

since 𝑉𝑓
𝑔

= 0.73 in the model, present study suggests that 𝛼 in NG does not follow rule of 

mixture. Moreover, contour plot of equivalent plastic strain, 𝜖̅𝑝 displayed in Fig. 2.6(b) which 

are generated from simulation M shows a higher strain inside glassy grains than glassy 

interfaces despite their lower strength. To clarify this, evolution of equivalent plastic 

strain, 𝜖 ̅𝑝 inside a glassy grain, ‘P’ and glassy interfaces, ‘Q’ taken at a distance of 𝑧/𝑅 of 0.5 

(refer Fig. 2.6(b)) is shown in Fig. 2.6(c). It can be noted from this figure that evolution of 𝜖̅𝑝 

inside glassy interface begins first and propagates into the glassy grain with increasing ℎ/𝑅. 

However, the growth of 𝜖̅𝑝 is faster inside the glassy grain than glassy interface (refer Fig. 

2.6(b)) which can be attributed the lower 𝛼𝑔 and marginally lower 𝜖𝑦
𝑐  in glassy grains. To get 

more insight of effect of these parameter (pressure sensitive index, 𝛼 and yield strain, 𝜖𝑦
𝑐 ) on 

the evolution of equivalent plastic strain,  𝜖 ̅𝑝 below the indenter, finite element simulations 

are performed on homogenized NG (i.e., without modeling microstructure, refer Fig. 2.1(a)) 

employing extended Drucker Prager yield criterion and using different values of 𝜖𝑦
𝑐  and 𝛼. 

Fig. 2.7(a) shows development of 𝜖 ̅𝑝 at a point below indenter located at a distance of 𝑧/𝑅 =

0.5. It can be seen that strain evolution retards when 𝛼 or 𝜖𝑦
𝑐   is increased, while it accelerates 

on decrease in 𝜖𝑦
𝑐 . Similar trend can be observed for 𝑧/𝑅 = 1.0 too (refer Fig. 2.7(b)). Thus, 

the retarded strain evolution inside glassy interface (refer Fig. 2.6(c)) also suggest that glassy 

interface offers higher resistance for development of 𝜖 ̅𝑝 in a NG, which is in line with 

atomistic simulations showing glassy interfaces as barriers for shear localization in NGs 

(Sopu et al., 2011).  
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Figure 2.6 (a) Normalized indentation load, 𝑃/𝐸𝑅2 versus normalized depth, ℎ/𝑅 curves 

generated from simulation L, M and N on NG1, along with the experimental data of Liu et al. 

(2018). (b) Distribution of equivalent plastic strain,  𝜖̅𝑝 below the indenter for NG1 at ℎ/𝑅 = 

0.125. (c) Evolution of 𝜖̅𝑝 inside a grain, P and interface, Q marked in (b). 
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Figure 2.7 Evolution of equivalent plastic strain, 𝜖̅𝑝 below the indenter at (a) 𝑧/𝑅 = 0.5 and 

(b) 𝑧/𝑅 = 1.0. 

In summary, finite element simulations of indentation on Sc75Fe25 NGs and MG 

ribbons are performed using extended Drucker-Prager and Von-Mises plasticity model and 

the value of pressure sensitive index, 𝛼 for these alloys is determined by fitting recent 

experimental data. The value of 𝛼 for interfaces in NGs is also determined. Note that the 

hardness in MGs is observed to decrease with increase in the indentation load which is 

commonly referred to as the indentation size effect (ISE). The effect of the sensitivity of 

plastic flow to the pressure or normal stress on the ISE in glasses is not investigated. Thus, 

the mechanism governing ISE in NGs and MGs is not well understood. Therefore, in next 

chapter, nanoindentation experiments and complementary finite element simulations are 

performed to study the ISE in these alloys.  
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CHAPTER 3 

Investigation of softening induced indentation size effect in nanoglass and 

metallic glasses 

3.1 Introduction 

The hardness is frequently observed to decrease with increase in the load during the 

indentation experiment, which is commonly referred to as the indentation size effect (ISE) 

(Jang et al., 2011). As mentioned in chapter 1, ISE has also been reported in MGs, and many 

authors have attributed it to the free volume induced softening during the indentation (Lam 

and Chong, 2001; Ramamurty et al., 2005; Manika and Maniks, 2006; Yang et al., 2007, 

Steenberge et al., 2007; Li et al., 2008, 2009; Fornell et al., 2009; Xu et al., 2014; Xue et al., 

2016; Li et al., 2017; Zhou et al., 2019), while, Huang et al. (2011) argued that ISE in MGs is 

an experimental artifact. Thus, the understanding of the mechanics of ISE in MGs is far from 

complete. Recently, Sharma et al. (2021b) performed nanoindentation experiments on as 

prepared and annealed 𝐶𝑢60𝑍𝑟40 NGs and reported different ISE. They argued that the 

difference in ISE is caused by change in the internal microstructure in the annealed NGs. 

Given the completely different microstructure of NGs and MGs, the ISE in the NGs is 

expected to be significantly different than that of MGs, although it has not been investigated 

till now. Further, it has been shown in Chapter 2 that the plastic deformation in NGs is more 

pressure sensitive than MGs due to high pressure sensitivity of interfaces in the former. 

However, the effect of pressure sensitivity on the ISE in glasses is not investigated and thus, 

the mechanism governing ISE in NGs and MGs is not well understood.  

Therefore, nanoindentation experiments are performed at different peak loads on 

𝑐𝑢60𝑍𝑟40 NGs and MGs to investigate ISE in both the alloys. Further, bonded interface 

experiments through micro indentation are also performed to clearly understand the 

subsurface deformation behavior. In addition, complementary nanoindentation finite element 

simulations are performed to elucidate the underlying mechanism governing ISE in NGs. The 

organization of this chapter is as follows. In section 3.2, the experimental procedure is 

presented briefly. The constitutive model employed in finite element simulations is briefly 

discussed in section 3.3, while the modeling aspects and material parameters are discussed in 

section 3.4. Finally, important results and discussion are presented in section 3.5.  
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 3.2 Experimental procedure 

The 𝐶𝑢60𝑍𝑟40 NG and MG samples are obtained from Prof. Horst Hahn group, Karlsruhe 

Institute of Technology (KIT), Germany. The detailed process of synthesis of both materials 

is explained in the work of Nandam et al. (2017). 

The quasi-static nanoindentation experiments are carried out using a Berkovich 

diamond indenter with a tip radius of 300 𝑛𝑚. The area function of the indenter is calibrated 

using a standard quartz sample. All the experiments are performed under load-controlled 

mode within the load range of 2 to 8 𝑚𝑁. The load function consists of loading, holding, and 

unloading segments with time intervals of 5, 2, and 5s, respectively. The surfaces of samples 

are carefully polished to a mirror finish using diamond paste. At least 16 indents are taken for 

each load to get reliable and statistically presentable data. The spacing between the 

successive indentations is set to be almost ten times of the maximum indentation depth to 

avoid the interaction of plastic boundaries. The hardness, 𝐻 and elastic modulus, 𝐸 are 

evaluated using equation discussed in section 1.3.1. 

where, 𝑃𝑚𝑎𝑥𝑖 and 𝐴𝑐  are the maximum indentation load and projected area of contact, 

respectively. Further, in Eq. (3.2) the parameter 𝑆 and 𝜈 are contact stiffness and Poisson’s 

ratio. The subscript 𝑠 and 𝑖 denotes specimen and indenter under investigation, respectively. 

The shear bands formation around the periphery of the indentation impression are examined 

using an atomic force microscope (AFM). 

Further, the bonded microindentation experiments are performed on both the alloys 

using Vickers indenters to characterize the shear band morphology underneath the 

indentation. For this purpose, two equal size specimens are taken, and one side of each 

specimen are polished up to a surface finish of 0.2 𝜇𝑚 . The polished side of the specimens 

are bonded together using a strong adhesive (“super glue”) and allowed to soak for 5-7 hrs. 

The bonded specimen is cold mounted such that the bonded inference is on the top of mould 

and is carefully polished to mirror finish. Vickers indentations are performed on the interface 

with maximum applied load of 0.5 N such that the impression of indent coincides with the 

𝐻 =
𝑃𝑚𝑎𝑥

𝐴𝑐
,  (3.1) 

𝐸𝑠 = (1 − 𝜈𝑠
2) [

2√𝐴

√𝜋𝑆
−

1 − 𝜈𝑖
2

𝐸𝑖

]

−1

, (3.2) 
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interface. After experiments, the bonded interface is opened by dissolving the adhesive in 

acetone and the subsurface deformed morphology is examined through scanning electron 

microscope (SEM). 

3.3 Constitutive model 

In this work, a finite deformation Mohr-Coulomb type plasticity model proposed by Anand 

and Su (2005) for MGs is employed because it has been shown to capture the deformation 

behavior of MGs under bending (Anand and Su, 2005), compression (Anand and Su, 2005), 

tension (Anand and Su, 2005), and indentation (Su and Anand, 2006). This model assumes 

that the plastic deformation in amorphous metals occurs by plastic shearing accompanied by 

dilatation relative to six potential slip systems defined relative to the principal directions of 

Kirchhoff stress. According to this model, the plastic shear strain in 𝛼𝑡ℎ slip system evolves 

as: 

where  𝑚, 𝛾0̇, and 𝜇  are strain rate sensitivity parameter, reference plastic shearing rate, and 

internal friction coefficient. Further, 𝜏(𝛼) and 𝜎(𝛼) represent the resolved shear stress and 

compressive normal traction acting on 𝛼𝑡ℎ slip system. The detailed expression for 𝜏(𝛼) 

and 𝜎(𝛼) can be found in the work of Anand and Su (2005). Furthermore, in Eq. (3.3), 𝑐 is the 

cohesion, which is assumed to evolve as following to capture the free volume induced 

softening in MGs:  

where, 𝑏 and 𝑐𝑐𝑣 are the material constant, while 𝜂 and 𝜂𝑐𝑣 are current and saturation level of 

free volume. The free volume evolution law is given by: 

Here, 𝛽 is the dilatation function which is assumed to evolve with 𝜂 as: 

�̇�(𝛼) = 𝛾0̇ {
𝜏(𝛼)

𝑐 + 𝜇𝜎(𝛼)
}

1
𝑚

,  (3.3) 

𝑐 = 𝑐𝑐𝑣 + (
𝑏

𝑒 − 1
) {𝑒

(1−(
𝜂

𝜂𝑐𝑣
))

− 1}, (3.4) 

�̇� = 𝛽 ∑ �̇�(𝛼)

6

𝛼=1

 . (3.5) 

𝛽 =
𝑔0

𝑒 − 1
{𝑒

(1−(
𝜂

𝜂𝑐𝑣
))

− 1} , (3.6) 
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where, 𝑔0 is the initial value of dilatancy parameter. The above model has been implemented 

in the commercially available finite element program Abaqus 2017 by writing user defined 

material subroutine UMAT (Tandaiya et al., 2007, 2008, 2011). The integration of the 

constitutive equations is carried out using the implicit backward Euler method. 

3.4 Modeling aspects  

The axisymmetric finite element simulations on cylindrical specimens are performed using 

‘Berkovich equivalent’ conical rigid indenter having a semi-apex angle of 70.30 and 

spherical tip with radius, 𝑅 of 300 𝑛𝑚. Fig. 3.1(a) shows finite element discretization of 

specimen using quadrilateral axis symmetric elements in 𝑟 − 𝑧 plane along with the rigid 

indenter. A highly refined mesh is employed below the indenter to capture the distribution of 

shear bands better, while relatively coarser mesh is used in the region away from the indenter. 

The size of the specimen is chosen as 25𝑅(𝐿𝑠) × 20𝑅(𝐻𝑠) to ensure that the plastic zone is 

well contained beneath the indenter and the boundary effects on indentation response are 

minimized (Patnaik et al., 2004; Chapter 2). Further, all the nodes on the left side and bottom 

edges are restrained from moving along 𝑟 and 𝑧 directions, respectively, while a constant 

displacement rate is applied to the rigid indenter through a reference point RP attached to it 

(Fig. 3.1(a)). In this work, two types of indentation simulations are performed on NG which 

are referred to as simulation HNG and MNG. In simulations HNG, microstructure of NG is 

not modeled, instead the homogenized NG is considered, while discrete glassy grains and 

interfaces are modeled in simulation MNG (refer Fig. 3.1(b)). The finite element model 

displayed in Fig. 3.1(a) is employed for indentation simulations on MGs and Simulations 

HNG, while the model shown in Fig. 3.1(b) is used to perform simulation MNG. The 

constitutive behavior of NGs as well as MGs is assumed to be governed by the plasticity 

theory described in Section 3.3.  



39 
 

 

Figure 3.1 (a) 2D Axisymmetric finite element model of cylindrical specimen along with 

‘Berkovich equivalent’ conical rigid indenter with half cone angle of  70.30 employed in 

indentation simulations of MG and Homogenised NG (HNG). (b) Corresponding finite 

element model employed for Microstructure NG (MNG) considering microstructure of NG in 

a ‘Region A’, while homogenized NG in ‘Region B’. (c) Enlarged view of ‘Region A’ and a 

grain whose size is characterized by  𝑑1 and 𝑑2. 

The values of Young’s modulus obtained from nanoindentation experiments on NGs 

and MGs are used in the corresponding simulations. The values of parameters 𝜈, 𝑚, 𝛾0̇, 𝑔𝑜, 

𝑐𝑐𝑣 and 𝜂𝑐𝑣 are considered to be identical for MG and NGs (simulations HNG as well as 

MNG), and these are taken from the work of Anand and Su (2005) and Tandaiya et al. 
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(2007). The rationale behind choosing identical values for these parameters is as follows. 

Like MGs, indentation response of NGs is reported to be also almost strain rate insensitive at 

room temperature (Nandam et al., 2017), therefore, a lower value of 𝑚 is considered for both 

the alloys. Further, Singh et al. (2014) argued that the cohesion and free volume distribution 

should attain approximately the same saturation value at every point inside a shear band that 

cuts through glassy grains and glassy interfaces in NG. In addition, the free volume and 

cohesion distribution inside glassy grains in a NG can be assumed to be almost identical to 

that of MGs used to synthesize them. Therefore, 𝑐𝑐𝑣 and 𝜂𝑐𝑣 for MG and NG (glassy grains 

and glassy interfaces) are also assumed to be identical. The parameter  𝛾0̇ is a reference strain 

rate, which is taken to be identical for all the simulations reported in the present study.  

Further, the initial cohesion 𝑐0 for MG is taken from the work of Lee et al. (2007), whereas it 

is assumed to be 15% lower by choosing lower 𝑏 for NG (in simulations HNG) than that for 

MG because of lower yield strength and lower steady state flow stress in the former than the 

latter with identical composition (Wang et al., 2015; Li et al., 2018). The values of 𝜇 for MGs 

and NGs (in simulations HNG) are optimized by performing a large number of simulations to 

get good agreement between the simulated and experimental indentation load versus 

displacement and hardness versus indentation depth curves. In order to seed defect sites and 

trigger the shear bands in both NGs (in simulations HNG) and MGs, the initial cohesion is 

perturbed by 3% (Tandaiya et al., 2007) about its mean value and randomly assigned to 

elements. 

In simulation MNG, the microstructure of NG is modeled only in the ‘Region A’ just 

beneath the indenter to limit the problem size, while homogenized NG is considered outside 

this region, i.e., ‘Region B’ (refer Fig. 3.1(b)). The size of ‘Region A’ is ensured to be 

sufficiently larger than the plastic zone size below the indenter. Following MD simulations 

(Sopu et al., 2009; Adibi et al., 2013) and finite element simulations on NGs and NG-MG 

composites (Singh et al., 2014; Chapter 2, 5), the shape of grains is assumed to be hexagonal 

whose size is characterized by dimensions 𝑑1 and 𝑑2 along 𝑟 and 𝑧 directions, respectively 

(refer Fig. 3.1(c)). These values are taken to be 4 and 10 𝑛𝑚, respectively, to achieve an 

average grain size of 7 𝑛𝑚 which is similar to the size observed in the experiments by 

Nandam et al. (2017), while interface width is taken as 1 𝑛𝑚. The materials in ‘Region A’ 

and ‘Region B’ are assumed to follow the constitutive model discussed in section 3.3. The 

values of material parameters considered for ‘Region B’ are the same as used for simulation 

HNG (i.e., homogenised NG). Following experimental studies on NGs (Fang et al., 2012; 
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Nandam et al., 2017), the free volume distribution and chemical composition in grains and 

the parent MGs used to synthesize NGs are assumed to be identical. Therefore, in simulations 

MNG, the values of material parameters for grains are taken to be identical to that for MG. 

Since the glassy interfaces in NGs are characterized by excess free volume (Fang et al., 2012; 

Nandam et al., 2017) or lower density (Fang et al., 2012; Chen et al., 2013), the initial 

cohesion is taken to be 15%  lower than glassy grains. Further, in order to nucleate shear 

bands from glassy interfaces, as observed in experiments (Wang et al., 2015) and MD 

simulations (Adibi et al., 2013), the initial cohesion is perturbed by 3% about its mean value 

and randomly assigned to the elements in the interfaces. The value of 𝜇 for interface is 

determined by fitting the simulated indentation load-displacement curve with the 

experimental data. The values of all the material parameters used in the simulations on MGs, 

simulations HNG and MNG are listed in Table 3.1. 

Table 3.1 The values of material parameters used for finite element simulations of 

nanoindentation. 

Material Parameter MG 

Homogenized  

NG 

(HNG) 

 Microstructured NG 

(MNG) 

Grain Interface 

Young’s modulus, E (Gpa) 70 120 120 120 

Poisson’s ratio, 𝜈 0.36 0.36 0.36 0.36 

Internal friction coefficient, 𝜇 0.1 0.26 0.1 0.5 

Reference plastic shear strain rate, �̇�𝑜 0.001 0.001 0.001 0.001 

Strain rate sensitive parameter, m 0.02 0.02 0.02 0.02 

Constant in cohesion function, b (GPa) 0.3 0.15 0.3 0.15 

Rate of dilatation parameter, 𝑔0 0.04 0.04 0.04 0.04 

Plastic volume at saturation, 𝜂𝑐𝑣 0.005 0.005 0.005 0.005 

Cohesion at saturation, 𝑐𝑐𝑣 (GPa) 0.660 0.660 0.660 0.660 

Initial cohesion, 𝑐0(GPa) 0.960 0.810 0.960 0.810 
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3.5 Result and discussion 

3.5.1 Subsurface deformed morphology from microindentation experiments  

Figs. 3.2(a) and (b) display the SEM images of subsurface deformation morphology 

underneath the Vickers indenter at a peak load of 0.5N for MG and NG, respectively. It can 

be noticed from these figures that shear bands in MG are smooth and almost semi-circular in 

shape (Fig. 3.2(a)), while a clear waviness in the shear bands in NG is visible (Fig. 3.2(b)) 

which is a consequence of interaction of multiple shear bands promoted by discrete 

microstructure (glassy grains and glassy interfaces) in the latter as pointed out by Sharma et 

al. (2021a). Also, the primary shear band densities (number of discrete shear bands) in the 

MG is higher than that in NG. Further, following Sharma et al. (2021a) the normalized 

deformed zone, 
𝜆

𝐷
 is calculated for NG and MG, where, λ is the distance of farthest shear band 

from the tip of indentation impression and 𝐷 is the distance of the same band from specimen 

surface (refer Figs. 3.2(a) and (b)). The ratio 
λ

d
  is a measure of plastic zone size which can be 

correlated with the sensitivity of plastic flow to the hydrostatic pressure in an amorphous 

metal (Bhowmick et al., 2006; Prasad et al., 2007). Interestingly, it is found that normalized 

deformed zone beneath the indenter is around 0.8 for NG, and it is 0.7 for MG. Thus, it can 

be concluded that the plastic zone size below the indenter is larger in NG than that in MG, 

implying that 𝐶𝑢60𝑍𝑟40 NG is more pressure sensitive than MG of identical composition and 

it would further be confirmed by finite element simulations of nanoindentation in subsequent 

section. The trends in the shear band patterns and  
λ

D
 noticed for 𝐶𝑢60𝑍𝑟40 NG and MG in the 

present study are in corroboration with the recent subsurface indentation experiment 

performed on Pd- based NG and MG by Sharma et al. (2021a). 

Figure 3.2 Scanning electron microscope (SEM) images of the subsurface deformed region 

at an indentation load of 0.5N for (a) NG and (b) MG. 
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3.5.2 Nanoindentation experiments 

In Figs. 3.3(a) and (b), the indentation load-displacement (𝑃 − ℎ) curves obtained from 

nanoindentation experiments performed at different peak loads are shown by solid lines for 

NG and MG, respectively. It can be seen from these figures that the depth of indentation 

increases with increasing in the load for both NGs and MGs, but it is lower in the former than 

the latter for any given load. In addition, the residual indentation depth after unloading is also 

lower in the NGs than MGs, suggesting former exhibits a lower elastic recovery than the 

latter. Most importantly, no pop-in events are noticed in Fig. 3.3(a) for any peak load which 

signifies almost homogeneous plastic deformation through the nucleation of simultaneous 

multiple shear bands in NGs. A similar behavior has also been observed in the 

nanoindentation and compression experiments on Sc-based NGs performed by Wang et al. 

(2015). On the contrary, many pop-in events are observed in load-displacement curves of 

MGs which are identified by arrows in Fig. 3.3(b). Note, both the magnitude of the 

displacement burst in a pop-in and the number of pop-in increase with the indentation depth. 

Each pop-in event corresponds to the nucleation and propagation of shear bands underneath 

the indenter, hence this kind of behavior is termed as localized deformation (Wang et al., 

2015). A similar finding is reported from indentation studies on bulk MGs (Schuh et al., 

2004; Li et al., 2008). 

In Fig. 3.4, the variation of nanoindentation hardness, 𝐻, determined using Oliver and Pharr 

method (2004), is plotted against maximum penetration depth, ℎ𝑚𝑎𝑥 as shown by solid line 

curves for NGs and MGs. Note, the indentation hardness decreases with an increase in the 

indentation depth signifying significant ISE in both the materials. For instance,  𝐻 for MGs 

decreases from 6.94 to 5.60 GPa when ℎ𝑚𝑎𝑥 is increased from 118 to 290 nm resulting in 

around 19% drop in hardness. A similar trend in 𝐻 with increase in 𝑃 or ℎ𝑚𝑎𝑥  has also been 

reported for Zr-, Pd- based bulk MGs (Steenberge et al., 2007; Li et al., 2008) as well as for 

Cu-Zr based MGs (Rauf et al., 2018) during nanoindentation. On the other hand, in the case 

of NGs, 𝐻 declines only by 11% with increasing ℎ𝑚𝑎𝑥, therefore, it can be concluded that 

ISE in NGs is less pronounced as compare to MGs. Recently, Sharma et al. (2021b) has also 

reported significant ISE in as prepared as well as annealed NGs. 
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Figure 3.3 (a) The indentation load-displacement (𝑃 − ℎ) curves corresponding to different 

peak loads for nanoglasses, NG, obtained from nanoindentation experiments and simulations 

HNG and MNG. (b) The corresponding curves for metallic glass, MG. 

Figure 3.4 Dependence of indentation hardness, 𝐻 calculated at the end of the holding stage, 

on the maximum indentation depth, ℎ𝑚𝑎𝑥 for NG and MG along with corresponding 𝐻 values 

obtained from the finite element simulations. 
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To understand the plastic deformation around the indent, AFM images of imprint 

corresponding to the peak load of  8 𝑚𝑁 are displayed in Fig. 3.5(a) and (b) for NGs and 

MGs, respectively. In Fig. 3.5(a), no shear bands are noticed in the vicinity of indent 

confirming plastic deformation is completely accommodated underneath the indentation of 

NGs. On the other hand, one major shear band (marked by arrow) and few minor shear bands 

at the periphery of the impression are noticed in Fig. 3.5(b) signifying that the plastic flow 

cannot be completely accommodated in the subsurface deformation zone. The average 

hardness calculated at the peak load of 8 𝑚𝑁 for NGs and MGs are 7.59 ± 0.1 GPa and 

5.6 ± 0.12 GPa, respectively, and the young’s modulus is determined as 120 ± 4 GPa and 

70 ± 10 GPa for the former and latter, respectively. Almost similar values for hardness and 

modulus for as prepared 𝐶𝑢60𝑍𝑟40 NGs have also been reported by Sharma et al. (2021b). It 

is noteworthy to mention that higher hardness and Young’s modulus in Sc-based NGs than 

MGs has also been reported by Franke et al. (2014). Furthermore, recently Nandam et al. 

(2017) performed nanoindentation experiments on 𝐶𝑢50𝑍𝑟50 NGs, and MGs and reported 

higher hardness and reduced young’s modulus in the former than the latter which they 

attributed to the presence of heterogeneous structure in NGs. 

 

Figure 3.5 AFM images of indent corresponding to the peak load of 8mN for (a) NG and (b) 

MG. 

3.5.3 Finite element simulations of nanoindentation 

The value of 𝜇 for NG and MG is optimized to achieve an agreement between the simulated 

and experimental data to be better than 90%. The simulated 𝑃 − ℎ curves for homogenized 

NG (HNG) and MG corresponding to optimum 𝜇 are displayed by dashed line in Fig. 3.3(a) 
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and 3.3(b), respectively. A good agreement between experiments and simulations HNG is 

found for 𝜇 = 0.26 (Fig. 3.3(a)). However, the corresponding curves of MGs collaborate 

better with experimental data for lower 𝜇 of 0.1 with a marginal difference in the load values 

at the initial indentation depth (refer Fig. 3.3(b)). Note that 𝜇 for NGs is much higher than 

that for MGs of identical composition, suggesting indentation response of the former being 

more sensitive to normal stress than the latter. It is in corroboration with the recent study 

(Chapter 2), where Sc-based NGs is found to be more pressure sensitive than MGs with 

identical composition. Further, it must be mentioned that a significant deviation of simulated-

unloading curves from the experimental data is observed which may be due to the increasing 

nonlinearity in material response during unloading (Oliver and Pharr, 2004). The values of 

hardness from finite element simulations are plotted against ℎ𝑚𝑎𝑥  by dashed line in Fig. 3.4, 

which shows a good agreement between simulation and experiments for both the alloys, 

except for lower indentation depth. The reason for this discrepancy will be discussed later. 

In order to understand the evolution of plastic flow underneath the indenter in both the 

alloys, contour plots of maximum principal logarithmic plastic strain, 𝑙𝑜𝑔𝜆1
𝑝

 corresponding to 

three successive stages of indentation depth, ℎ obtained from simulations on MG and 

simulations HNG are presented in Fig. 3.6 in the undeformed configuration. Figs. 3.6(a)-(c) 

show the plastic flow distribution in NGs (HNGs) at ℎ =  95, 143 and 210 𝑛𝑚, respectively, 

while Figs 3.6(d)-(f) shows the corresponding plots for MGs at the same penetration depths. 

It can be noticed by comparing Figs. 3.6(a) with (d) that discrete bands with higher plastic 

strain are developed in MGs, while the shear bands are more diffused, and the plastic strain is 

relatively uniformly distributed in case of NGs. With increasing indentation depth, the 

number of shear bands, their length and plastic strain inside them increases in both the 

materials, but strain distribution remains relatively more homogeneous in NGs (refer Fig. 

3.6(b) and (c)) than in MGs (refer Fig. 3.6(e) and (f)). In addition, the magnitude of the 

plastic strain inside the bands in MGs (refer Fig. 3.6(d-f)) is much higher than the NGs (refer 

Fig. 3.6(a-c)). Further, assuming that the plastic deformation at a point would occur if 𝑙𝑜𝑔𝜆1
𝑝
 

at that point has exceeded beyond 0.001, the volume fraction of plastically deforming 

material, 𝑉𝑓
𝑝
 is determined and plotted against ℎ in Fig. 3.7 for both NG and MG. It can be 

seen from this figure that 𝑉𝑓
𝑝

 in NGs is larger than in MGs for identical indentation depth, and 

it increases more rapidly in the former than the latter. In other words, the plastic zone size is 

larger, and it spreads more rapidly in NGs than in MGs which is a consequence of higher 



47 
 

pressure sensitivity in the former (Chapter 2). Note that the trends pertaining to shear band 

patterns and plastic zone size for MG and NG displayed in Fig. 3.6 and 3.7 are in line with 

the experimental observations in Fig. 3.2.  

 

Figure 3.6 Contour plots of maximum principal logarithmic plastic strain 𝑙𝑜𝑔𝜆1
𝑝

 for NG 

(obtained from simulations HNG) at (a) ℎ = 95 𝑛𝑚 (b) ℎ = 143 𝑛𝑚 and (c) ℎ =

210 𝑛𝑚. The corresponding plots for MG are shown in (d)-(f).   

 

Figure 3.7 Variation of volume fraction of plastically deformed material, 𝑉𝑓
𝑝

 with indentation 

depth, ℎ for NG (obtained from Simulation HNG) and MG. 
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Further, recent finite element simulations of nanoindentation on Sc-based NG and 

MG performed using extended Drucker-Prager plasticity model have shown that the former 

exhibits higher pressure sensitivity due to the presence of interfaces. It must be mentioned 

that though extended Drucker-Prager model are pressure sensitive, they cannot capture free 

volume induced softening, a most important characteristic of amorphous metals. Therefore, 

Simulation MNG are conducted by modeling the microstructures of NG to determine 𝜇 for 

interface. The value of 𝜇 for interface is determined to be 0.5 by fitting the simulated 𝑃 − ℎ 

curve with experimental data (refer Simulated 𝑃 − ℎ curve of MNG in Fig. 3.3(a)). To get 

more insights on the role of interfaces on the formation of shear bands underneath the 

indenter, the contour plot of 𝑙𝑜𝑔𝜆1
𝑃 at ℎ = 143 𝑛𝑚 obtained from simulation MNG is shown 

in Fig. 3.8. The profuse shear banding giving the impression of almost uniform distribution of 

plastic strain just below the indenter is observed, whereas, away from the indenter, multiple 

discrete shear bands seem to have developed. A close observation of zoomed in view of a 

shear band shows that the glassy grains with large plastic strain have aligned in the form of a 

band but strain levels inside interfaces are less than 5%. Thus, the glassy interfaces prevent 

the strain localization in a band, consequently the bands in Fig. 3.8 are not well connected. 

Fig. 3.8 also displays the formation of secondary shear bands (SSB) bifurcating from primary 

shear bands (PSB) (refer bands PSB and SSB in Fig. 3.8). The formation of secondary shear 

bands beneath the indenter has also been reported in recent indentation experiments on Pd-

based binary NG (Sharma et al., 2021a). 

The present experiments show the presence of ISE in MG and NGs, as evident from 

Fig. 3.4. Huang et al. (2010) showed that ISE in MGs is an artefact of Oliver-Pharr method 

and it can be eliminated after correcting the pile-up at different indentation loads. Rodriguez 

et al. (2012) showed from experiments and complementary finite element simulations on 

different amorphous materials that the effect of pile-up in hardness values estimated using 

Oliver-Pharr scheme will be significant if the ratio elastic energy 𝑊𝑒  to total energy, 

𝑊𝑡  obtained from 𝑃 − ℎ curve is less than 0.5. In order to verify the applicability of Oliver-

Pharr method in the present study, the ratio 
𝑊𝑒

𝑊𝑡
  is determined at different peak loads and 

found to be around 0.52 and 0.54 for NGs and MGs, respectively. Therefore, it can be 

concluded that the ISE of hardness obtained from present experiments is not an experimental 

artefact but true response of the material. 
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Figure 3.8 Contour plot of maximum principal logarithmic plastic strain, 𝑙𝑜𝑔𝜆1
𝑝

 obtained 

from simulations MNG at ℎ = 143 𝑛𝑚. The inset figure shows an enlarged view of region D. 

To explain the ISE in MGs, Lam and Chong (2001) and Yang et al. (2007) developed 

an analytical model, by adopting the perspective of strain gradient plasticity, analogous to the 

Nix-Gao model for crystalline materials. According to these models, the strain gradient 

induced plasticity in amorphous metals should be accommodated by the “geometrically 

necessary non-crystalline flow defects” such as excess free volume (Yang et al., 2007) or 

shear clusters (Lam and Chong, 2001). These models propose that the ISE in MGs are due to 

the increase in geometrically necessary flow defects (GNFDs) at shallow indentation depths 

akin to the geometrically necessary dislocations (GNDs) in the Nix-Gao model. It must be 

noted that the enhancement in GNDs causes strain hardening resulting in higher hardness in 

crystalline materials, whereas an increase in free volume or shear clusters (i.e. GNFDs) 
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should induce strain softening rather than hardening in MGs (Bei et al., 2006; Yoo et al., 

2009). Thus, it is still not clear as to why the presence of GNFDs leads to an increase in 

hardness of MGs at low penetration depths. Therefore, GNFDs based mechanism cannot 

satisfactorily explain the ISE in NGs and MGs. Jang et al. (2011) correlated the hardness of 

MGs at an applied load with the volume of the material undergoing plastic deformation, and 

hence, with the activities of STZs and shear bands beneath the indenter. They argued that the 

volume of the material where plastic deformation has occurred is smaller at lower loads 

resulting in lesser activities of STZs and fewer shear bands below the indenter, but it 

enhances with increasing load causing more softening and lesser hardness at higher loads. 

Steenberge et al. (2007) also looked ISE in MGs as a consequence of rapid softening induced 

by rapid accumulation of free volume during indentation. For this purpose, they correlated 

the hardness in an amorphous metal with the shear strain rate, 𝜖̇, and the concentration of free 

volume, 𝜂 using flow equation of Spaepen (1977) and Argon (1979) as:  

Here, 𝑘𝐵, 𝑇, Ω, 𝑓0, Δ𝑓, Δ𝐺 are Boltzmann constants, test temperature, atomic volume, 

frequency of atomic vibration, volume fraction of material having potential jump sites, and 

activation energy, respectively. For load-controlled indentation experiments, the strain rate 

𝜖̇ = 1/ℎ(𝑑ℎ/𝑑𝑡) underneath the indenter drops rapidly with increase in ℎ and eventually 

saturating at larger ℎ. The saturation level of 𝜖̇ was almost identical for all maximum applied 

load (Steenberge et al., 2007) and hence it was concluded that the drop in 𝐻 in MG is mainly 

due to the enhancement in 𝜂 during indentation (Bhowmick et al., 2006; Steenberge et al., 

2007). The variation of 𝜖̇ in NGs and MGs for present indentation experiments is plotted 

against ℎ in Fig. 3.9(a), which also shows almost identical drop in  𝜖̇ for both the alloys, 

irrespective of applied load. Also, the values of 𝜖̇ at ℎ𝑚𝑎𝑥  for any load is almost similar. 

Thus, Eq. (3.7) suggests that difference in ISE in NG and MG should be due to the difference 

in rate of free volume evolution in both the alloys. To estimate the free volume generation 

and subsequent softening during indentation, Eq. (3.7) can be further simplified as (Li et al., 

2009): 

𝐻 =
6√3𝑘𝐵𝑇

Ω
 Sinh−1 (

 𝜖̇ 

2𝑓0Δ𝑓𝜂
exp (

Δ𝐺

𝑘𝐵𝑇
) ). (3.7) 

𝐾𝜂 = (
𝑓0Δ𝑓 (

Ω 
𝑘𝐵𝑇) exp (−

Δ𝐺
𝑘𝐵𝑇) 

3√3𝜖̇ 
) 𝜂 =

1

𝐻
  (3.8) 



51 
 

The 𝐾𝜂 versus ℎ𝑚𝑎𝑥 plots displayed in Fig. 3.9(b) suggest that free volume increases in both 

MG and NGs during indentation causing both the alloys to exhibit ISE. Most importantly, 

enhancement in free volume is faster in MG than NG resulting in rapid softening thereby 

leading to faster drop in flow stress in the former than the latter. This, in turn, results in faster 

drop in the hardness of MG than NG. 

 

Figure 3.9 (a) Variation of shear strain rate underneath the indenter in NG and MG during 

indentation. (b)Variation of 𝐾𝜂 with ℎ𝑚𝑎𝑥 for NG and MG. (c) The evolution of dynamic 

hardness, 𝐻𝑑  during loading stage of indentation for NG and MG. 

The difference in free volume generated in NGs and MGs during the indentation 

experiments can be further confirmed by monitoring the dynamic hardness, 𝐻𝑑, defined as the 
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ratio of instantaneous force to the instantaneous projected contact area (Concustell et al., 

2005; Steenberge et al., 2007). By taking the instantaneous projected area as 24.65ℎ2 for 

Berkovich indenter (Oliver and Pharr, 2004) and employing the Oliver-Pharr method (Oliver 

and Pharr, 2004; Concustell et al., 2005) the evolution of 𝐻𝑑 is computed from the loading 

part of 𝑃 − ℎ curves corresponding to different peak loads for NG and MG and displayed in 

Fig. 3.9(c). It can be noticed from this figure that irrespective of peak load, 𝐻𝑑  drops with 

time and levels off at sufficiently longer time for both alloys. It is important to note that 𝐻𝑑 

drops more rapidly and saturates to a lower value in MG than that in NG, which signifies 

larger amount of free volume being generated during plastic deformation in the former than 

the latter (Steenberge et al., 2007). The larger free volume will cause more softening and 

hence higher drop in hardness leading to more pronounced ISE in MG (Steenberge et al., 

2007). Thus, Fig. 3.9 and Eq. (3.7) suggest that the faster softening in MG than NG is a 

primary reason for higher ISE in the former. It must be mentioned that flow equation used in 

the analysis of Steenberge et al. (2007) does not account for the effect of hydrostatic pressure 

or normal stress which is an important characteristic of the plastic deformation in the 

amorphous metals (Patnaik et al., 2004; Chapter 2).  

In order to understand the effect of 𝜇 on the softening underneath the indenter, the 

evolution of equivalent plastic strain,  𝜖̅𝑝 and free volume 𝜂 at a point ‘C’, taken at a depth of 

0.5𝑅, (refer Fig. 3.6) is recorded from simulations on MG and HNG and plotted against ℎ in 

Figs. 3.10(a) and (b), respectively. Due to lower initial cohesion, yielding begins at early 

stages of indentation causing plastic strain to evolve earlier in NG, but the rate of 

enhancement in plastic strain is higher in MG than NG in Fig. 3.10(a). This, in turn, results in 

faster free volume generation in MG than NG, as evident from Fig. 3.10(b) (also refer Eq. 

(3.5)). Consequently, MG exhibits relatively rapid drop in cohesion (i.e., softening) in 

comparison to NG during initial stages of indentation as can be understood from Eq. (3.4). 

The slower softening in NG observed in the present simulations is caused by two factors. 

First, initial cohesion in NG is lower while saturation cohesion is identical to that of MG, 

consequently, drop in cohesion in NG is slower (see Eq. (3.4)). Secondly, the higher 𝜇 for 

NG should reduce the shear strain rates which would result in slower evolution of free 

volume and slower drop in cohesion (refer Eqs. 3.3-3.5). In order to contrast the influence of 

these two factors on the evolution of free volume, one simulation on NG (simulation HNG) is 

performed by setting 𝜇 identical to that used in simulations for MG. The evolution of plastic 

strain and free volume at point same C obtained from this simulation are displayed by dashed 
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line in Fig. 3.10(a) and (b), respectively. Note from these figures that the rate of evolution of 

plastic strain and free volume increases when 𝜇 is reduced from 0.26 to 0.1, though it remains 

slightly lower than the MG. Therefore, it can be concluded that the softening in NG during 

indentation is significantly influenced by their sensitivity to the normal stress (i.e., 𝜇). In 

other words, slower softening caused by the higher 𝜇 is an important factor to be considered 

to explain the lesser ISE in NG than their MG counterpart.  

In order to understand the role played by interfaces on overall softening on NGs, the 

evolution of free volume inside a grain and interface marked by Points F and G, respectively, 

taken at a depth of around 0.5𝑅 (see Fig. 3.8), is extracted from simulations MNG and 

compared in Fig. 3.10(c). This figure shows that the rate of free volume generation inside 

interfaces is slower than that in grains. This is due to the fact that 𝜇 for interface is much 

higher than that for grains which results in slower strain rate and hence slower growth in 𝜂 in 

the former than the latter (refer Eq. (3.5)). Consequently, cohesion drops slowly (refer Eq. 

3.4) leading to slow softening inside interfaces. This, in turn results in, slower softening in an 

aggregate NG (considering both grain and interface) and lesser ISE. 

It must be mentioned that a significant gradient in 𝜂 below the indenter has been 

noticed in the present finite element simulations for lower ℎ which vanishes when ℎ is 

increased. The presence of free volume gradient would give rise to the interaction stress 

between flow defects such as STZs (Thamburaja, 2011). The interaction stress developed 

around the curved surfaces such as notches in nanometer-sized MG specimens imparts 

considerable strain hardening (Singh and Narasimhan, 2016). Since there would be a 

considerable curvature in the indent impression, therefore, strain hardening promoted by 

interaction stress during shallow indentation is expected to influence ISE in MGs and NGs. It 

must be mentioned that the plasticity model employed in the present finite element 

simulations is local and the stress arising due to free volume gradient is not incorporated in it. 

This is one of the reasons for significant discrepancy between experimentally measured 

hardness and the corresponding finite element predictions in Fig. 3.4 for lower ℎ𝑚𝑎𝑥.   
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Figure 3.10 The variation of (a) Equivalent plastic strain, 𝜖 ̅𝑝 and (b) Normalized free 

volume, 
𝜂

𝜂𝑐𝑣
  with respect to indentation depth, ℎ at point ‘C’ taken at  𝑧 = 0.5𝑅 (refer Fig. 

3.6) for NG (HNG) and MG. (c) The variation of 
𝜂

𝜂𝑐𝑣
  with ℎ inside a grain, F and interface, G 

marked in Fig. 3.8 obtained from simulations MNG. 
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In summary, microindentation as well as nanoindentation experiments are performed 

on both 𝐶𝑢60𝑍𝑟40 NGs and MGs. In addition, complementary finite element simulations of 

indentations are performed by employing the finite strain viscoplastic constitutive theory for 

amorphous metals. It must be mentioned that a considerable amount of research has been 

devoted to understanding the deformation response of NGs, but a few works have been 

undertaken to investigate their fracture behavior. Therefore, finite element simulations using 

constitutive model discussed in this chapter are performed in the next chapter to study the 

mixed mode (I and II) fracture behavior in NGs and MGs.    
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CHAPTER 4 

Mixed mode (I & II) fracture behavior of nanoglass and metallic glass 

4.1 Introduction 

A considerable amount of effort has been made to understand the deformation behavior of 

NGs under tensile, compressive and indentation loading, whereas a few studies have been 

undertaken to understand the fracture response of NGs. These studies focused to understand 

the deformation behavior of notched NG samples under pure mode-I loading conditions (Sha 

et al., 2014). However, in practical application, structural components are generally subjected 

to complex stress fields/multi-axial state of stress, which may prone to mixed mode fracture. 

These factors suggest a need of a detailed study of fracture behavior of a given material under 

mixed mode loading conditions. Therefore, two-dimensional, plane strain, finite element 

analysis on the stationary crack in nanoglass (NG) and metallic glass (MG) subjected to 

mixed mode (I and II) loading conditions are performed under small scale yielding (SSY) 

conditions by employing the constitutive model for MGs.  The organization of this chapter is 

as follows. The constitutive model and the determination of material parameters for NG and 

MG are briefly described in sections 4.2 and 4.3, respectively. The modeling aspects of 

fracture simulations of crack initiation are discussed in section 4.4. Finally important results 

obtained from this study are discussed in section 4.4. 

4.2 Constitutive model 

A finite deformation, Mohr-Coloumb type plasticity model for MGs proposed by Anand and 

Su (2005) is employed in this study, as it can precisely represent the deformation behavior of 

MGs under compression (Anand and Su, 2005), tension (Anand and Su, 2005), indentation 

(Su and Anand, 2006), and bending (Anand and Su 2005). This model assumes that the 

plastic flow in amorphous metals occurs by plastic shearing accompanied by dilatation 

relatively to six potential slip systems defined with respect to the principal directions of 

Kirchhoff stress. The detailed derivation of this plasticity model can be found in Anand and 

Su (2005). The rate of plastic shearing, evolution of cohesion and evolution of free volume 

are given by Eq. (3.3), (3.4) and (3.5), respectively. The above model has been implemented 

in the commercially available finite element program Abaqus 2017 by writing user defined 

material subroutine UMAT (Tandaiya et al., 2007, 2008, 2011). The integration of the 

constitutive equations is carried out using the implicit backward Euler method. 
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4.3 Determination of material parameters for NG and MG     

In this section, the material parameters appearing in the constitutive model are determined for 

Sc-based NG and MG which will be used in fracture simulations in the following sections. 

The values of Young’s modulus,   and initial cohesion,    for NG and MG are taken from the 

Franke et al. (2015) and Wang et al. (2015). The values of material parameters    ̇,   ,    ,  , 

  and     are taken from the work of Anand and Su (2005), and following Chapter 3, these 

are assumed to be identical for NGs and MGs. Further, the material constant   is chosen 

lower for NG than that for MG owing to lower steady state flow stress in the former than the 

latter (Wang et al., 2015). The values of   for NG and MG are obtained by fitting the 

simulated indentation load,   versus depth,   curves with the corresponding experimental 

data reported by Franke et al. (2014). For this purpose, axisymmetric finite element 

simulations of indentation are performed on cylindrical specimens using ‘Berkovich 

equivalent’ conical rigid indenter having a semi-apex angle of       and spherical tip 

(        ). Fig. 4.1(a) shows the geometry of rigid indenter and finite element 

discretization of the specimen using four-noded axisymmetric elements in     plane. The 

size of specimen (  (    )    (    )) is chosen to be sufficiently large to avoid 

interaction of plastic boundaries with free surfaces of the specimen to ensure boundary 

effects on indentation response being minimal (Chapter 2, 3). A constant displacement rate in 

  direction is imposed on the indenter through a reference point RP (refer Fig. 4.1(a)). 

Further, nodes on the bottom and the left side edges are constrained to move 

along   and   direction, respectively. Note that the model displayed in Fig. 4.1(a) is employed 

in determining the values of   for MG as well as aggregate NG. In the simulations of NG, the 

discreet glassy grains and glassy interfaces are not modeled, and these simulations are 

referred to as HNG. The values of   for NG obtained from simulations HNG represents the 

friction coefficient of aggregate NG (also referred to as homogenized NG in the following 

text). The material parameters for MG and aggregate NG are listed in Table 4.1.  
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Figure 4.1 (a) Finite element mesh of cylindrical sample along with ‘Berkovich equivalent’ 

conical rigid indenter with half cone angle of        used for MG and Homogenised NG 

(HNG) indentation simulations. (b) Corresponding finite element model employed for 

simulations MNG where microstructure of NG is modeled in a ‘Region A’, while 

homogenized NG is considered in ‘Region B’. (c) Zoomed view of ‘Region A’ and grain 

along with its detailed dimensions. 
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Table 4.1 The values of material parameters used for finite element simulations of 

nanoindentation. 

Material 

Parameter 
Simulation MG 

Homogenized NG 

(HNG) 

 Microstructured NG 

(MNG) 

Grain Interface 

      96.75 126.80 126.80 126.80 

  0.36 0.36 0.36 0.36 

  0.08 0.15 0.08 0.25 

 ̇  0.001 0.001 0.001 0.001 

  0.02 0.02 0.02 0.02 

      0.19 0.04 0.19 0.04 

   0.4 0.4 0.4 0.4 

    0.005 0.005 0.005 0.005 

        0.81 0.81 0.81 0.81 

       1.0 0.85 1.0 0.85 

    (Gpa) --- --- 0.765 -- 

 

Further, to determine the material parameters for grains and interfaces, another 

simulation of indentation on NG are performed by modeling discrete glassy grains and glassy 

interfaces, and these simulations are referred to as MNG. The finite element model displayed 

in Fig. 4.1(b) is employed in the simulation MNG. The modeling details for simulations 

MNG are as follows. By following (Chapter 2 and 3), the discrete glassy grains and interfaces 

are modeled only in the ‘Region A’ to reduce the computation time, while in ‘Region B’, 

homogenized NG is considered (refer Fig. 4.1(b)). While choosing the size of region A, it is 

ensured that region A is well contained within plastic zone size underneath the indenter. 

Further, following (Sopu et al., 2011; Adibi et al., 2013; Singh et al., 2014), the hexagonal-
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shaped glassy grains with dimensions    and    along   and   directions, respectively, are 

considered (refer Fig. 4.1(c)). The values of    and    are taken as   and        respectively, 

to attain an average grain size of      , as noticed in Sc-based NGs (Wang et al., 2015; Liu 

et al., 2018), while the width of the glassy interface is chosen as       Following 

experimental studies on NGs (Fang et al., 2012; Nandam et al., 2017), the chemical 

composition and free volume distribution in grains and the parent MG used to synthesize NG 

are assumed to be identical. Therefore, the values of material parameters for glassy grains are 

chosen to be identical to that of MG (Chapter 3). Following Chapter 3 identical values of the 

parameters  ,  ,  ,   ̇,   ,     and     are considered for interfaces and grains. However, the 

initial cohesion for interfaces is taken to be 15% lower than glassy grains by choosing lower 

  for them, because glassy interfaces exhibit lower density (Fang et al., 2012) and excess free 

volume (Sopu et al., 2009; Nandam et al., 2017). The value of   for interfaces is determined 

by fitting the     curves obtained from indentation simulations MNG to the experimental 

data (Franke et al., 2014). The values of all the materials parameters for interface and grains 

are listed in table 4.1.   

The normalized indentation load,       vs normalized indentation depth,     curves 

obtained using the optimized values of   (refer Table 4.1) in the simulations on MG, 

simulations HNG and MNG are compared with experimental data of Franke et al. (2014) in 

Fig. 4.2. It can be noticed that simulated curves for MG and NG (from simulations HNG as 

well as MNG) corroborates well with the corresponding experimental data. It must be 

mentioned that hardness values of NG and MG at peak load computed from finite element 

simulations is close to that reported from experiments (Franke et at., 2014). The good 

agreement between the finite element predictions of       vs     curves as well as 

hardness value with the corresponding experimental data validates the modeling strategy and 

the chosen materials parameters which will be used in the fracture simulations discussed in 

the following sections.  
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Figure 4.2 Normalized indentation load,       versus normalized indentation depth,   

  curve generated for MG, homogenized NG, and microstructured NG along with the 

experimental data of NG and MG (Franke et al., 2014). 

4.4 Modeling aspects of fracture simulations of crack initiation   

In this study, 2D plane strain, boundary layer formulation (i.e., small scale yielding or SSY) 

is employed. For this purpose, a larger circular domain containing a semi-circular notch along 

one of its radii (Fig. 4.3) is considered. The outer radius of the circular domain,    is taken as 

     times of initial notch diameter,    to ensure that the plastic zone is well contained 

within the domain so that the SSY conditions are maintained throughout the loading history. 

The centre, O, of the circular domain coincides with the centre of curvature of the notch in 

the undeformed configuration. The origin of Cartesian coordinate (     ) is established at O 

(refer Fig. 4.3(b)). The entire domain is discretized by four-noded isoparametric quadrilateral 

elements with lowest element size along the radial direction as             (Fig. 4.3(a) and 

(b)). Thus, a highly refined mesh is employed near the notch root to precisely capture the 

steep strain gradient and notch blunting. The notch surface is assumed to be traction-free, 

while the in-plane displacement components based on the first term of the mixed mode (mode 

I and II) elastic crack tip fields  which are given by (Rice, 1968): 
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are applied on the outer boundary of the domain. Here,    and      are the mode I and II 

stress intensity factor, respectively. For plane strain       , where   is Poisson’s ratio. 

The loading is applied in steps by gradually increasing the effective stress intensity 

factor, | |  √  
     

  , while maintaining the remote elastic mode mixity parameter 

   
 

 
     (

  

   
) constant throughout the loading. The simulations are performed for 

various values of    =      Note that      represents pure mode I loading condition, 

while      represents pure mode II loading condition. 

For the fracture simulations of crack initiation in MGs, the finite element model 

displayed in Fig. 4.3(a), which is comprised of 23872 nodes and 23700 elements are 

employed. To create a defect site and trigger the shear bands in MG, initial cohesion is 

perturbed by 3% (Tandaiya et al., 2009) about its nominal value of            and randomly 

assigned to elements.    

 

Figure 4.3 Finite element mesh employed for mixed mode simulation of MG showing (a) the 

full domain that is modeled and (b) zoomed view of the region around the notch tip. 
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For the analysis of crack-tip plasticity in NGs, the microstructure of NG (i.e., glassy 

grains and glassy interfaces) is modeled only in a circular region near the notch tip, denoted 

by Region ‘C’ in Fig. 4.4(a), to reduce the computation time. The size of this region is chosen 

to be sufficiently larger than the plastic zone size ahead of the notch tip in NGs. The shape, 

size of the glassy grains and glassy interface width chosen in section 4.3 are used in Region 

C. However, in the remaining portion of the circular ring (i.e., Region D in Fig. 4.4(a)), 

homogenized NG is considered. The plasticity model discussed in section 4.2 is employed to 

characterize the deformation behavior of glassy grain, interface (in Region C) and 

homogenized NG in region D. The values of material parameters used for glassy interface 

and glassy grains in region C and Region D are listed in Table 4.1. Further, in order to 

nucleate shear bands from glassy interfaces, as observed in experiments (Wang et al., 2015) 

and molecular dynamic (MD) simulations (Adibi et al., 2013), the initial cohesion of 

interfaces is perturbed by 3% about its nominal value of           and randomly assigned to 

the elements in the glassy interfaces. 

 

Figure 4.4 Finite element mesh employed for mixed mode (I and II) fracture simulation on 

NG showing (a) the full domain consisting of ‘Region D’ where microstructure of NG (i.e., 

discrete glassy grain and interfaces) is modeled, and ‘Region C’ where homogenised NG is 

considered. (b) The magnified view of the ‘Region C’ (c) zoomed in view of the region 

around the notch tip. 
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4.5 Result and discussion 

4.5.1 Evolution of plastic strain near the notch tip 

Figs. 4.5(a)-(c) show the contour plots of maximum principal logarithmic plastic 

strain,      
  in NG subjected to pure mode II loading (i.e.,     ) at three successive 

stages of normalized effective stress intensity factor, | |    √            and     , 

respectively. The corresponding plots for MG are displayed in Figs. 4.5(d)-(f). It can be 

noticed from Figs. 4.5(a) and (d) that yielding begins at the notch root owing to high stress 

concentration. With increase in | |, several shear bands emanating from the notch surface, 

and extending along the radial directions can be observed in NG as well MG (refer Figs. 

4.5(b) and (e)). The values of plastic strain inside these bands decreases with increase in 

distance from notch tip suggesting a large plastic strain gradient inside shear bands. However, 

in the case of NGs, in addition to radial bands, a family of secondary shear bands which are 

almost orthogonal to the primary radial bands can also be perceived (Fig. 4.5(b)). Thus, NG 

not only exhibits relatively larger number of shear bands but also shows mutually 

intersecting bands in comparison to MGs, consequently, plastic strain in front of crack tip in 

NGs appears to be more diffused than that in MGs (Compare Figs. 4.5(b) with (d)). It can 

also be noticed that relatively fewer shear bands have developed in the lower part of the notch 

surface in both the alloys (refer Figs. 4.5(b) and (d)).  

The length of the radial shear bands and the plastic strain inside them increases in both the 

alloys when | | is further raised (refer Figs. 4.5(c) and (f)). Note that the bands in NG are 

sharper only near the notch tip, while they become are defused away from the notch tip. On 

the other hand, the bands in MG remain sharper up to much longer distance. Further, the 

spread of plasticity along the radial direction is larger in NGs than MG (refer Figs. 4.5(c) and 

(f)). A careful observation of the deformations of the notch tip in Figs. 4.5(b-c) and 4.5(e-f) 

indicate the enhancement in the blunting of the lower part along with the sharpening of the 

upper part of the notch profile with rise in | |    √  , which is investigated and discussed 

in section 4.5.3. Furthermore, the longest shear bands in MG and NG are aligned along 

       (negative in the clockwise direction), measured from the centre of the notch and 

line ahead of the notch tip in the undeformed configuration (refer dash line in Fig. 4.5(c) and 

(f)). This observation is in line with the orientation of dominant shear band noticed in mode II 

fracture experiments performed on Zr- based bulk MGs (Flores and Dauskardt, 2006). 
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Figure 4.5 Contour plots of maximum principal logarithmic plastic strain,      
 
 for NG, 

corresponding to      at (a) normalized effective stress intensity factor, | |    √   

   , (b) | |    √        and (c) | |    √       . The corresponding plots for MG 

are shown in (d) - (f). 

 

Figure 4.6 Contour plots of      
 
 for NG corresponding to         at (a) | |    √   

     (b) | |    √        and (c) | |    √         The corresponding plots for MG are 

shown in (d) - (f). 

The evolution of plastic strain for         which represents a mixed mode with 

mode II dominant loading is displayed in Figs. 4.6(a)-(c) and (d)-(f) for NG and MG 

respectively. It can be seen from these figures that shear band patterns ahead of the crack tip 

for         are almost similar to that for      for both the alloys. However, the lobes 

of plastic strain below the notch surface in both the materials are longer in the case of 

         than pure mode II loading (refer plastic lobes enclosed by an ellipse in Fig. 4.6(c) 

with Fig. 4.5(c) and Fig. 4.6(f) with Fig. 4.5(f)). In addition, the spread of the plastic strain 

ahead of the crack tip seems have reduced for         in Fig. 4.6 than for      in Fig 
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4.5, whereas it is more in NG than MG for both the values of   . Also, the longest shear 

band seems aligned along      for         in both the alloys in Fig 4.6. Thus, the 

plastic zone appears to rotate in anticlockwise direction with increase in mode I contribution. 

The rotation of plastic zone becomes more apparent when    is raised to      which 

represents a mode I dominant loading (refer Fig. 4.7). In this case, number and the length of 

shear bands in the lower lobe of the plastic zone increase in both the alloys (compare Figs. 

4.7 (a)-(c) with 4.5(a)-(c) and Figs. 4.7 (d)-(f) with 4.5(d)-(f)). However, the spread of plastic 

strain along the radial direction has further reduced in both the alloys in Figs. 4.7 in 

comparison to Figs. 4.5. It must be noted from Figs. 4.7and 4.5 that the spread of the 

plasticity ahead of the crack tip is higher in NG than MG. 

Interestingly, for pure mode I loading conditions, the distribution of shear bands is 

almost symmetric with respect to the line ahead of the notch in both the alloys (refer Figs. 

4.8(b-c) and (d-f)). The length of shear band in both the alloys are significantly lower in 

mode I than that of pure mode II loading (compare Figs. 4.8(b-c) and Figs. 4.5(b-c)). Further, 

Figs. 4.5-4.8 clearly show that the spread of the plastic strain ahead of the notch tip reduces 

with increase in   , but it is always smaller in MG than NG, irrespective of mode mixity. It is 

tempting to conclude from contour plots displayed these figures that the size of the plastic 

zone in NG as well as MG decreases with increase in   , but it is always larger in the former 

than the latter. It must also be noted that the total area of material undergoing plastic 

deformation may not directly proportional to the length of the shear band, therefore a 

systematic of investigation of the effect of   on the plastic zone size in NG and MG is 

required, and it is performed in the next section. 
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Figure 4.7 Contour plots of      
 
 for NG corresponding to         at (a) | |    √   

     (b) | |    √        and (c) | |    √         The corresponding plots for MG are 

shown in (d) - (f). 

 

Figure 4.8 Contour plots of      
  for NG for       at (a) | |    √        (b) | | 

   √        and (c) | |    √         The corresponding plots for MG are shown in 

(d) – (f). 



69 
 

4.5.2 The effect of    on the evolution of plastic zone size in NG and MG 

In order to understand the growth of plastic zone ahead of the crack tip with the progress of 

loading, the volume fraction of material undergoing plastic deformation,   
 
 is computed. For 

this purpose, the plastic yielding at a point is assumed to occur, if maximum principal 

logarithmic plastic strain,      
  exceeds beyond 0.001 at that point. Using this criterion,   

 
 

for both NG and MG are determined and plotted against | |    √   for different values of 

   in Fig. 4.9(a) and (b), respectively. It can be seen from Fig. 4.9(a) that irrespective of 

mode-mixity,   
 
 is almost negligible up to around | |    √    , but it starts increasing 

rapidly for further enhancement in | |    √   signifying considerable plastic deformation in 

NG occurs at around | |    √    . Also,   
 

 enhances faster for lower    (compare the 

slope of the curve for      with     ). Fig. 4.9(b) shows that significant plastic 

deformation in MG takes place at higher | |    √    . Thus, it can be concluded from 

Figs. 4.9(a) and (b) that the macroscopic plastic yielding in NG commences earlier than that 

in MG. This happens is due to the early onset of yielding in interfaces with lower cohesion in 

the NG. 

Further, similar to the trend seen in NG (in Fig. 4.9(a)), the increase in   
 
 gets 

retarded with increase in    for MG also as evident from Fig. 4.9(b). Similar behavior has 

also been reported in mixed mode fracture simulations on bulk MGs (Tandaiya et al., 2009). 

It can also be noticed by comparing Fig. 4.9(a) with (b) that   
 

 in NG is much higher than 

MG for a fixed value of | |    √   and   . Thus, it can be concluded that the plastic zone 

size in NG is significantly larger than that in MG for identical loading conditions. This trend 

could be rationalized by noting higher   for NG than MG, as plastic zone size increases with 

enhancement in   reported by Tandaiya et al. (2009). The development of plastic deformation 

near the notch tip is accompanied with the deformation of notch as noted in the contour plots 

displayed in Figs 4.5-4.8. The deformation of notch surfaces of NG and MG are compared in 

the next section.  
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Figure 4.9 Variation of volume fraction of material undergoing in plastic yielding,   
 

 with 

normalized effective stress intensity factor, | |    √   corresponding to different mixed 

mode loading conditions in (a) NG and (b) MG.  
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4.5.3 Deformation of notch surface in NG and MG 

It would be interesting to study the deformation of notch surface under mixed mode loading 

conditions. Therefore, the deformed notch profiles of NG and MG corresponding to    

     at | |    √        is displayed are Fig. 4.10. It can be perceived that the notch tip of 

both the alloys NG and MG under mixed mode loading deforms in a shape with a blunted 

lower part and sharpened upper part which is in agreement with observations from 

experiments and simulations on amorphous (Tandaiya et al., 2009) and crystalline materials 

(Aoki et al., 1990; Ghosal and Narasimhan 1994; Roy et al., 1999). Further, it can be noticed 

that the stretching and bulging forward of the lower part of the notch is more pronounced in 

the case of NG than MG, while the upper part of the notch profile is sharper in the case of 

latter. The notch sharpening facilitates the localized deformation and nucleation and 

propagation of a crack inside shear bands (Tandaiya et al., 2009). Therefore, it can be 

deduced from Fig. 4.10 that crack may nucleate from the sharpened upper corner of the notch 

earlier in MG than NG. 

 

Figure 4.10 The deformed notch profile for NG and MG corresponding to         at 

| |    √          
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The notch tip deformation can be further understood by monitoring the evolution of 

the notch opening displacement,    and notch shear displacement,    , (refer schematics of 

undeformed and deformed notch profiles displayed in Fig. 4.11(a)). Note, in Fig. 4.11(a) 

point   and   are located above and below the centre of curvature of the notch, respectively, 

whereas point   is placed at the tip of the undeformed notch profile. These points are marked 

by        and   in the deformed notch profile. Thus,    and     can be determined by 

measuring the displacements of above-mentioned points along    and    directions, 

respectively. The effect of applied mode-mixities on the evolution of    and     in NG and 

MG is shown in Figs. 4.11(b)-(c) and 4.11(d)-(e), respectively. Here,    
| | (    )

 
 is energy 

release rate, where   is young’s modulus of respective materials. It can be noticed that both 

   and     increases linearly with          for both materials, irrespective of the values of   . 

Also, for any applied         ,    is highest for         for both the alloys. Indeed, in the 

case of NG,    at               for         is around 11.0% higher than that for 

       and this difference is even higher around 16.0% in the case of MG. A similar trend 

has also been noticed in mixed mode fracture simulations on bulk MGs (Tandaiya et al., 

2009). These observations are also in line with the asymptotic mixed mode crack tip fields 

reported for material obeying Von-Mises yield criterion (Symington, 1998). Further, it can be 

seen that    is almost zero for both NG and MG for pure mode II condition (    ) up to 

            and subsequently, it became negative implying closure of notch profile. 

However,     is larger for pure mode II loading in both the alloys. It can be deduced from 

Figs 4.11(a) and (b) that, irrespective of mode-mixity, the magnitude of    and     in NG is 

always slightly higher than that in MG which suggests that the former would exhibit slightly 

higher fracture toughness than the latter. To confirm this, the fracture toughness of both the 

alloys under mixed mode loading condition is determined from finite element simulations in 

next section. 
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Figure 4.11 (a) Schematic representation of notch opening displacement,    and notch shear 

displacement,    . The variation of    with normalized energy release rate,         pertaining 

to different mode mixities for (b) NG and (c) MG. The corresponding plots for     are 

displayed in (d) and (e). 
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4.5.4 Effect of mode mixity on the fracture toughness of NG and MG  

Tandaiya et al. (2009) successfully predicted the increase in fracture toughness of Zr-based 

bulk MGs with changing mode mixity from mode II to mode I dominant loading through 

finite element simulations by employing a critical strain-based fracture criterion. This 

criterion is based on the assumption that the crack would propagate in a dominant shear band 

at some angle   when the value of      
  in the shear band exceeds a critical value,    over a 

critical radial distance,   
  from the notch tip measured in the undeformed configuration. 

Thus, this fracture criterion is governed by the parameters    and   
 . Tandaiya et al. (2009) 

could successfully predict the fracture toughness of Zr-based bulk MG for various mode 

mixity by considering   = 0.1 and   
      However, the appropriate values of    and   

  for 

NGs are not known, therefore various combinations of these parameters are chosen in the 

following discussion to check the effect of selected parameter (     
 ) on the predicted 

fracture toughness. The fracture criterion is imposed by manually inspecting the value of 

     
  at a point within a circle having a radius   

  at different stages of applied | |    √  . 

The crack initiation is assumed to begin when      
 
 over a chosen   

  at some angle with 

respect to the notch line ahead of tip exceeds the chosen   . 

 The variation of normalized fracture toughness, 
  

  
  with mode mixity,    for NG 

predicted by employing various combination of (     
 ) are displayed in Fig. 4.12. Here,    is 

estimated fracture toughness of alloy (NG or MG) under discussion using        and 

   
     for     . It can be perceived that fracture toughness increase monotonically 

when    is changed from pure mode II (    ) to pure mode I (    ) irrespective of 

the selected parameter (     
 ). It can also be noticed that keeping    same and selecting the 

larger   
 , the predicted fracture toughness is slightly higher for       , but the difference 

increases significantly as    tends to 1 (compare solid line curves with diamond and square 

marker). However, keeping   
  same and increasing   , the predicted fracture toughness 

elevates for all mode mixities (refer solid line curves with diamond and circle marker). 

 The predictions of 
  

  
 for MG are also displayed by dashed line curves in Fig. 4.12 to 

compare the toughness values of NG and MG. Interestingly, it can be noticed that the 

predicted fracture toughness of NG is almost equal to that of MG for pure mode II loading, 

irrespective of chosen parameter (     
 ). However, fracture toughness of NG is slightly 

higher than that of MG for        when predictions are made using        and   
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     . On the other hand, fracture toughness of NG and MG is almost similar for all value of 

  , if    and   
  are chosen to be     and   , respectively. Thus, Fig. 4.12 suggests that 

though NG exhibit significant larger tensile ductility, they may not show significant higher 

fracture toughness in comparison to MG with identical composition. Also, at this juncture, it 

is essential to mention that the trend of predicated fracture toughness,    with mode 

mixity,   for both the alloy are qualitatively corroborate with Zr-based bulk MG (Tandaiya 

et al., 2009). However, an experimental validation is required to confirm these observations.   

 

Figure 12 The variation of predicted normalized fracture toughness, 
  

  
  with mode mixity, 

   for NG and MG obtained using critical strain based fracture criterion. 

In summary, the stationary crack tip plasticity in NG and MG under the mixed mode 

(I and II), plane strain, SSY condition has been investigated through finite element 

simulations using a constitutive model for MGs proposed by Anand and Su (2005). The 

results collaborate well with the observations made from experiments and continuum 

simulations of fracture on bulk MGs. It must be mentioned that NGs with larger thickness 

cannot be synthesized due to limitation of present manufacturing techniques. Therefore, the 

idea of developing laminate composites with alternative layers of NG and MG have been 

proposed to achieve large tensile ductility without compromising strength significantly (Adibi 

et al., 2016; Sha et al., 2017). Sha et al. (2017) demonstrated from MD simulations that the 
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deformation behavior of such NG-MG composites transitions from shear localization to 

superplastic flow when MG layer thickness is reduced below a threshold level which they 

correlated to the glassy grain size of the NG layers. However, it is not clear as to why and 

how the glassy grain size of the NG layer controls the threshold thickness of MG layer. 

Hence, the deformation behavior of NG-MG laminate composites is investigated in the next 

chapter. 
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CHAPTER 5 

Finite element analysis of tensile deformation of nanoglass-metallic glass 

laminate composites  

5.1 Introduction 

As discussed in chapter 1, metallic glasses (MGs), exhibit impressive combination of 

physical and mechanical properties, but they fail catastrophically under tensile loading due to 

unstable crack propagation inside a predominant shear band which seriously impede their 

deployment in structural applications (Schuh et al., 2007). This has encouraged researchers to 

explore various strategies to enhance tensile ductility of MGs such as developing MG 

composites by introducing soft crystallites phase into the MG matrix (Hofmann et al., 2008; 

Qiao et al., 2016). These composites exhibit significant tensile ductility, but at the cost of 

reduction in yield strength.  

An alternate approach to achieve good tensile ductility in MGs without compromising 

strength is developing laminate composites (Adibi et al., 2016; Sha et al., 2017) with alternate 

layers of Nanoglasses (NG) and MGs. Adibi et al. (2016) reported almost same level of 

ductility with 20% higher strength in such composites in comparison to NGs. Sha et al. 

(2017) showed from MD simulations that shear bands nucleate from NG layer which cut 

through MG layer in composites with thinner NG layer, while these are mainly confined 

within NG layer for composites having thicker NG layer. Also, peak stress attained in these 

composites don’t follow rule of mixture, whereas mechanistic reasons for this trend is not 

well understood. Most importantly, Sha et al. (2017) reported a transition in deformation 

behavior from shear localization to superplastic flow in composites having multiple NG and 

MG layers, when MG layer thickness is reduced below a threshold level which they 

correlated to the glassy grain size of the NG layers. However, it is not clear from these 

simulations as to why and how the glassy grain size of the NG layer controls the threshold 

thickness of MG layer.  

Therefore, in this chapter, 2D plane strain finite element simulations of tensile loading 

on NG-MG laminate composites are performed using a thermodynamically consistent finite 

strain based non-local plasticity model for MGs to understand the deformation behavior these 

composites better. The organization of this chapter is as follows. The constitutive model used 

in the simulations is briefly described in section 5.2, and the modeling aspects are explained 



78 
 

in in section 5.3. Finally, important results obtained from this study are discussed in section 

5.4.  

5.2 Constitutive model 

A thermodynamically consistent, finite strain, non-local plasticity theory for MGs proposed 

by Thamburaja (2011) is employed in this study, as it can accurately capture the size-

dependent deformation behavior of NGs (Singh et al., 2014), MGs (Thamburaja, 2011) and 

MG composites (Shete et al., 2016, 2017). Another advantage of using a non-local plasticity 

theory in finite element simulations is that the predicted deformation behaviors are nearly 

insensitive to the finite element mesh employed in the analysis (Borg, 2007). This model 

incorporates four fundamental mechanisms which governs free volume evolution in MGs. 

These are free volume diffusion, creation by plastic shearing, generation due to hydrostatic 

stress and annihilation by structural relaxation. Thus, in this model, free volume,   evolves as 

(Thamburaja, 2011):  

Here,  ̇    √    ( 
 

 
)  where      is frequency of atomic vibration and     is 

geometrical factor. The parameter   is a free volume creation coefficient due to plastic 

shearing, and     is free volume in a fully annealed glass at temperature  . The material 

constants,       and    denote gradient free energy (energy per unit length), defect free 

energy (energy per unit volume) and the resistance to free volume generation, respectively. It 

must be noted that gradient free energy penalizes the shear band formation (Thamburaja, 

2011). Further, in Eq. (5.1),  ̅ denotes hydrostatic pressure, while   ̇ represents plastic shear 

strain rate which is given by (Thamburaja, 2011): 

In this equation,  ̇  and   are the reference shear strain rate and strain rate sensitivity 

parameter, respectively. Further,   in Eq. (5.2) represents driving force for plastic shearing 

which includes Von-Mises equivalent stress,  ̅, interaction stress,      and back stress, 

 (  (    )   ). Note that      signifies the interaction stress between flow defects such as 

STZs and has energetic origin (Gurtin and Anand, 2010). It can be seen from Eq. (5.2) that 
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negative      enhances  , hence promotes further evolution of plastic strain, while      

  resist development of strain. Indeed, it has been demonstrated that spatial distribution of 

      plays a decisive role in delaying localized deformation and promoting homogeneous 

deformation in nano-meter sized unnotched (Thamburaja, 2011) as well as notched MGs 

(Singh and Narasimhan, 2016; Dutta et al., 2018) and NGs (Singh et al., 2014). 

Furthermore, in Eq. (5.2),   denotes current cohesion of the material, which signifies intrinsic 

material resistance to inelastic deformation. In order to capture free volume induced softening 

in MGs,   is assumed to evolve as (Thamburaja, 2011): 

where,    is initial value of cohesion and     is a fitting constant which controls the drop 

in cohesion after commencement of yielding. The detail derivation of constitutive model can 

found in Thamburaja (2011). 

A coupled, explicit finite element procedure, with displacement,  and free volume,   

as nodal variable is employed to solve the governing equation for free volume evolution (Eq. 

5.1) and weak form of equation of motion. Former is integrated using forward Euler scheme, 

while latter is integrated using central difference method. Mass scaling is used to ensure the 

quasi-static solution and small time step is employed to confirm the stability of the solution. 

The nodal averaging technique is used to smooth the discrete free volume gradient computed 

at centroids and generated a    continuous vector field of free volume gradient (similar to the 

strain smoothing approach of Hinton and Cambell, 1974). By using this continuous free 

volume at the element integration points is obtained which is used in Eq. (5.2) to compute the 

interaction stress and update the plastic slip  . This procedure obviates the need to use a 

higher order element procedure with free volume and its gradient as nodal variables. From 

trial analysis of free volume distribution across the shear band, it is noticed that this technique 

quite robust in computing the Laplacian of the free volume even with modest level of mesh 

refinement. The details of coupled finite element procedure are can be found in (Singh, 

2016).  

5.3 Modeling aspects 

Fig. 5.1(a) shows finite element discretization of a 2D laminate composite 

specimen (   (  )     (  )   ) which is comprised of a NG layer sandwiched between 

       { (    )}   (5.3) 
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two MG layers. This specimen is subjected to uniaxial stretching with a strain rate of 

          under plane strain conditions. In Fig. 5.1(a), thickness of NG and MG layer, 

denoted by     and      are 24 and 35 nm, respectively. In order to analyze the effect of 

thickness of NG layer on the deformation response of composites, various values 

of      ranging from 4.8 to 48 nm are considered. In addition, simulations are performed on 

samples having multiple layers of NGs so as to understand the mechanism that governs 

transition from localized deformation to super plastic flow in laminate composites as reported 

by Sha et al. (2017).  

 

Figure 5.1 (a) Finite element model of NG-MG laminate composite having single NG layer, 

employed in plane strain tension simulations. (b) Enlarged view of a NG grain. Dimensions 

   and    are width of grain in    and    directions, respectively. 
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Following Singh et al. (2014), structure of NG is assumed to be consist of nanosized 

hexagonal glassy grain separated by fine glassy interfaces. An enlarged view of such a typical 

grain is shown in Fig. 5.1(b), where dimensions    and    represent grain width along    

and    directions, respectively. These values are taken to be 2.2 and 5 nm respectively, for all 

the simulations (Singh et al., 2014). Thus, average grain size in the present work is 3.6 nm 

which falls within the range of grain size of NGs as reported by Jing et al. (1989). Further, 

motivated from experimental observations (Wang et al., 2015, 2016) the width of interface is 

taken as 1 nm. Moreover, by following Adibi et al. (2016) a fine glassy planner interface 

(between NG and MG layer) of width of around 1 nm has also been introduced between NG 

and MG layers, as shown in Fig. 5.1(a). 

The materials in MG layer, grains in NG layer, and all the interfaces (planner as well 

as within NG layer) are assumed to follow the constitutive theory described in section 5.2, 

whereas material properties are taken differently. In the present continuum simulations, the 

chemical composition of the MG layer and the glassy grains in NG layer is assumed to be 

identical. Also, following previous studies on NGs (Fang et al., 2012), the free volume 

distribution inside the glassy grains within NG layer is considered to be similar to that of MG 

layer. Therefore, the values of material parameters for these regions (MG layer and glassy 

grains in NG layer) are assumed to be identical, and are taken from the work of Thamburaja 

(2011). The bulk modulus,   and shear modulus,   are considered as 166.7 and 35.7 GPa 

respectively. The parameter    and    corresponding to T = 295 K are taken as 0.00063 and 

214.8 s
-1

, respectively. The constants                ̇ and   are assumed to be 0.02, 2800 

GJ/m
3
, 240 GJ/m

3
, 0.15, 0.02, 1.73 x 10

-3
 s

-1
 and - 250, respectively. The initial value of 

cohesion,    is taken as 1 GPa, and it is perturbed by 1% about this mean value (1Gpa) and 

assigned randomly to the elements in MG layer, while it is kept uniform for glassy grains in 

NG layer (Singh et al., 2014). It is important to note from Eq. (5.2) that a material length 

scale,    enters in to the model through constant     and it is taken as    √
  

  
  following 

Dutta et al.(2018). Simulations are performed by setting various values of     124 to 310 nm 

to investigate its effect on deformation response the composites. 

Further, as discussed in the chapter 1, interfaces in NGs are characterized by low 

density (Fang et al., 2012) and excess free volume (Sopu et al., 2009; Ritter et al., 2011). 

Therefore, shear bands nucleate from these interfaces and cut through the grains at later 

stages of loading (Adibi et al., 2013). In order to capture this behavior in continuum 
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simulations, Singh et al. (2014) developed strategy to model interfaces. They assign the value 

of initial cohesion,      constants   and    for interfaces different from grains. The brief 

description of their modeling approach is as follows: First, they considered initial cohesion 

    of interfaces is 20% lower than the grain interiors to model lower density in them. Next, 

they assumed slower drop in cohesion after commencement of yielding in interfaces than 

grain interiors by assuming the fitting constant   as -100. The rationale behind this 

assumption is that the cohesion should attain approximately same saturation value at every 

point inside a shear band that cuts through grains and interfaces. Lastly, noting that parameter 

   penalizes the shear band formation, they assigned a lower value of    for interfaces than 

grain interior. In addition, they perturbed cohesion by 1% about its mean value of 0.8 GPa 

and assigned randomly to the elements in interfaces. By this, they could able to nucleate 

shear bands from interfaces in their continuum simulations. In the present work, the 

interfaces within NG layer are modeled by employing the methodology adopted by Singh et 

al. (2014), and the values of        and   are taken from their work. However, other material 

parameters for interfaces are assumed to be identical to that for glassy grains. Furthermore, 

MD simulations on NG-MG laminate composites have shown that plastic deformation starts 

from both the interfaces (between NG and MG layer, and within NG layer) and thus results in 

prolonged homogeneous deformation in these materials (Adibi et al., 2016). In order to 

facilitate nucleation of shear bands from planner interfaces between NG and MG layer as 

well, the material parameters for these regions are taken to be identical to that for interfaces 

within NG layer.   

5.4 Result and discussion 

5.4.1 Deformation behavior of NG-MG laminate composite with single NG layer 

5.4.1.1 Nominal stress versus strain curve 

In Fig. 5.2, variation of nominal stress   , normalized by initial cohesion    of MG layer with 

respect to nominal strain,     are displayed for monolithic MG as well as composites 

corresponding to different values of NG layer thickness,     for            The stress 

increases linearly with strain during initial stages of deformation for all cases, and the slope 

of the curves in this regime is identical for monolithic MG and composites, independent of 

the NG layer thickness. Further, in the case of monolithic MG, stress attains a peak at around 

   = 0.018 and begins to drop gradually thereafter, owing to occurrence of adequate free 
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volume induced softening in the sample (Thamburaja, 2011; Singh et al., 2014; Singh and 

Narasimhan, 2016). Moreover, the peak stress in composites is lower than monolithic MG, 

and reduces further with increase in     which is consistent with the observations of Sha et 

al. (2017). A steep stress drop signifying rapid strain localization in a shear band 

(Thamburaja, 2011) can be noticed in monolithic MG at around    = 0.025. A similar stress 

drop, although with reduced rate can be seen at higher    ~ 0.028 in composite sample with 

    = 4.8 nm. Contrastingly such stress drop is not apparent in samples having thicker NG 

layer. For instance, in the case of     = 38.4 nm, stress drops abruptly after the peak stress, 

and a second stress drop (which is noticed in samples with     = 4.8 nm) is not present.   

 

Figure 5.2 Nominal stress versus nominal strain curves of monolithic MG and NG-MG 

laminate composites corresponding to different NG layer thickness,     for    = 124 nm  

 The volume fraction,       of the MG layer changes with the change in thickness of 

NG layer, and it would be interesting to analyze its influence on the peak stress exhibited by 

the composites. Therefore, the variation of normalized peak stress,  ̂   , with respect to 

      is plotted in Fig. 5.3. Note that       = 0 corresponds to pure NG sample, 

while         pertains to monolithic MG. Fig. 5.3 reveals that peak stress drops abruptly 

as       reduces from 1 to 0.7, whereas it changes marginally for further decrease in      . It 

can be inferred from Fig. 5.3 that, peak stress in nanolaminate composites reduces rapidly up 

to 30% volume fraction of NG layer, Vf,NG, and  remains nearly independent of Vf,NG 
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thereafter. Sha et al. (2017) reported qualitatively similar trend from MD simulations on NG-

MG nanolaminate composites, which they referred to as inverse Hall-Petch relation. They 

argued that this relation is likely to be caused by curvature formed at NG surfaces, though the 

radius of curvature at the peak stress stage was very large in their simulations. In this 

connection, it must be mentioned that Dutta et al. (2018) investigated the effect of notch root 

radius on mechanical response of notched MG samples, and they found insignificant change 

in the peak stress even for enhancement in radius by 400%. Therefore, the observed inverse 

Hall-Petch relation is not due to the formation of local notches. This trend can be explained 

with reference to the spatial distribution of plastic strain in the specimen, hence evolution of 

plastic strain in the samples is analyzed in the next section. 

 

Figure 5.3 Variation of normalized peak stress,  ̂    (refer left ordinate) with volume 

fraction,       of MG layer in the composites for          . Here, values denoted by ‘o’ 

symbol are obtained from finite element simulations, whereas solid line curve is a best fitting 

of these values. Also displayed in the figure is the variation of volume fraction of material 

undergoing plastic yielding,      
 

 at the peak stress stage (right ordinate) against      . 

5.4.1.2 Evolution of plastic strain  

Fig. 5.4 displays the contour plots of maximum principle logarithmic plastic strain      
 
, 

corresponding to three levels of macroscopic strain    for the composite samples with      
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4.8, 24, 38.4 nm for a     = 124 nm. The yielding begins in the weak interfaces resulting in 

plastic strain to evolve in these regions well before the macroscopic yield has taken place 

(Singh et al., 2014). Fig. 5.4(a) demonstrates that for     = 4.8 nm, two lobes of putative 

shear bands inclined at  45
o
 with respect to loading axis emanate from both the free surfaces 

of NG layer, and appears to penetrate into the MG layer at a macroscopic strain of 

around    = 0.02. These symmetric bands meet each other resulting in plastic strain to spread 

in a diamond-shaped ring (refer Fig. 5.4(a)). Further loading promotes the localization of 

plastic strain in one of the shear bands (refer Fig. 5.4(b)) leading to a rapid load drop at 

around    = 0.025 (refer Fig. 5.2). Subsequent loading intensifies the plastic strain in this 

dominant shear band with a noticeable shear offset across m-m at around    = 0.04 in Fig. 

5.4(c).  

Contrary to the above observations, for     of 24 and 38.4 nm, the putative shear 

bands emanating from the four corners of the NG layer do not propagate in MG layer, instead 

they expand in NG layer itself (as shown in Fig. 5.4(d) and (g)). It is evident from Fig. 5.4(d) 

that, the shear bands originating from top and bottom corners of both sides of the free 

surfaces meet at some point inside the NG layer as indicated by ‘A’ and ‘B’. On further 

deformation, plastic flow intensify between points ‘A’ and ‘B’ and thus spreads from one 

corner to the diagonally opposite corner of the NG layer (Fig. 5.4(e)). When    is reaches to 

0.04, a dominant shear band with noticeable shear offset forms as shown in Fig. 5.4(f). A 

similar deformation events are noticed even in the case of samples with     = 38.4 nm as 

shown in Figs. 5.4(g) to (i). 

A comparison of plastic strain distribution (as shown in Fig. 5.4) among the three simulated 

samples suggests that, in the case of low     the shear band nucleates at one side of the NG 

surface and propagates through the MG layer to the other surface, while in the composites 

with higher     the shear bands are primarily confined to the NG layer. This clearly shows 

that the net contribution of MG layer to the aggregate plastic deformation decreases as     

increases. Besides    , the volume fraction of MG layer undergoing plastic yielding is also 

an important parameter as it contributes to the overall mechanical response of NG-MG 

laminate composites, and hence it needs to be analyzed. 
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Figure 5.4 Contour plots of maximum principle logarithmic plastic strain  𝑜𝑔  
   for 

composite samples with           at (a)    = 0.02, (b)    = 0.025 and (c)    = 0.04 for 

NG layer thickness     = 4.8 nm. The corresponding plots for     = 24 and 38.4 nm are 

shown in (d)-(f) and (g)-(i), respectively. 
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For this purpose, plastic yielding at a point assumed to have occurred if      
 
 at that 

point is greater than 0.001 which is much smaller than the initial tensile yield strain of 0.018. 

It must be mentioned that other choices of this limiting value of      
  (being smaller 

compared to the macroscopic yield strain) are tried and found that chosen value does not 

affect the conclusions made from the following discussion. Using above criterion, the volume 

fraction of the yielded material in MG layer      
 

, near the peak stress is determined and 

plotted against       in Fig. 5.3. Note that      
 
 drops rapidly as       is reduced from 1 to 

0.7 after which it is nearly independent of      . Thus, the contribution of MG layer to the 

aggregate plastic deformation of the laminate composite reduces rapidly when       is 

decreased from 1 to 0.7. It is also important to note from Fig. 5.3 that both  ̂ and      
 

 

decreases with       almost in a similar manner signifying that  ̂ is mainly governed by      
 

 

and poorly by      , therefore peak stress in laminate composite with single NG layer don’t 

follow of mixture. 

In order to get further insights into the strain localization in NG-MG laminate 

composites, line plots of      
 
 across the dominant shear band (line X-X of Figs. 5.4(c), (f) 

and (i)) corresponding to different levels of macroscopic strain are shown against normalized 

distance,      for     = 4.8, 24 and 38.4 nm in Figs. 5.5(a), (b) and (c), respectively. These 

figures pertain to    = 124 nm. The maximum value of      
 
 inside the band is around 0.05 

at    = 0.025 for     = 4.8 and 24 nm while it is slightly higher for     = 38.4 nm. An 

increase in    to 0.04 (for an increase of 60 %), increases      
 
 to a value of 0.2 (an increase 

of about 300 %) indicating a rapid strain localization inside the shear band. Note that 

irrespective of     in the composites, shear band width increases marginally with   , and 

saturates to 0.08-1.2   . 

 In order to verify the scaling of shear band width with   , variation of      
 
 across 

the dominant shear band with respect to      is plotted for two    (~ 217 and 310 nm) in Figs. 

5.6 and 5.7, respectively, for     = 4.8, 24 and 38.4 nm. Figs. 5.6 and 5.7, similar to Fig. 5.5, 

reveal that the shear band width in NG-MG laminate composites always scales with material 

length scale as 0.08-1.2   and is independent of    . Further, the strain levels inside the shear 

band is higher for lower    than higher    suggesting that the internal material length 

   control the process of shear localization which will be described in detail in next section. 
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Figure 5.5 Variations of maximum principle logarithmic plastic strain  𝑜𝑔  
 
 with normalized 

distance,      across the shear band for (a)     = 4.8 nm, (b)     = 24 nm and (c)     = 38.4 

nm at different levels of    corresponding to    = 124 nm. 
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Figure 5.6 Variations of maximum principle logarithmic plastic strain  𝑜𝑔  
 
 with normalized 

distance,      across the shear band for (a)     = 4.8 nm, (b)     = 24 nm and (c)     = 38.4 

nm at different levels of    corresponding to    = 217 nm. 
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Figure 5.7 Variations of maximum principle logarithmic plastic strain  𝑜𝑔  
 
 with normalized 

distance,      across the shear band for (a)     = 4.8 nm, (b)     = 24 nm and (c)     = 38.4 

nm at different levels of    corresponding to    = 310 nm. 
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5.4.1.3 Effect of    on the deformation behavior 

Fig. 5.8 shows nominal stress vs. strain curves corresponding to various values of    for 

sample with     = 24 nm. Note that stress drops rapidly after the peak stress for lower    = 

124 nm, and more gradually for higher    suggesting that an increase in    retards strain 

localization. Similar observations have been made for other     confirming that increase in 

   retards shear localization in NG-MG nanolaminate composites. 

 

Figure 5.8 Normalized macroscopic nominal stress versus strain curves pertaining to various 

values of    for     = 24 nm. 

What are the mechanistic reasons for the above noted    effects  In order to address 

this question, contour plots of interaction stress,       normalized by    at macroscopic strain 

   of 0.015 for     = 24 nm and    = 124 and 310 nm are presented in Fig. 5.9(a) and (b), 

respectively. The plastic yielding gets initiated at the interface regions due to lower yield 

strength causing the free volume to evolve (or STZs to accumulate) while the stress state 

inside the grains and MG layers is still elastic. As a consequence, a large free volume (or STZ 

concentration) gradient develops giving rise to interaction stress between the flow defects 

(refer Eq. (5.2)). Note from Fig. 5.9 that      is positive inside the interfaces, and negative 

inside grains. Another observation from Fig. 5.9 is that the positive valued      within the 

interfaces (inside NG layer as well as between NG and MG layer) becomes more positive on 

increasing   , while it becomes more negative in the grains. As mentioned earlier, negative 
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valued      promotes further evolution of plastic strain, while        resist growth of shear 

strain (refer Eq. (5.19)). Therefore, it can be inferred from Fig. 5.9 that resistance offered by 

interfaces for localization, and susceptibility of material inside grains for plastic yielding 

increases with increase in   . This delays the shear localization in NG-MG nanolaminate 

composite with higher   . 

 

Figure 5.9 Contour plots of normalized interaction stress,         at    =0.015 for sample 

with     = 24 nm corresponding to a (a)    = 124 nm and (b)    = 310 nm.  

 To clearly understand the effect of    on the relationship between peak stress attained in 

the composite samples and the volume fraction of MG layer in them, variation of normalized 

peak stress,   ̂   , with respect to       is plotted in Fig. 5.10 for different values of   . Note 

that peak stress drops with       in a similar manner for all values of   . At this juncture, it 

must be mentioned that Zhang et al. (2009) showed from MD simulations of tensile loading 

on notched CuZr MG specimen that the composition of glass has a profound influence on 

shear band width. They reported a wider shear band in glass compositions that offer less 

resistance to change in local atomic arrangements. In another MD study, Zhong et al. (2016) 

have observed that the critical thickness of the MG samples below which non-localized 
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plastic deformation takes place strongly depends on the composition of the glass. Recently, 

Dutta et al. (2018) demonstrated that change in    in the model of Thamburaja (2011) resulted 

similar effect on the deformation behavior of notched MG samples as caused by change in 

composition of the glass in MD simulations. In fact, they showed a transition in deformation 

behavior from localization in ‘V’-shaped double shear band to necking by increasing    to 

sufficiently large value in their continuum simulations. Most importantly, they were able to 

reproduce similar transition by altering the composition using MD simulations. Thus, it can 

be deduced that    value in the plasticity model of Thamburaja (2011) corresponds to a MG 

with specific composition, and the effect of composition on the deformation response of the 

glass can be captured by changing    in the model. In the view of above discussion, it can be 

concluded from the present continuum analysis that the peak stress in NG-MG nanolaminate 

composites do not follow rule of mixture, irrespective of glass composition or intrinsic 

material length. 

 

Figure 5.10 Variation of normalized peak stress,   ̂  𝑜 with volume fraction,       of MG layer 

in the composites for different values of    . Here, values denoted by ‘o’, ‘□’ and ‘*’ symbols 

pertain to    = 124, 217 and 310 nm, respectively, and corresponding best fit curves are 

shown by line plots. 
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5.4.2 Deformation behavior of multi-layer NG-MG laminate composite 

In this section, tensile response of three multilayer nanolaminate composites having different 

number of NG and MG layers, referred to S1, S2 and S3 will be analyzed. The number of NG 

layers and the thickness of NG and MG layers of these samples are given in Table. 5.1. 

Table 5.1 Number of NG layers, thickness of NG and MG layer in different nanolaminate 

composite samples. 

 Sample Number of NG  

layers 

Thickness of NG layer,     

(nm) 

Thickness of MG layer,     

(nm) 

S1 3 24 4.5 

S2 10 4.8 3.3 

S3 13 4.8 0.98 

  

 Figs. 11(a)-(c) display evolution of plastic strain in sample ‘S1’ corresponding to a    of 

310 nm. Multiple incipient shear bands carrying low plastic strain and cutting through MG 

layers can be noticed in the earlier stages of deformation as shown in Fig. 5.11(a). The plastic 

strain in these bands increases with further loading (refer Fig. 5.11(b)) and eventually spread 

across the entire cross section of the specimen resulting in necking (refer Fig. 5.11(c)) at a 

macroscopic strain    of 0.065. A similar deformation behavior is noticed in the case of 

sample S2 as shown in Figs. 5.11(d)-(f). The stress-strain curves displayed in Fig. 5.12 for 

these specimens demonstrate that the stress decreases gradually beyond the peak stress stage 

and no abrupt stress drop is observed up to    of 0.075. It must be mentioned that simulations 

are performed on samples having various combinations of     and     for    = 310 nm, and 

found that samples with     lower than 4.5 nm showed necking, while the specimen with 

larger      exhibited localized deformation. These observations are in agreement with the 

MD simulations (Sha et al., 2017) suggesting that the transition in deformation behavior of 

nanolaminate composites from strain localization to necking is controlled by the    . 
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Figure 5.11 Contour plots of  𝑜𝑔   
  for sample S1 pertaining to    = 310 nm at (a)    = 

0.02, (b)    = 0.04 and (c)    = 0.065. The corresponding plots for sample S2 are displayed in 

(d)-(f). 
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Figure 5.12 Nominal stress versus nominal strain curves for different composite samples 

with multiple NG layers for    = 310 nm. 

“What governs the threshold level of     corresponding to transition?” is an 

important question that needs to be addressed. To this end, simulations are performed on 

samples ‘S1’ and ‘S2’ by setting lower    of 124 nm. Figs. 5.13(a) and (b) shows the contour 

plots of      
 
 at    = 0.05 for sample ‘S1’ and ‘S2’, respectively. Note that for lower     the 

strain localization occurs in a dominant shear band with noticeable shear offset (refer Fig. 

5.13(a) and (b)) unlike necking for higher    (refer Fig. 5.11). These results suggest that 

threshold     in nanolaminate composites for transition decreases with decrease in intrinsic 

material length   . 

  In order to substantiate above statement, simulations are performed on another sample 

‘S3’ while keeping    same as in Fig. 5.13. Note that number of NG layers are more, while 

thickness of MG layer is less in sample ‘S3’ than sample ‘S2’ (refer Table. 5.1). The contour 

plots of  𝑜𝑔  
  at    of 0.085 for sample ‘S3’ is shown in Fig. 5.14. This figure displays the 

presence of multiple shear bands even at such a high level of macroscopic strain, though there 

is tendency for localization in one of the bands. The macroscopic stress-strain curve plotted 

in Fig. 5.15 for this sample shows no abrupt stress drop beyond peak stress stage till    of 

0.085. Thus, it can be concluded that shear localization in NG-MG nanolaminate composites 

can be delayed significantly either by increasing material length    or reducing the thickness 
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of MG layer. In other words, intrinsic material length    with respect to MG layer thickness 

governs the transition from shear induced failure to necking. 

 

Figure 5.13 Contour plots of  𝑜𝑔   
 
 for NG-MG nanolaminate composite sample (a) S1 and 

(b) S2 at    = 0.05 for    = 124 nm. 

 

Figure 5.14 Contour plots of  𝑜𝑔   
  for NG-MG nanolaminate composite sample S3 at    = 

0.085 for    = 124 nm. 
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Figure 5.15 Nominal stress versus nominal strain curves for NG-MG nanolaminate 

composites sample S3 corresponding to    = 124 nm. 

Why does threshold thickness of MG layer increases with   ? It can be explained by 

analyzing the effect of    on spatial distribution of interaction stress     . Therefore, contour 

plots of         at    = 0.015 for sample ‘S2’ are shown in Fig 5.16(a) and (b) for    

    and 310 nm, respectively. It can be seen that positive valued      prevailing at interfaces 

(inside NG layer and between NG and MG layers) increases with increase in   , whereas 

     becomes more negative inside grains and MG layers. As mentioned earlier,      > 0 resist 

further growth of plastic strain,      < 0 promote evolution of plastic strain (refer Eq. 5.19). 

Thus, the increase in    enhances the resistance for localization in a shear bands which cut 

through the interfaces, while it promotes spread of plastic strain across the specimen through 

MG layers and glassy grains experiencing strong negative interaction stress. Further, since 

shear band width scales with    (refer Fig. 5.5-5.7), multiple wider shear bands persist for 

longer time in the sample with higher   . Consequently, plastic strain spreads over the entire 

thickness of the specimen before localization takes place in a dominant band leading to 

necking of the specimen. On the other hand, thinner shear bands experiencing lesser 

resistance from interfaces develop in the specimen with lower    . As a result, strain localizes 

in a dominant shear band before plastic strain spreads over entire cross-section. 
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When thickness of MG layer is reduced by increasing the number of NG layers, 

localization is retarded significantly. This happens because the probability of triggering 

enough STZs to align for shear localization is less in sample with thinner MG layer 

(Thamburaja, 2011; Singh et al., 2014). Also, NG layer acts as a triggering site for shear 

bands (refer Fig. 5.4), therefore increase in number of NG layers promotes nucleation of 

multiple shear bands. In addition, a running shear band has to cut through higher number of 

interfaces which are obstacle for its propagation in a sample with large number of NG layers. 

As a result, sample ‘S3’ (having thinner MG layers and higher number of NG layer) is able to 

show prolonged homogeneous deformation even for lower   . 

 

Figure 5.16 Contour plots of normalized interaction stress,         at    = 0.015 for sample 

S2 corresponding to (a)    = 124 nm and (b)    = 310 nm. 

An interesting question to pose at this juncture is, “what kind of design insights can be 

provided from the present continuum analysis to synthesize ductile NG-MG nanolaminate 

composites? As pointed out earlier, increase in    increases threshold MG layer thickness and 

shear band width in nanolaminate composites. Further, Singh et al. (2014) reported increase 

in shear band width with enhancement in    in monolithic MG which suggest that threshold 



100 
 

MG layer thickness will be higher in a laminate composite synthesized by monolithic MG 

exhibiting wider shear band. Furthermore, Zhang et al. (2009) reported wider shear band 

width in Cu20Zr80 MG, and thinner shear band in Cu64Zr36 glass. Therefore, it can be inferred 

from present continuum analysis that threshold MG layer thickness will be lower in the 

nanolaminate composite synthesized from glass composition which exhibit thinner shear 

band, while it will be higher for composition showing wider shear band. In other words, 

composition of parent glass which is capable of exhibiting wider shear band is more suitable 

to design nanolaminate composites. 

In summary, the deformation behavior of NG-MG laminate composites subjected to 

plane strain tensile loading has been investigated through finite element simulations using 

non-local plasticity model. The results are in good qualitative agreement with atomistic 

simulations (Sha et al., 2017), and also provide insights about the underlying deformation 

mechanism. The cellular MGs have also been fabricated which are found to be an alternative 

for structural and functional applications. The failure mechanism of these materials 

drastically changes with the change in size and wall thickness of cells. However, the 

mechanistic reasons for such transitions are not well understood. Hence, the deformation 

behavior of MG cellular structures are investigated in the next chapter.   
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CHAPTER 6 

Finite element analysis of deformation and failure mechanism in nanoscale 

hexagonal cellular structures of metallic glasses  

6.1 Introduction 

The cellular metallic glasses (MGs) are found to be an alternative choice for structural and 

functional applications owing to light in weight, good energy as well as noise absorption 

capacity and enhanced plastic deformation (Sarac et al., 2012; Sarac and Schroers, 2013b; 

Chen et al., 2014; Liu et al., 2016). Sarac and Schroers (2013b) reported from compression 

experiments that the failure in cellular MGs transitions from global failure caused by 

localization in a shear band to the local failure by damage confined to few cells when the 

relative density of specimen is reduced from a large to moderate value. Further, the mode of 

deformation again changes over to the collective buckling of ligaments through row by row 

collapse when the relative density is decreased to a sufficiently lower level. They also 

revealed that peak stress attained in the samples varies nonlinearly with respect to relative 

density, whereas the mechanistic reason for this behavior is not well understood. The 

atomistic simulations on nanoscale cellular MGs have also reported transition from localized 

but confined to few cells to almost homogeneous deformation with increasing cell size  

(Zhang et al., 2016). In addition, these simulations showed strain localization in a dominant 

shear band for cell spacing along diagonal direction above a threshold value which was 

correlated to shear bandwidth in monolithic MG of identical composition. However, it is not 

clear from these simulations as to why and how the shear band thickness in monolithic MG 

controls the threshold cell-spacing. 

 In order to better understand the mechanistic reasons for the above noted transitions in 

the deformation behavior of cellular MG structures, 2D plane strain finite element 

simulations of compressive loadings are performed on cellular MG structures using non-local 

plasticity model of Thamburaja (2011). The organization of this chapter are as follows: the 

constitutive model and the modeling aspects are briefly described in sections 6.2 and 6.3, 

respectively. The important results obtained from this study are discussed in section 6.4. 
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6.2 Constitutive model 

In the present study, the non-local finite strain plasticity model of MGs proposed by the 

Thamburaja (2011) is used because it has been successfully shown to capture the deformation 

behavior in nanometer-sized unnotched MGs (Thamburaja, 2011), notched MGs (Singh and 

Narasimhan, 2016; Dutta et al., 2018), MG composites (Shete et al., 2016, 2017; Dutta et al., 

2020), NGs (Singh et al., 2014) and NG-MG nanolaminates (Chapter 5). The detailed 

derivation of this plasticity model can be found in Thamburaja (2011). The rate of plastic 

shearing, the rate free volume generation and evolution of cohesion are given by Eq. (5.1), 

(5.2) and (5.3), respectively.  

A coupled, explicit finite element procedure, with displacement,  and free volume,   

as nodal variable is employed to solve the governing equation for free volume evolution (Eq. 

5.1) and weak form of equation of motion. Former is integrated using forward Euler scheme, 

while central difference method is used to integrate the latter. Mass scaling and small time 

step is employed to ensure the quasi-static and stability of the solution. The nodal averaging 

technique is used to smooth the discrete free volume gradient computed at centroids and 

generated a    continuous vector field of free volume gradient (similar to the strain 

smoothing approach of Hinton and Cambell, 1974). By using this continuous free volume at 

the element integration points is obtained which is used in Eq. (5.2) to compute the 

interaction stress and update the plastic slip  . 

6.3 Modeling aspects 

Fig. 6.1 shows finite element model of a compression specimen (   (  )     (  ))     

having six and twelve hexagonal cells along    and    direction, respectively. The cell width 

(along    direction), cell-wall thickness and the length of inclined edge of a cell are denoted 

by     and  , respectively (refer Fig. 6.1). All the simulations are performed under plane 

strain conditions at a prescribed strain rate of             In order to understand the effect 

of the wall thickness of the cells on the deformation behavior of MG cellular structures, the 

specimens having different values of         and       are considered, which are referred 

to as   ,   ,    and   . However, the centre-to-centre distance of cells is kept constant in all 

the specimens. Consequently, angle   characterizing the cell’s alignment with respect to 

loading axis is     in all the cases. Table 6.1 shows the values of       and   for all the 

specimens. Also shown in this table is relative density,     , where    and   represent the 
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densities of cellular MG sample and the monolithic MG sample, respectively, and are 

calculated using relation mentioned by Sarac et al. (2012). In most of simulations, dimensions 

of the specimen are kept constant, while few computations are performed by changing 

specimen size to investigate its influence on the deformation behavior of cellular structures. 

 

Figure 6.1 Finite element model of hexagonal cellular structure employed in plane strain 

compression simulations. Here,      and   denotes cell width, cell-wall thickness, and 

inclined edge of cell, respectively. Also,   is cell’s alignment with respect to loading axis. 
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Table 6.1 Cell features used to study deformation behavior of hexagonal cellular MG 

structure. 

             

  (  ) 15 12 9 6 

  (  ) 3 6 9 12 

  (  ) 8.7 6.9 5.2 3.4 

     0.31 0.55 0.75 0.89 

 

The material of the specimen is assumed to obey the constitutive model discussed in 

section 5.2. The material parameters appearing in the model are taken from the work of 

Thamburaja (2011) which are as follows: The constants    ,     ̇            ,    and    at 

T = 295 K are considered as 166.7 GPa, 35.7 GPa, 0.02, 1.732 x 10
-3

 s
-1

, 0.02, 0.076, -250, 

2800 GJ/m
3
, 240 GJ/m

3
, 214.8 s

-1 
and  0.00063, respectively. Further, initial cohesion,    is 

taken as 1 GPa and it is perturbed by 1% about this value (1Gpa) and randomly assigned to 

the elements to trigger shear bands in the specimen. It is important to note from Eq. (5.2) that 

a material length scale    enters into the model through constant     which is taken as    

√      following the work of Dutta et al. (2018). Various values of    are considered so that 

intrinsic material length    could be varied from 5 to 186 nm. Further, note that Thamburaja 

and Liu (2014) have shown from finite element simulations using the plasticity model of 

Thamburaja (2011) that the MG specimens exhibit strain hardening behavior when the 

boundary condition   = 0 is imposed. On the other hand, such specimens show strain 

softening when normal flux of   is considered to be zero on specimen surfaces (Thamburaja, 

2011). Since both millimeter-sized (Sarac et al., 2012; Sarac and Schroers 2013b) as well as 

nanometer-sized (Zhang et al., 2016) MG cellular structures exhibit strain softening behavior 

the normal flux of the   is assumed to be zero in all the surfaces to solve the weak form of the 

equation of the Eq. (5.1). 

6.4 Result and discussion 

6.4.1 Nominal stress versus nominal strain curve 

Fig. 6.2 Shows the variation of the nominal stress,      normalized by    with respect to 

nominal strain    for monolithic MG as well as cellular MG specimens corresponding 
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to         . Note that    increases linearly with    in elastic regime for all the cases, 

whereas the slope of the curve for monolithic MG is larger than that for cellular specimens. 

Also, for cellular MGs, the slope of the curves reduces with decrease in   (or increase in  ) 

owing to increase in compliance of the specimen (compare slope of the curves for 

specimen    and   ). Further, the peak stress in cellular samples are lower than that for 

monolithic MG, and it drops further with decrease in  . These observations are in 

corroboration with experimental (Sarac et al., 2012; Sarac and Schroers, 2013b) as well as 

atomistic simulation results (Zhang et al., 2016). A colossal stress-drop which indicates rapid 

strain localization in a shear band (Thamburaja, 2011) can be noticed at around          

for monolithic MG. A similar stress drop at somewhat slower rate can be seen in cellular MG 

specimens   ,    and    at around                 and       respectively. By contrast, 

such stress drop is not noticed up to     of      in specimen    which has very thin cell-wall. 

Thus, it can be concluded that MG cellular structures with thinner cell-wall (or larger cell 

size) exhibit enhanced plastic deformation. 

 

Figure 6.2 Normalized nominal stress versus nominal strain curves for monolithic MG and 

cellular MG specimens corresponding to            The stages of global and local failures 

are marked by ‘ ’ and ‘*’ symbol, respectively. 

In order to get more insights, the value of normalized peak stress,  ̂     and slope of 

stress-strain curve,    are recorded for all the samples and plotted against relative density 
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     in Figs. 6.3(a) and (b), respectively, for         . It can be seen from these figures 

that both   ̂    and    increases nonlinearly with      which has been found to be true for 

other values of     This observation is in line with experimental observations made by Sarac 

et al. (2012). To understand mechanistic reasons for nonlinear variation in   ̂    with      , 

it would be interesting to analyze the volume fraction of material undergoing plastic 

deformation near peak stress stage. For this purpose, plastic yielding at a point is assumed to 

occur if maximum principal logarithmic plastic strain,      
  at that point exceeds 

beyond       (significantly lower than the yield strain of monolithic MG in Fig. 6.2). Here, it 

is important to mention that other choices of limiting value of      
  (smaller compared to the 

macroscopic compressive-yield strain) are also considered and it is found that chosen value 

does not alter the conclusions made in the following discussion. The volume fraction of 

yielded material   
 

 near the peak-stress stage in a cellular structure is determined by 

employing the above criterion and plotted against      in Fig. 6.3(a). Note from this figure 

both  ̂    and   
 
 increase with relative density in a similar manner which signifies that peak 

stress is mainly controlled by   
 
 and weakly by relative density. Consequently, peak stress in 

cell structure of MG enhances nonlinearly with respect to relative density. 
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Figure 6.3 (a) The variation of normalized peak stress,  ̂    (refer left ordinate) with respect 

to relative density,      of cellular MG for           Also, displayed in this figures is the 

volume fraction of material yielded,    
 
 near peak stress stage (right ordinate) versus      

curve. (b) The variation of the slope of stress-strain curves,    recorded for all the samples 

versus their relative density,     . Here symbol ‘o’ corresponds to values obtained from 

finite element simulations, while solid line curve represents best fitting of these values. 
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6.4.2 Evolution of plastic strain 

In order to understand the effect of    on the evolution of plastic strain in MG cellular 

structures, contour plots of maximum principal logarithmic plastic strain, 

     
  corresponding to successive stages are displayed for different specimens in Figs. 6.4-

6.6. Figs. 6.4(a)-(c) show the contour plots of      
 
 at three stages of               and 

      respectively, for sample    with           It can be seen from Fig. 6.4(a) that 

yielding begins at corners of the vertical edges of the cells due to high stress concentration 

resulting in plastic strain to evolve well before the onset of macroscopic yielding in this 

sample (refer curve corresponding to    in Fig. 6.2). As loading progresses, two lobes of 

putative shear bands begin to emanate from these yielded corners and appear to interact with 

neighboring cells lying in rows below and above the current row (refer Fig. 6.4(b)). When 

plastic yielding spreads over significant volume of the material, nominal stress begins to drop 

as noticed in Fig. 6.2. Subsequent loading intensifies plastic strain inside the bands 

connecting neighboring cells, and makes such bands to get aligned along a direction near to 

the direction of maximum shear stress. Eventually, a dominant shear band forms connecting 

one free surface to another free surface of the specimen at around         (see Fig 6.4(c)). 

 

Figure 6.4 Contour plots of maximum principal logarithmic plastic strain,      
  for 

sample    with          at (a)           (b)          and (c)          

In contrast, the distribution of plastic strain in the specimen    (with moderate cell-

wall thickness) remains almost uniform up to    of 0.035 (See Figs. 6.5(a) and (b)). Though 
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cell-edges experiencing strain localization are getting aligned along a direction closer to the 

direction of maximum shear stress at significantly large   , specimen continues to exhibit 

multiple shear bands up to          (see Fig. 6.5(c)). Interestingly, sample    which has 

very small   is able to exhibit homogeneous deformation for significantly large    (see Figs. 

6.6(a) and (b)). At around,    of 0.08, significant bending of inclined edges of some of the 

cells can be perceived, but the strain levels inside these edges are less than 10% (refer Fig. 

6.6(c)).  

 

Figure 6.5 Contour plots of maximum principal logarithmic plastic strain,      
  for sample 

   with          at (a)           (b)           and (c)           

 

Figure 6.6 Contour plots of maximum principal logarithmic plastic strain,      
  for sample 

    with          at (a)          (b)          and (c)          
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A close observation of Figs. 6.4-6.6 suggests that plastic deformation in a hexagonal 

cellular structure depends on cell-wall thickness. In the case of sample with large wall 

thickness (sample   ), a shear band with large plastic strain spreads from one surface to 

another surface of the specimen. It must be noted that the failure would take place by crack 

propagation within a shear band, when the free volume (Shao et al., 2014; Maaß et al., 2015) 

or shear offset (Schuh et al., 2007) or plastic strain (Anand and Su, 2005; Tandaiya et al., 

2009, 2013; Singh and Narasimhan, 2016; Singh et al, 2016) exceeds a critical level. 

Following the work of Tandaiya et al. (2009), the critical value of      
 
 can be taken as 0.2, 

and thus, it can be deduced from Fig. 6.4(c) that the specimen    would break in two to three 

pieces at    = 0.03. Since this failure is a macroscopic failure, it is referred to as global 

failure. In specimen   , the values of      
 
 have not exceeded beyond 0.2 at every point 

inside a band connecting two free surfaces of the specimen, however, it has increased above 

this level in inclined edges of some of the cells (refer Fig. 6.5(c)). Therefore, failure is 

expected to begin but remain confined to these cells in the sample    at around    of 0.045, 

which may be considered as local failure. The stages of global and local failures predicted by 

adopting the critical strain criterion of Tandaiya et al. (2009) are marked by ‘ ’ and ‘*’ 

symbols, respectively, in Fig. 6.2. By contrast, in specimen    with very small cell-wall 

thickness, plastic deformation is more homogeneous and the magnitude of      
 
 < 10% in 

the inclined edges of the cells. Therefore, in this specimen, bending of the cell edges is 

preceded by strain localization in a shear band. Thus, the Figs. 6.4-6.6 exhibit two transitions 

in deformation with reduction in  : the first transition takes place from global failure to local 

failure of specimen when   is reduced from    to     , while another transition from local 

failure to prolonged homogeneous deformation (along with the considerable bending of the 

inclined edges prior to the onset of localization) occurs when   is reduced to     . These 

observations corroborate well with the recent MD simulations performed by Zhang et al. 

(2016) and experimental observations on cellular structure of Zr-based MGs (Sarac and 

Schroers, 2013b). 

In order to get more insights on the evolution of plastic strain in MG cellular samples, 

line plots of       
   across a shear band (refer dash line x-x in Figs. 6.4 and 6.5) 

corresponding to different stages of global strains    are shown against normalized 

distance,      for       and    in Figs. 6.7(a) - (c), respectively. These figures correspond 

to          . The values of      
  inside the cell wall at         is very small for all 
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samples, but rises with increase in    more rapidly in samples    and    than sample   . For 

example, the maximum value of      
 
 inside the band in samples    and     increases to     

and    , respectively, as    is increased to     , while it remains below      in sample   . 

The value of      
  inside cell wall of sample    also increases beyond     at    of      .  

 

Figure 6.7 Variation of      
  with normalized distance,      across the shear band for (a) 

     (b)     (c)    at different level of global strain,     corresponding to         . 



112 
 

Thus, these figures suggest that the plastic strain evolves more rapidly in a sample 

with thicker cell wall. It can also be noticed from these figures that shear band width 

increases with increase in    and eventually saturates at around             . It must be 

mentioned that though the shear band width is found to increase with enhancement in     but 

the scaling of shear band width with    could not be verified for higher    because the plastic 

strain spreads over entire wall thickness of the cells which restricts further widening of shear 

band. On the other hand, shear band width in a monolithic MG is found to scale with    and it 

is around           . Thus, shear band width in both MG and their cellular structure is 

almost identical (around       ) for         .   

It is important to note from Table-6.1 that for the sample   ,       , while 

       for sample   . However, for samples    and       is almost similar to the shear 

band width. Since,   in sample    is larger than shear band width corresponding to     

     , strain localizes in cell-walls aligned along approximately the direction of the 

maximum shear stress leading to the formation of a dominant shear band (refer Fig. 6.4). On 

the other hand, enough material is not available for localization to take place in the cell-walls 

of sample    corresponding to         , hence sample does not exhibit localized 

deformation, rather its inclined cell-walls bend in Fig. 6.6. However,   in sample    in Fig. 

6.5 is close to the shear band width, therefore some of the cell walls experience large plastic 

deformation but they don’t get aligned as easily as in sample   . These observations suggest 

that the wall thickness of cells in MG honeycomb structures with respect to shear band width 

in monolithic MG (used to produce them) governs the transitions in the deformation 

behavior. Since shear band width scales with    in MGs, above noted transition in 

deformation behavior could also be realized by changing the   , which is investigated in the 

following section.        

6.4.3 Influence of    on the deformation behavior 

Fig. 6.8 shows the variation of        with respect to    for specimen    corresponding to 

different values of      It must be mentioned that finite element simulations with higher 

          showed numerical difficulties beyond the stage of    = 0.045, therefore the 

curves pertaining to other values of    are also plotted up to only    of 0.045. Note from Fig. 

6.8, the slope of the stress-strain curves in elastic regime as well as the yield-stress are 

identical for all the values of   . However, the stress beyond the peak-stress stage drops more 

gradually for higher    than that for lower   . A similar trend has been observed for other 
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specimens too suggesting that the increase in    retards the strain localization in the cellular 

MG structures.  

Figure 6.8 Normalized nominal stress versus nominal strain curves pertaining to various 

values of    for sample     The stages of global and local failures are marked by ‘ ’ and ‘*’ 

symbol, respectively. 

The above observation can be further confirmed by comparing the spatial distribution 

of      
  shown in Figs. 6.9(a) and (b) for        and     , respectively. Note that the 

strain distribution is almost homogeneous for higher    in Fig. 6.9(a), while it has localized in 

a dominant shear band for same cellular structure but with very low   , in Fig. 6.9(b). Since 

     
 
 has exceeded beyond 0.2 at every point inside the band in Fig. 6.9(b), sample with    

of      is expected to fail globally due to crack propagation in a dominant shear band 

(Tandaiya et al., 2009). The stages corresponding to global and local failures are marked by 

‘ ’ and ‘*’ symbols, respectively, in Fig. 6.8.  Further, recall from Fig. 6.5(c) that the 

specimen with similar cellular structure, but with intermediate level of         , exhibits 

local failure with damage confined to few cells. Thus, Figs. 6.9 and 6.5 confirms that a 

transition in deformation behavior from global failure to local failure takes place when    is 

enhanced from a very low value to a moderate level. However, localization is delayed up to a 

large macroscopic strain for sufficiently higher   . As pointed out in the previous section that 

the strain localization can also be delayed by reducing the cell wall thickness while keeping 

   fixed. Thus, it can be deduced from the present analysis that strain localization in a MG 
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cellular structure can be retarded either by reducing the cell wall thickness or by increasing 

the material length scale   . In other words, transition in the deformation behavior from 

global failure to local failure and then to prolonged homogenous deformation is governed by 

cell-wall thickness with respect to the intrinsic material length (i.e., the ratio t/    ). 

 

Figure 6.9 Contour plots of      
  for sample    at nominal strain,    of        for (a)    

       and (b)          

The mechanistic reasons for above noted influence of    and   on the deformation 

behavior of MG cellular structures can be understood by analyzing the spatial distribution of 

interaction stress     . Therefore, contours plots of         at    of      for specimen    

pertaining to two different values of       and        are displayed in Figs. 6.10 (a) and 

(b), respectively. Due to large stress concentration, plastic yielding commences causing free 

volume to evolve near the corners of cells at early stages than other positions. As a result, a 

large free volume (or STZs concentration) gradient develops in the cell walls, leading to the 

evolution of interaction stress between flow defects (STZs) (refer Eq. (5.2)). Note from Fig. 

6.10(a) that      is positive at corners and inside a narrow band connecting corners of cells in 

two neighboring rows, while it is negative at other locations. When    is increased,      inside 

these bands becomes more positive, while it becomes more negative outside the bands, as can 

be seen by comparing Figs. 6.10(a) and (b). Since, the positive valued      retards further 

development of plastic strain, while        promotes the evolution of plastic strain (refer 

Eq. (5.2)). Therefore, it can be understood from Figs. 6.10 (a) and (b) that the increase in    

retards the evolution of plastic strain near the corners and inside the band connecting these 
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corners, while it promotes the spread of plasticity outside these regions in a MG cellular 

structure. In other words, enhancement in    retards the shear localization and makes the 

distribution of plastic strain more uniform. Consequently, strain localization is delayed 

causing homogeneous deformation to prevail up to a larger value of    in a sample with 

larger   . The contour plots of      for sample    shown in Fig. 6.10(c) reveals that the 

volume fraction of material experiencing negative      is more than that in sample    (refer 

Fig. 6.10(a)). In addition, the probability of triggering enough STZs to align for shear 

localization is less in sample    with thinner cell wall. As a result, negative      is able to 

make plastic strain distribution uniform in sample    leading to delayed localization in this 

sample even for low         

 

Figure 6.10 Contour plots of normalized interaction stress,         at         for sample 

   with (a)            (b)           and (c) corresponding plots at         for 

sample    with             

At this juncture, it must be mentioned that Zhang et al. (2009) have shown from their 

MD simulations that the shear band width in CuZr metallic glass depends on their 

compositions. Further, another atomistic simulation performed by Zhong et al. (2016) 

reported critical thickness of sample corresponding to transition from localized to 

homogeneous deformation depends on the glass composition. Moreover, the continuum 

simulations of Dutta et al. (2018) have confirmed that change in    in model of Thamburaja 

(2011) produces qualitatively similar effects in the deformation behavior as to obtain by 

changing the composition of glass in the atomistic simulations. Thus, it can be considered 
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that    value in the non-local plasticity model of Thamburaja (2011) pertains to specific 

composition of glass, and the influence of the composition on the mechanical response of the 

glass can be captured by changing    in the finite element simulations. In the view of above 

discussion, it can be deduced from present continuum analysis that the threshold value of 

cell-wall thickness will be lower in the cellular structure of a glass which exhibits thinner 

shear band, while it will be higher for composition showing wider shear band. In other 

words, design of the cellular structure with glass composition exhibiting wider shear band is 

more suitable. 

6.4.4 Influence of specimen size on the deformation behavior 

In order to study the influence of specimen size on the deformation behavior of the MG 

cellular structure, simulations are performed on a smaller specimen (          ) with the 

arrangement of cells and the cell-wall thickness identical to that in sample   . The sample 

sizes          and            (used in previous section) are referred to as Specimen A 

and Specimen B, respectively, in the following discussion. Fig. 6.11 shows normalized 

macroscopic stress       versus global strain    for both the specimens corresponding to 

           It can be seen that the stress-strain curves differ marginally suggesting 

marginal influence of specimen size on the mechanical response of MG cellular structures. 

Further, the contour plots of      
 
 in both the samples are displayed in Fig.6.12 at two levels 

of         and      . This figure shows almost similar trend in the evolution of plastic 

strain in both the samples A and B. As mentioned in previous section that the simulations 

with very large           could not be continued further beyond          due to 

numerical difficulties. Therefore, it is concluded from Figs. 6.11 and 6.12 that the 

deformation behavior of hexagonal cellular MGs up to moderate levels of applied global 

strain is moderately affected by specimen size. 

  In summary, the deformation behavior of nanoscale MG hexagonal cellular structures 

subjected to plane strain compressive loading has been investigated through finite element 

simulations using thermodynamically consistent non-local plasticity model for MGs. The 

results not only collaborate well with the experiments (Sarac and Schroers, 2013b) and 

atomistic simulations (Zhang et al., 2016), but also address the important issues related to the 

underlying deformation mechanism.   
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Figure 6.11 Normalized macroscopic stress versus global strain curves for sample    with 

          corresponding to specimen A and specimen B. 

Figure 6.12 Contour plots of      
 
 for specimen A having arrangements of cells similar 

to     with            at (a)          and (b)           Corresponding plots for 

specimen B are shown in (c) and (d). 
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CHAPTER 7 

Conclusion  

The important conclusions from the work reported in Chapter 2-6 are summarized in this 

chapter. 

7.1 Investigation of pressure sensitive plastic flow in nanoglasses from finite 

element simulations. 

In chapter 2, finite element simulations of indentation on          NGs and MGs have been 

analyzed using extended Drucker Prager and Von-Mises plasticity model. The important 

conclusions of this work are as follows. 

 Simulation indentation     curve obtained by using Von- mises plasticity model 

deviate significantly from experimental data. While,     curve obtained through 

extended Drucker Prager plasticity model shows good agreement with experimental 

data suggesting that yield phenomena in          NGs and MGs is characterized 

more accurately by pressure sensitive extended Drucker Prager plasticity model. 

 The value of pressure sensitive index,   for NGs and MGs is determined by fitting the 

recent experimental data. In fact,   for NGs is found to be around three time higher 

than that of MGs of identical composition suggesting indentation response of the 

former is more pressure sensitive than the latter. In other words, NGs is harder than 

MGs of identical composition. In addition,   for glassy interface is much higher than 

the glassy grain of NG. 

 The present study reveals that plastic zone size and constraint factor,   for NGs is 

larger than for MGs of identical composition because of higher   in NGs.  

7.2 Investigation of softening induced indentation size effect in nanoglass 

and metallic glass 

In chapter 3, microindentation as well as nanoindentation experiments are performed on 

          NGs and MGs. In addition, the complementary finite element simulations of 

indentations are performed by employing the finite strain viscoplastic constitutive theory for 

amorphous metals. The simulations results are in good agreement with experiments. The 

important conclusions as follows: 
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 SEM images of micrographs obtained from the bonded interface experiments show 

that shear bands in MG are smooth and almost semi-circular in shape, while wavy 

shear bands form in NG. Further, the primary shear band densities in the MG are 

higher than that in NG. However, the plastic zone size below the indenter is larger in 

NG than that in MG.   

 The AFM imaging of impressions generated through nanoindentation reveals almost 

homogeneous plastic deformation around the indent in NGs, while it shows discrete 

shear bands for MG. 

 NG exhibit almost smooth indentation load,   vs. depth,   curves, while MG shows 

serrated curves. The hardness,   of NGs is higher than MGs for all the applied loads, 

and it decreases more rapidly with increase in   in the latter than the former. Thus, 

the indentation size effect (ISE) in MG is more profound than that in NG.  

 The less pronounced ISE in NG than MG is because of slower free volume generation 

leading to slower softening during indentation in the former than the latter. The finite 

element simulations show that the value of friction coefficient,   for NG is higher 

than MG due to higher   for interfaces in the former. Also, the higher   retards the 

free volume generation and hence softening resulting in less pronounced ISE in NG. 

7.3 Mixed mode (I and II) fracture behavior in nanoglass and metallic 

glass. 

In chapter 4, the stationary crack tip plasticity in NG and MG under the mixed mode (I and 

II), plane strain, SSY condition has been investigated through finite element simulations 

using a constitutive model for MGs proposed by Anand and Su (2005). The results 

collaborate well with the observations made from experiments and continuum simulations of 

fracture on bulk MGs. The salient conclusions are summarized below:  

 The plastic strains ahead of the crack tip are more diffused in NGs than that of MGs. 

Also, the plastic zone in both NGs and MGs appears to rotate in anticlockwise 

direction with increase in mode I contribution.  

 The spread of the plastic strain ahead of the notch tip reduces with increase in mode 

mixity,   . However, it is always longer in NG than that in MG, irrespective of the 

values of   . Further, the plastic zone size in NG is significantly larger than that in 

MG for identical loading conditions. 
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 The notch tip of both the alloys, under to mixed mode loading, deforms in a shape 

with a blunted lower part and sharpened upper part. Further, the stretching and 

bulging forward of the lower part of the notch is more pronounced in the case of NG 

than MG, while the upper part of the notch profile is sharper in the case of latter. 

 The notch opening displacement,    and notch shear displacement,     increase 

linearly with normalized energy release rate 
 

     
 for both alloys. Further, the 

magnitude of    and     in NG is always slightly higher than that in MG irrespective 

of mode-mixity.  

 The strain-based fracture criterion predicts that NGs may not show significant higher 

fracture toughness in comparison to MG with identical composition, though they 

exhibit significant larger tensile ductility. 

7.4 Finite element analysis of tensile deformation of nanoglass-metallic 

glass laminate composites 

In chapter 5, the deformation behavior of NG-MG laminate composites subjected to plane 

strain tensile loading has been investigated through finite element simulations using non-local 

plasticity model. The results are in good qualitative agreement with recent atomistic 

simulations, and also provide insights about the underlying deformation mechanism. The 

important conclusions of this work are as follows. 

 The peak stress,  ̂ attained in NG-MG nanolaminate composite are lower than 

monolithic composites and decreases further with increase in NG layer thickness,    .  

 The peak stress   ̂ decreases rapidally as volume fraction       of MG layer in 

laminate composite with single NG layer is reduced from 1 to 0.7, while it changes 

marginally for further decrease in        Thus  ̂  don’t follow rule of mixture which is 

found to be true, irrespective of intrinsic material length,    or composition of glass.  

 The volume fraction of the material in MG layer undergoing plastic deformation  

     
 

 near the peak stress stage reduces drastically as volume fraction       of MG 

layer in NG-MG nanolaminate composites is decreased from 1 to 0.7, while it remains 

almost unaltered for further reduction in      . Thus, both  ̂ and      
 

 decreases with 

      almost in a similar manner signifying that peak stress is mainly governed by 
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 and weakly by      , therefore peak stress in laminate composite with single 

NG layer don’t follow of mixture. 

 Shear band width scales with the intrinsic material length,     associated with the 

interaction stress,      between flow defects such as STZs, and it is around 0.08 0.12 

   irrespective of    . 

 Spatial distribution of      plays a central role in the deformation behavior of laminate 

composites. Positive valued      prevailing inside glassy interfaces retards strain 

localization, while negative      in glassy grains and MG layer promote homogeneous 

deformation. When    is increased,      becomes more positive inside interfaces (in 

NG layer as well as between NG and MG layer), whereas it becomes more negative 

inside grains and MG layer. Thus, enhancement in    delays localization of plastic 

strain. 

 The deformation behavior of laminate composites transitions from localized to super 

plastic flow when MG layer thickness,     is decreased below a threshold level which 

depends on the material length    or composition of the glass. In other words, 

    with respect to intrinsic material length    governs the transition.  

7.5 Finite element analysis of deformation and failure mechanisms in 

nanoscale hexagonal cellular structures of metallic glasses  

In chapter 6, the deformation behavior of nanoscale MG hexagonal cellular structures 

subjected to plane strain compressive loading has been investigated through finite element 

simulations using thermodynamically consistent non-local plasticity model for MGs. The 

results collaborate well with the experiments and atomistic simulations. The important 

conclusions are as follows: 

 The peak stress  ̂ and the slope    of the stress-strain curves for MG cellular 

structures are lower than monolithic MG, and they decrease further with reduction in 

relative density,      (or cell wall thickness  ). 

 The rise in the volume fraction of material experiencing plastic deformation   
 
 near 

peak stress stage and  ̂   with increase in      follow a similar trend which suggests 

that  ̂  in cellular MG structure is mainly governed by   
 
 and weakly by     . 

Therefore, the variation of  ̂ with      is nonlinear. 



123 
 

 The cellular MG structures exhibit two transitions in the deformation behavior with 

decrease in  . The first transition takes place from global failure due to crack 

propagation in a dominant shear band to local failure with damage confined to few 

cells of specimen when   is reduced from a large value to become similar to shear 

band width in monolithic MG with identical composition. However, another transition 

from local failure to prolonged homogeneous deformation with considerable bending 

of the inclined edges prior to localization occurs when   is reduced much below the 

shear band width. 

 Spatial distribution of       plays an important role in the evolution of plastic strain in 

MG cellular structures. Positive valued      prevailing at corners and in a narrow band 

connecting corners of the neighbouring cells in parallel rows retards the shear 

localization while negative valued      prevailing in the remaining areas assists the 

spread of plasticity in these regions. When    is increased, the positive      become 

more positive near corners and bands connecting these corners, while negative      

becomes more negative in remaining areas. Consequently, enhancement in    retards 

the shear localization and promotes homogeneous deformation. 

 The transition in the deformation behavior from global failure to local failure and then 

to prolonged homogenous deformation is governed by the ratio       

 The moderate change in specimen size of the MG cellular structures has a marginal 

effect on their deformation behavior up to moderate levels of   . 

 

7.6 Scope for future study  

The present work is focused on understanding the deformation behavior of NG and MG 

structures. The insights gained from the present study can provide the necessary background 

to carry out further research in this area. Some of the specific studies are suggested below. 

 The experiments have shown that the plastic flow in MGs is sensitive to normal 

stress/pressure at temperature below glass transition temperature,     (Prasad et al, 

2007). In Chapter 2 and 3, the pressure sensitive plastic flow in NGs is investigated at 

room temperature. In future, this study can be extended to investigate the effect of 

temperature on the pressure sensitivity index,   in NGs. 
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 NGs and MGs have been shown to exhibit an intrinsic material length scale,    

associated with the stresses arising due to the interaction between flow defects (STZs) 

(Thamburaja, 2011; Singh et al. 2014). The influence of    on the size dependent 

indentation response in NGs and MGs have not been investigated till now. Such 

studies would help understanding the physics of ISE in these alloys better. Therefore, 

continuum simulations of indentation response in NGs and MGs can be performed by 

employing a non-local plasticity model such as model of Thamburaja (2011). 

 Recently, Guo et al. (2019) investigated nanoindentation creep behavior in Ni- based 

NG and MG at room temperature. They reported significant creep deformation in NG 

than MG of identical composition. It would be interesting to perform such studies on 

Cu-based NGs and MGs also to see if similar trend can be observed in this 

composition as well.  

 In chapter 4, the effect of fracture toughness,     on mode mixity,    was predicted 

through continuum simulations. In future, mixed mode fracture experiments can be 

conducted to confirm the trend reported in this chapter.  

 The notch size is kept constant in the analysis performed in Chapter 4. This study can 

be extended further to analyze the effect of notch size on the dependence of    on    . 
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APPENDIX A 

A. 1 Expanding cavity model 

Narasimhan (2004) modified expanding cavity model of Johnson (1970) to study the 

indentation mechanics of pressure sensitive solids. Key equations of the model are given 

below: 

The hydrostatic pressure   inside core is related with plastic zone size    as: 

where, parameters     and   are given by: 

The plastic zone size,    evolves with contact radius,   as: 

Note that for initial stages of loading, only spherical tip of ‘Berkovich equivalent’ conical 

indenter makes contact with the sample (refer schematic shown in Fig. A(a)), while surface of 

conical part of the indenter also in makes contact with the specimen for larger indentation 

depth (Fig. A1(b)). Thus, following Johnson (1985), Eq. (A. 3) can be written as: 

Eq. (A. 4) is integrated from a contact radius    pertaining to initial yielding by employing 

Runge-Kutta integration algorithm, and    is determined as a function of    Stress 

components in spherical coordinates are given by: 
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Here,  ̅ is defined as: 

 

 

Figure A1 Schematic showing (a) spherical tip of the ‘Berkovich equivalent’ conical indenter 

in contact with the specimen. (b) Conical surface of the ‘Berkovich equivalent’ conical 

indenter also in contact with the specimen. 

A. 2 Calculation of Young’s modulus for iso-strain and iso-stress conditions 

If    denote Young’s modulus of glassy grains,   
 

 volume fraction of glassy grains,    

Young’s modulus of glassy interfaces and   
  volume fraction of glassy interfaces, Young’s 

modulus,     for nanoglass can be written employing iso-strain conditions as: 

For NG1,                (Liu et al., 2018),          (Franke et al., 2014),  
 
       

and   
       . Thus,                   .  

For iso-stress condition,     can be expressed as: 

which results to             . 
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