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ABSTRACT

Massive multiple-input multiple-output (mMIMO) wireless communica-
tion systems play a crucial role in realizing the demand for higher data rates
and improved service quality for 5G and beyond communications. The poten-
tial benefits of mMIMO are further enhanced by incorporating media-based
modulation (MBM). Consequently, reliable detection of transmitted infor-
mation bits from all the users is one of the challenging tasks for the practical
implementation of mMIMO systems. The conventional linear detectors such
as zero forcing (ZF) and minimum mean square error (MMSE) achieve near-
optimal bit error rate (BER) performance for high system loading factors.
However, ZF and MMSE require large dimensional matrix inversion, which
induces high computational complexity for symbol detection in such sys-
tems. Furthermore, due to the constellation diversity and the consequent
sparse nature of symbol vectors in mMIMO with MBM (MBM-mMIMO),
those linear detectors’ performance drastically degrades. It motivates for
devising alternate low-complexity near-optimal detection algorithms for up-
link mMIMO systems. In this thesis, with this motivation, different low
complexity detection algorithms are studied, and promising solutions are
proposed for symbol detection in uplink mMIMO systems. In the first part
of the thesis, state-of-the-art detection algorithms for large MIMO systems
are investigated. Due to implementation tractability and the requirement of
less computational load, evolutionary algorithms are observed to outperform
several conventional detection algorithms for large MIMO systems. After
investigating the potential drawbacks of existing evolutionary algorithms, a
stochastic evolutionary algorithm is proposed for uplink symbol detection
in large MIMO systems. However, when the number of antennas scales up
in the system, state-of-the-art conventional and evolutionary algorithms are
incapable of achieving near-optimal performance in mMIMO systems. More-
over, detection algorithms suitable for large MIMO systems are incapable of
benefitting from the hardening nature of mMIMO channel. Hence, in the
second part of the thesis, iterative algorithms are investigated for mMIMO
systems. As the existing algorithms yield near-optimal performance for a
mMIMO system with only high system loading factors, their performance
degrades with increased users’ numbers. Hence, to improve the drawbacks
of existing iterative algorithms, two algorithms based on nonstationary and
pseudo stationary iterations are proposed in this thesis. Two mechanisms
called quality ordering and reliability feedback are also introduced to im-
prove existing detectors’ performance for mMIMO systems. A deep unfolded
sparse refinement model is also proposed for low complexity symbol detec-
tion in uplink mMIMO systems. Finally, considering the benefits of MBM,



MBM-mMIMO systems are considered. A graph-theoretical approach and
minimum support recovery criteria based detection algorithms are proposed
for low complexity symbol detection in MBM-mMIMO systems. Simulation
results show that the proposed algorithms significantly outperform recently
reported large MIMO, mMIMO and MBM-mMIMO detection techniques in
terms of BER performance. Convergences of the proposed algorithms are
also theoretically analyzed. Computational complexities of the proposed al-
gorithms are substantially lower as compared against existing state-of-the-art
algorithms for achieving the same BER performance. It indicates that the
proposed algorithms exhibit a desirable trade-off between the complexity and
the performance for mMIMO systems and are viable candidates for uplink
symbol detection in 5G and beyond wireless communications.
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Chapter 1

Introduction

There is an ever-growing demand for wireless data traffic due to the exponen-

tial growth in the usage of smartphones, tablets, laptops and other wireless

devices. Hence, to fulfil this demand and improve the wireless throughput,

new wireless solutions need to be exploited. As licensed frequency spectrum

is an expensive resource, new technologies must be developed to increase the

spectral efficiency in wireless communications. Deploying multiple number

of antennas at the receiver as well as at the transmitter is a promising so-

lution to improve the spectral efficiency. Furthermore, the involvement of

multiple number of antennas at both the transmitter and the receiver sides

yields additional benefit of spatial diversity, which in turn gives link reliabil-

ity. However, wireless links face multipath fading and shadowing due to the

involvement of obstacles between the transmitter and the receiver, posing

a fundamental challenge in a robust communication scenario. The situa-

tion becomes more severe where a massive number of antennas are involved

at both the transmitter and the receiver sides in mMIMO wireless commu-

nication systems. Hence, viable solutions need to be explored for reliable

communication in mMIMO systems.
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1.1. MOTIVATION

1.1 Motivation

mMIMO has been a successful technique for achieving improved spectral ef-

ficiency in fourth generation (4G) wireless standards such as long term evo-

lution (LTE), LTE-Advanced, wireless interoperability for microwave access

(WiMAX) and 802.11 wireless fidelity (WiFi) [1, 2]. MIMO systems’ un-

derlying idea is that it facilitates the transmission of multiple data streams

simultaneously from source-to-destination, enhancing the diversity and mul-

tiplexing gains in wireless systems. Moreover, the introduction of multiple

antenna wireless systems has opened up new research dimensions such as

space-time block coding, index modulation, and antenna switching for more

reliable and efficient communication. With the unprecedented growth in data

starving, wireless applications such as internet of things (IoT), wireless sen-

sor networks (WSN), device-to-device communications (D2D) and vehicle to

everything (V2X) communications high spectral and energy-efficient wireless

techniques are of particular interest [3]. mMIMO is a key enabling technol-

ogy for realizing the demand for excessive data rate, spectral efficiency and

energy efficiency in fifth generation (5G) and beyond wireless communication

systems [3, 4]. mMIMO systems have attracted a lot of research attention

because such systems, when used in the existing cellular/communication net-

works, could provide enormous advantages in terms of data rate, quality of

service, and the number of users simultaneously [1, 3, 4]. In mMIMO sys-

tems, a BS employs hundreds to thousands of antennas to serve a few tens of

the users. A large number of BS antennas in mMIMO enhances the diversity

and multiplexing gain, which leads to the improvement in both the reliability

of service and the rate of information transfer, respectively [4]. The spectral

efficiency of mMIMO system further enhances with media based modulation

(MBM). Though being limited to low mobility or static communication sce-

narios, MBM with Nr receiver antennas over a static multipath channel is

capable of asymptotically achieving the channel capacity of Nr parallel addi-

tive white Gaussian noise (AWGN) channels [5]. However, practically there
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CHAPTER 1. INTRODUCTION

Figure 1.1: mMIMO system.

are several challenging issues such as architectural complexity, power require-

ments, latency in signal processing, and antenna array [2]. Amongst these

challenging issues, the computational complexity for reliable detection of the

transmitted information at the receiver side is hugely crucial for robust re-

ceiver architectures in 5G and beyond systems [6, 7]. Moreover, the data rate

requirement of recent wireless applications such as IoT, WSN, D2D, and V2X

necessitates the development of ultra-low latency and highly reliable symbol

detection algorithms at the BS.

1.2 mMIMO system model

Consider Nt single antenna users and a BS with Nr antennas (Nr >> Nt

for e.g., Nr = 128, Nt = 16 ) as depicted in Fig. 1.1. Each user transmits

its information symbol say xi, for i = 1, 2, · · · , Nt, to the BS simultaneously,
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which is also known as uplink transmission. Each symbol x̃i is assumed to be

drawn from a given constellation set say A, for e.g., 16-QAM, 64-QAM, etc.

Without loss of generality, the users are assumed to be synchronised in time

during their transmission to the BS. For tractability, a Rayleigh flat fading

channel is considered between the ith user and jth receive antenna, denoted

as h̃ji, for j = 1, 2 · · · , Nr and i = 1, 2, · · · , Nt. Each element h̃ji of the

channel matrix H̃ is independent and identically distributed (i.i.d) complex

Gaussian with mean zero and variance unity i.e. ∼ CN (0, 1). The received

vector ỹ after demodulation and sampling at the receiver end can be written

as1

ỹ = H̃x+ ñ, (1.1)

where ñ is the AWGN vector with each of its elements ñj, for j = 1, 2, · · · , Nr,

Each element of ñ is i.i.d complex normal with mean zero and variance σ2

i.e. ∼ CN (0, σ2). The average received signal to noise ratio (SNR) at the

receiver can be computed as NtEx

σ2 . In equation (1.1), each element ỹj of ỹ, for

j = 1, 2, · · · , Nr, is the received information at the jth receive antenna which

consists of combination of symbols from each transmit antenna modified by

the channel state h̃ji and the AWGN noise nj as

ỹj =
Nt∑

i=1

h̃jix̃i + ñi, ∀ j = 1, 2, · · · , Nr. (1.2)

Without loss of generality, the complex-valued system model in (1.1) is rep-

resented as a real-valued system [8]

y = Hx+ n, (1.3)

1A MIMO system where tens of antennas are used at both the transmitter and the
receiver is known as a large MIMO system. When hundreds of antennas are deployed at
the BS to serve few tens of users, it is referred to as mMIMO systems. Consequently,
mMIMO has a higher spectral efficiency than large MIMO systems.
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where x =
[
ℜ(x̃),ℑ(x̃)

]T
2Nt×1

,y =
[
ℜ(ỹ),ℑ(ỹ)

]T
2Nr×1

,n =
[
ℜ(ñ),ℑ(ñ)

]T
2Nr×1

and H =

[
ℜ(H̃) −ℑ(H̃)

ℑ(H̃) ℜ(H̃)

]

2Nr×2Nt

. Assume corresponding real valued con-

stellation set is A. However, due to limited time-frequency resources and

channel coherence time, mMIMO systems suffer from pilot contamination

[9], resulting in imperfect CSI at the BS [1, 10, 11]. Even with the increase in

the number of antennas, pilot contamination does not vanish in the mMIMO

system. Hence, after considering an imperfect channel estimation at the BS,

the MIMO system can be modelled as [12]

y = Ĥx+ n (1.4)

where Ĥ= H+eθ with H as the actual channel gain matrix and eθ is the

estimation error. Without loss of generality, the elements of θ are assumed

to be i.i.d Gaussian random variables with zero mean and unit variance

[13, 14]. The parameter e refers to the channel estimation accuracy. Due

to the interference of symbols from different users at each receive antenna

and the presence of additive noise, it becomes challenging to separate and

detect the symbol from each user at the receiver. Therefore, reliable symbol

detection in the mMIMO system is a demanding research problem.

1.3 Literature review

Maximum likelihood (ML) detection performs optimal symbol detection at

the BS in uplink mMIMO system [15]. However, ML conducts an exhaustive

search over all the transmit vectors possible from the constellation set. Hence,

the ML detection is an NP-hard (non-deterministic polynomial-time hard)

problem, and the computational complexity is exponential with the number

of users and the modulation order. Due to the low computational complexity

(O(N3
t ), where Nt is the number of transmit antennas), linear detectors like

zero forcing (ZF) and minimum mean square error (MMSE) are preferable
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in practice. However, these detectors’ efficiency degrades with an increase

in the number of antennas and/or constellation size. In contrast, nonlinear

detectors like vertical Bell laboratories layered architecture (V-BLAST) [16]

detector, successive interference cancellation (SIC), and ordered successive

interference cancellation (OSIC) based MIMO detection algorithms [15, 16]

provide superior performance than linear detectors. Remarkably, they pro-

vide inferior performance compared to sphere decoder (SD) [17]. SD is a

nonlinear detector which provides near-ML performance; however, its com-

putational complexity increases exponentially with constellation size [15].

Hence, the design of a low complexity efficient detection algorithm is re-

quired for reliable detection in large MIMO systems. Several low complexity

near-ML performance achieving algorithms have been proposed [18–20] for

large scale MIMO systems. The performance of those algorithms [18, 19]

degrades with CSI estimation error, and hence, perfect channel estimation

is required for reliable detection at the receiver. Likelihood ascent search

(LAS) algorithm [20] performs a sequence of likelihood searches, which in

turn increases the computational complexity.

The requirement of less number of computational resources in evolution-

ary algorithms [12, 21, 21–25] make those nature-inspired algorithms promis-

ing choices for symbol detection in large scale MIMO systems. Most of the

state-of-the-art evolutionary detection algorithms proposed in the literature

for MIMO systems focus on ant colony optimization (ACO) [26], particle

swarm optimization (PSO) [27] and hybridization of these two algorithms

[12]. However, each of these two algorithms and their variants have draw-

backs. Consequently, many iterations or populations are required to achieve

a near-optimal solution in uplink large MIMO systems while using ACO

and PSO for developing detection algorithms. Moreover, the performance of

several existing evolutionary algorithms [12, 28–32] suffers from BER degra-

dation due to imperfect CSI estimation at the BS. Few existing algorithms

[28, 29] also converge to local optima and their performances [12, 30–32] de-

pend on the choice of the initial solution. Moreover, when the number of
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antennas scales up in the system, the existing large MIMO detection algo-

rithms are not suitable for uplink mMIMO systems.

The challenging problem of symbol detection in mMIMO with high reli-

ability is achieved in the literature by using one of the following two tech-

niques, a) low-complexity approximate matrix inversion (AMI) and b) matrix

inversionless iteration (MII).

AMI based detectors approximate either the Gram matrix or the MMSE

filter matrix and yield near-MMSE BER performance. NS [6] and NI [33]

are two primary AMI techniques. NS performs polynomial expansion of the

inverse of the Gram matrix for few finite numbers of times. However, NS

based detection is computationally acceptable when the number of iterations

is less than or equal to two. NS’s computational complexity is reduced in

MMSE with parallel interference cancellation (PIC) [34] with marginal per-

formance loss. MMSE-PIC is observed to achieve near-MMSE performance

with considerably lower computational complexity over NS. NS based de-

tection techniques suffer from significant performance loss when the system

loading factor (the ratio between the receive and the transmit antenna) is

substantially low. Moreover, the iterations in NS are slow. Slow convergence

of NS is improved utilizing Newton Schulz iteration (NSI). However, NSI

is not computationally beneficial compared to NS. NI based detection tech-

niques converge faster as compared to NS. NS and NI both have almost equal

computational complexity when the number of iterations increases [35].

RI [36, 37], JSDJI [38] and conjugate gradient (CG) [36, 39] based de-

tection techniques are primary MII based techniques. MII techniques based

detectors are proposed to improve the performance of primary AMI based

detection techniques. Several existing MII techniques based detectors out-

perform AMI based detectors. However, few hybrid AMI-MII based detectors

outperform both AMI and IIM based detectors. Matrix splitting (MS) [40]

inspired RI is proposed in the literature to outperform primary AMI based

detection techniques. Howbeit, RI requires a large number of iterations to

achieve near-optimal BER performance. Steepest descent algorithm (SDA)

7
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[41], and CG based detection techniques also require a large number of iter-

ations to provide significant performance gain over primary AMI detection

techniques. Krylov space (KS) [42] based Lanxzos method (LM) [43–45] is

capable of achieving near-MMSE performance even with a small number of

iterations. However, LM based detection is not effective in the time-varying

channel and consumes high computational load. Successive over relaxation

(SOR) iteration based detector is proposed to outperform the NS method in

complexity and BER performance [35]. The SOR method becomes the GS

[46] method when the relaxation factor has been set at unity. Though GS

outperforms NS method, it is practically not suitable for parallel implemen-

tation.

When mMIMO systems are used with MBM, conventional detection tech-

niques such as MMSE cannot utilize the transmitted symbol vector’s struc-

tured sparse nature and shows poor performance compared to the ML de-

tection. To obtain near-ML performance for MBM-mMIMO systems, algo-

rithms such as IIC [47], IESP [48] and channel hardening exploiting mes-

sage passing (CHEMP)-MBM signal detector (MSD)[49] are proposed in the

literature. IIC performs exhaustive search based detection for each user

and updates the symbol for one user at a time using the greedy approach.

IIC with this search mechanism fails to utilize some key features of MBM-

mMIMO like a) the channel hardening phenomenon in mMIMO and b) the

structured sparse nature of the transmitted signal. On the other hand, both

IESP [48] and CHEMP-MSD achieve inferior BER performance compared

to IIC. Hence, further research in this field is crucial for devising novel low-

complexity near-optimal detection techniques for achieving potential benefits

of mMIMO in 5G and beyond wireless systems.

1.4 Conventional detectors for uplink mMIMO

The symbol detection problem in mMIMO is to find the solution to the

expression Ax = b without performing the inverse of a matrix A. A =

8
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G+ σ2

Ex
INt

is called the MMSE filter matrix. G = HHH is called the Gram

matrix and b = HTy. I2Nt
is an identituy matrix.

1.4.1 Approximate inverse methods

In these methods, approximate matrix inverse approaches are discussed wherein

an approximation of the regularized Gram matrix A is computed and used

for symbol detection for mMIMO systems.

NS expansion-based detection

This technique is based on the concept of polynomial expansion where the

inverse of a matrix is expanded as a sum of an infinite number of terms. Each

term involves either matrix-matrix multiplication or matrix-vector multipli-

cation or both. The P th order Neumann series approximation (consists of

only first P terms of an infinite series) of the inverse of a matrix can be

written as

A−1
P =

P−1∑

k=0

(
W

(
W−1 −A

))(k)
W, (1.5)

where W denotes an initial low-complexity estimate of the inverse. The

series in equation (1.5) converges to the exact inverse with P →∞ with W

satisfying the condition

lim
k→∞

(I−WA)(m) = O. (1.6)

The application of NS expansion for mMIMO detection is based on the fact

that in mMIMO, due to channel hardening, the regularised Gram matrix A

is a diagonally dominant matrix i.e. the diagonal elements are significantly

higher than the off-diagonal elements. Therefore, the matrix A can be writ-

ten as A = D + E, where D is the diagonal matrix and E is the hollow

matrix. The matrix D−1, which is inverse of the diagonal elements of D is

used as a low-complexity initial estimate of the inverse in Neumann series

9
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expansion based detection. The P th order series expansion can be written

as

A−1
P =

P−1∑

k=0

(
−D−1E

)(k)
D−1. (1.7)

Using A−1
P , the symbols can be detected as

x̂NS = Q
[
A−1

P b
]
= Q

[
P−1∑

k=0

(
−D−1E

)(k)
D−1b

]
. (1.8)

Algorithm 1.1 shows the pseudocode of NS expansion-based mMIMO detec-

tion.

Algorithm 1.1 NS based detector

1: Input: y, H, Nt, Nr, σ
2

2: Compute matrix A = G+ σ2

Ex
INt

where G = HHH

3: Compute the inverse of matrix A i.e. A−1

4: Compute the MF output of y : b = HHy
5: Compute the MMSE estimate xMMSE = Q [A−1b]
6: Output: xMMSE

NI based detection

In Newton iteration-based approximate inverse method, an initial estimate

of the inverse of a matrix is refined iteratively. The iterative update of the

inverse is given by

A−1(k+1) = A−1(k)
(
2I−AA−1(k)

)
. (1.9)

The approximate inverse in equation (1.9) converges quadratically to the

exact inverse if the initial estimate satisfies

‖I−AA−1(0)‖2 ≤ 1. (1.10)

10
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Similar to the NS expansion, the initial estimate of the inverse is D−1, which

is refined iteratively. The detected symbols using L iterations can be written

as

x̂NI = Q
[
A−1(L)b

]
. (1.11)

The pseudocode of the NI based mMIMO detection is shown in Algorithm

1.2.

Algorithm 1.2 NI based detector

1: Input: y, H, Nt, Nr, σ
2

2: Compute matrix A = G+ σ2

Ex
IK where G = HHH

3: Compute the inverse of matrix A i.e. A−1

4: Compute the MF output of y : b = HHy
5: Compute the MMSE estimate xMMSE = Q [A−1b]
6: Output: xMMSE

1.4.2 Iterative methods

In this subsection, iterative methods are discussed for symbol detection in

mMIMO systems. The key idea behind iterative methods is that a low-

complexity initial solution is refined iteratively for a sufficient number of

iterations to obtain a better solution. The initial solution is refined in such a

way that the final solution achieves superior BER performance without much

effort in the computational complexity. There are two main components in

the iterative methods, which are

1. Initial solution

2. Iterative update

The pseudocode of each iterative detection technique is more or less similar

and is shown as Algorithm 1.3. An excellent initial solution determines how

fast the algorithm converges to the final solution. However, the convergence

of the algorithm highly depends on the iterative update scheme. Different

algorithms in the literature consider different update mechanism and initial

solution, which is discussed next.

11
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Algorithm 1.3 Iterative detection

1: Input: y, H, A, G Nt, Nr, σ
2

2: Compute initial solution x(0)

3: Update the initial solution iteratively
4: Output: Final solution after L iterations x(L)

RI based detection

In this technique, the positive semidefiniteness of the regularised Gram ma-

trix is exploited for performing Richardson iterations to detect the symbols

efficiently. The Richardson iteration is written as

x(k+1) = x(k) + ρ
(
b−Ax(k)

)
, (1.12)

where ρ is the relaxation parameter in RI. For convergence, the relaxation

parameter ρ should be between 0 < ρ < 2/λmax, where λmax is the maximum

eigenvalue of the matrix A. The performance of RI method also depends

on the initial solution, and therefore, a low-complexity initial solution is

obtained as

x(0) = D−1b. (1.13)

The refined solution after L iterations is considered as the output of the

detector. The pseudocode of the RI is discussed in Algorithm 1.4.

Algorithm 1.4 RI based detection

1: Input: y, H, A, G Nt, Nr, σ
2

2: Compute initial solution : x(0) = D−1b
3: for (m = 1,m++,m ≤ L) do
4: Update the initial solution iteratively as : x(m+1) = x(m) +
ρ
(
b−Ax(m)

)

5: end for
6: Output: Final solution after L iterations Q

[
x(L)

]
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JSDJI based detection

In this technique, Jacobi iteration (JI) is used for refining the initial solution.

The JSDJI can be written as

x(m+1) = x(m) +D−1 (b−Ax(m)
)
. (1.14)

An iteration of the steepest descent is hybridised with JI to accelerate the

convergence of the algorithm.

x(2) = x(0) + vr(0) +D−1(r(0) − vg(0)), (1.15)

where r(0) = b−Ax(0), v = r(0)
H
r(0)

(Ar(0))Hr(0)
and g(0) = Ar(0). The pseudocode of

JSDJI is given in Algorithm 1.5.

Algorithm 1.5 JSDJI based detection

1: Input: y, H, A, G Nr, Nt, σ
2

2: Compute initial solution : x(0) = D−1b
3: Perform the first joint iteration as x(2) = x(0) + vr(0) +D−1(r(0) − vg(0))

where r(0) = b−Ax(0), v = r(0)
H
r(0)

(Ar(0))Hr(0)
and g(0) = Ar(0)

4: for (m = 3,m++,m ≤ L) do
5: Update the initial solution iteratively as : x(m+1) = x(m) +D−1(b −

Ax(m))
6: end for
7: Output: Final solution after L iterations Q

[
x(L)

]

GS based detection

GS is another iterative technique proposed in the literature for solving the

set of linear equations. As discussed earlier in Section 1.2, MMSE detection

in mMIMO is nothing but finding a solution to the set of linear equation

with noisy measurements. However, due to channel hardening, the MMSE

solution turns out to be a near-optimal one. Therefore, the techniques which

can find the solution without explicitly computing the matrix inverse are of

high interest. GS method is one such technique that computes the solution

13
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iteratively. Similar to other iterative techniques such as Richardson and Ja-

cobi methods, this technique also exploits the positive semi-definite property

of the regularised Gram matrix A. The key idea behind the GS technique is

to represent the matrix A as

A = D+ L+ LH , (1.16)

where D, L and LH denote the diagonal matrix, strictly lower triangular

matrix, and strictly upper triangular matrix of A, respectively. The Gauss-

Seidel iterations are then used for refining the initial solution as

x(m+1) = (D+ L)−1
(
b− LHx(m)

)
. (1.17)

The pseudocode of GS based detection is shown in Algorithm 1.6

Algorithm 1.6 GS iteration based detector

1: Input: y, H, A, G Nt, Nr, σ
2

2: Compute initial solution : x(0) = D−1b
3: for (m = 1,m++,m ≤ L) do
4: Update the initial solution iteratively as : x(m+1) =

(D+ L)−1
(
b− LHx(m)

)

5: end for
6: Output: Final solution after L iterations Q

[
x(L)

]

CG based detection

CG is another way of solving a set of linear equations [50] where the search for

the solution is performed in the conjugate direction with a stepsize moving

towards the better solution iteratively. In CG based mMIMO detection [39],

the search direction and the step size for the movement are determined first,

and the solution is updated by moving a step in the search direction next.

The detailed steps involved in the CG method are shown in Algorithm 1.7.

14
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Algorithm 1.7 Conjugate gradient based detection

1: Input: y, H, A, G Nt, Nr, σ
2

2: Initialization: b = HHy, v(0) = O, r(0) = b, p(0) = r(0)

3: for (m = 1,m++,m ≤ L) do
4: e(m−1) = Ap(m−1)

5: α(m) = ‖r(m−1)/p(m−1)He(m−1)‖
6: v(m) = v(m−1) + α(m)p(m−1)

7: r(m) = r(m−1) − αme(m−1)

8: βm = ‖rm‖2/‖r(m−1)‖2
9: pm = rm + βmp(m−1)

10: end for
11: Output:Final solution after L iterations x(L) = Q[v(L)]

Iterative sequential detection

The iterative detection techniques discussed so far are based on the con-

ventional iterative methods that solve linear equations without computing

matrix inversion. On the other hand, iterative sequential detection (ISD)

is inspired from the SIC based MIMO detection where symbol transmitted

from each user is detected successively. The key idea in ISD is to detect the

symbol corresponding to each user while nulling all users’ interference. The

ISD algorithm starts with an initial solution x(0) = D−1b. Let x
(m)
i denote

the symbol detected corresponding to the ith user in the mth iteration. Now,

let us consider the case of detecting the symbol corresponding to the jth user

in the (m+ 1)th iteration, which can be written as

r
(m+1)
j = y −Hφ(m) + hjx

(m)
j (1.18)

where φ(m+1) = (x
(m+1)
1 , x

(m+1)
2 , · · · , x(m+1)j−1 , x

(m)
j , x

(m)
j+1, · · · , x(m+1)Nt

) is the sym-

bol update vector and hj is the jth column of channel matrix H. To detect

the symbol for the jth user, matched filtering of equation (1.18) is performed

followed by quantization operation as

x
(m+1)
j = Q

[
hH
j r

(m+1)
j

‖hj‖

]
. (1.19)
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The detected symbol is then updated in the symbol update vector φ(m+1).

These operations are performed iteratively for each user till the maximum

number of iterations is not completed. Algorithm 1.8 describes the pseu-

docode of the ISD algorithm.

Algorithm 1.8 Iterative sequential detection

1: Input: y, H, A, G Nt, Nr, σ
2

2: Compute initial solution : x(0) = D−1b
3: for (m = 1,m++,m ≤ L) do
4: for j = 1, j ++, j ≤ Nt do
5: Perform interference nulling : r

(m+1)
j = y −Hφ(m) + hjx

(m)
j

6: Detect symbol : x
(m+1)
j = Q

[
hH
j r

(m+1)
j

‖hj‖

]

7: Update symbol vector : φ(m+1) =
(x

(m+1)
1 , x

(m+1)
2 , · · · , x(m+1)j−1 , x

(m)
j , x

(m)
j+1, · · · , x(m+1)Nt

)
8: end for
9: end for
10: Output: Final solution after L iterations xL = φL

1.5 Contributions

The thesis’s objective is to design and analyze low complexity detection al-

gorithms for uplink symbol detection at the BS in wireless mMIMO systems.

In Chapter 2, a stochastic bio-inspired meta-heuristic algorithm is pro-

posed for large MIMO detection. The proposed modified firefly algorithm

(MFA) is motivated by the bioluminescence of fireflies and uses a probabilis-

tic metric to update solutions in the search space. Robustness of MFA is

verified under channel estimation errors at the receiver.

In Chapter 3, the drawbacks of NI and RI are eliminated by a novel and

robust hybrid pseudo-stationary algorithm for symbol detection in mMIMO

systems with a large number of users. At first, non-stationary iteration-based

NSNI is proposed to find the MMSE filter matrix approximate. NSNI over-

comes the limitations of NI and yields superior BER performance than NI
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with the same computational complexity. Next, stationary iteration-based

ISRI is introduced, where symbol-index based optimal step size is computed

for updating each element of the estimated symbol vector at each iteration.

RI and ISRI have the same computational complexity. However, ISRI out-

performs RI. Finally, NSNI and ISRI are combined to design a HA. Proposed

HA yields superior performance over NI, RI, JSDJI and CG in terms of BER

and computational complexity, under both perfect and imperfect CSI at the

receiver. The superiority and robustness of the proposed HA are validated

through simulations. Furthermore, an iterative symbol detection algorithm

is proposed based on nonstationary iterations. The residual error is com-

puted based on a low complexity initial symbol vector in the proposed non-

stationary iteration-based work. Next, iterative refinement is performed on

both the estimated error and the symbol estimate using a line search tech-

nique. Finally, in the nonstationary iteration-based detection, the output so-

lution is obtained by refining the estimated symbol with the estimated error.

Through simulations, it is observed that the proposed algorithms perform

superior to several symbol detection algorithms with comparable complexity

and achieves excellent BER performance for scenarios when the number of

users scales up in the system.

In Chapter 4, a novel low-complexity ordered sequential detection algo-

rithm is devised for an uplink mMIMO system with a massive number of

users. In this proposed RFOD algorithm, the concept of reliability feedback

mechanism (RFM) is introduced while deciding the symbol corresponding to

each user. First, a low-complexity initial solution is used to compute the qual-

ity metric for ordering the detection sequence. Next, for detecting the symbol

corresponding to each user, the interference from all other users is cancelled,

followed by RFM. Ordering of the detection sequence along with the reli-

ability feedback reduces the effect of error propagation. Through multiple

iterations of RFOD, an enhanced BER performance is achieved. Further-

more, RFOD outperforms MMSE with quadratic computational complexity

for large user mMIMO systems. Simulation results corroborate RFOD’s su-
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periority over the recently introduced mMIMO detection algorithms in terms

of computational complexity and the BER performance.

In Chapter 5, a sparsely connected deep unfolded network is developed to

outperform state-of-the-art mMIMO detection algorithms measured against

BER performance and computational complexity. The proposed SRN prunes

insignificant parameters while training and provides a low complexity detec-

tion model. Simulation results corroborate viability of the proposed detection

network compared to several existing mMIMO detection techniques.

In Chapter 6, a low-complexity tree-traversal aided detection technique

with social and cognitive knowledge of swarm optimization is proposed for

uplink symbol detection in MBM-mMIMO. Residual error-based ordering

technique is utilized for ordered detection of users in MBM-mMIMO systems.

A convergence of the proposed SID technique is analyzed. Simulations are

carried out to compare the BER performance of SID technique with state-

of-the-art detection techniques under both perfect and imperfect CSI at the

BS.

In Chapter 7, minimum support recovery error (MSRE) criteria based

two low-complexity sequential symbol detection technique is proposed for

the uplink of MBM-mMIMO system. After that, another improved detec-

tion technique is devised by enhancing the previous technique’s exploration

capability to a limited message space. Comparisons of proposed methods

are drawn with other state-of-art methods for the uplink MBM-mMIMO

systems. Simulation is drawn that supports the viability of the proposed

detection techniques in terms of error rate performance and computational

complexity.

1.6 Thesis outline

The rest of the thesis is organized as follows.

In Chapter 2, the symbol detection problem in an uplink large MIMO

systems is considered, and MFA is proposed for low complexity symbol de-

18



CHAPTER 1. INTRODUCTION

tection at the BS. MFA maintains a balance between exploring and exploiting

the search space compared to conventional evolutionary and other state-of-

the-art detectors for large MIMO systems.

In Chapter 3, approximate iterative detectors for uplink mMIMO systems

are explored. Considering the drawbacks of conventional AMI based and MII

detectors, two detectors based on pseudo stationary and nonstationary iter-

ations are proposed for low complexity symbol detection in uplink mMIMO

systems.

In Chapter 4, symbol detection in mMIMO systems with a large number

of users is considered. Two techniques, namely RFM and quality ordering

(QO), are proposed to improve the performance of conventional iterative de-

tectors. Finally, in this Chapter, reliability feedback aided ordered detection

algorithm is proposed for low complexity symbol detection in uplink mMIMO

systems. The algorithm outperforms state-of-the-art detectors for large user

mMIMO systems in terms of both BER and computational complexity.

In Chapter 5, deep learning (DL) algorithms are explored for symbol de-

tection in uplink mMIMO systems. A sparsely connected deep unfolded net-

work is proposed for uplink mMIMO systems. The proposed model utilizes

a masking technique that prunes the insignificant parameters while training

and results in a low-complexity detection network. The proposed technique

is found to outperform both computational complexity and BER compared

to iterative detectors for mMIMO systems.

In Chapter 6, mMIMO systems with MBM are investigated, and the

conventional MBM-mMIMO detectors are studied. The symbol detection

problem in the uplink MBM-mMIMO system is investigated from a graph-

theoretical perspective. A low complexity detection algorithm is proposed

based on graph theory and socio-cognitive knowledge of swarm intelligence.

The proposed algorithm outperforms several convention detectors for uplink

MBM-mMIMO systems.

In Chapter 7, considering the transmit MBM-mMIMO symbol vector’s

sparse nature, MSRE criteria is derived. Low complexity detectors with
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projected gradient descent based update rule formed from MSRE constraint

are proposed. The proposed algorithm is computationally and in terms of

performance more efficient than state-of-the-art MBM-mMIMO detectors.

In Chapter 8, the contributions of this thesis are summarized, and con-

clusions are drawn. Suggestions are also made for future works based on this

thesis.
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Chapter 2

Hybrid evolutionary algorithms

for large MIMO detection

2.1 Introduction

The system model (1.1) described in Chapter 1 shows that the received sym-

bol vector at the BS in uplink MIMO system experiences interuser interfer-

ence and noise. Hence, the robust detection of the transmit MIMO symbol

vector is of utmost importance to practically acquire the benefits of diversity

and multiplexing gains in MIMO systems. Thus, in this Chapter, the problem

of low complexity symbol detection in a large MIMO system is considered.

In this Chapter, a stochastic bio-inspired meta-heuristic algorithm is pro-

posed for large MIMO detection. The proposed algorithm is motivated by

fireflies’ bioluminescence and uses a probabilistic metric to update solutions

in the search space.

There are several evolutionary algorithms in the literature [12, 21–25]

which have gained prominence with communication and signal processing

researchers for providing improved performance at low computational com-

plexity [21]. Among the existing evolutionary algorithms, ACO and PSO are

two promising evolutionary algorithms that are applied in the literature for

symbol detection in uplink small and large scale MIMO systems. Both of
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these algorithms can be seen as exceptional cases of firefly algorithm (FA)

[51–54].

FA is a fast converging algorithm capable of achieving a better solu-

tion compared against ACO and PSO. Unlike PSO and ACO, FA involves a

randomization parameter which forces the estimated solution to wandering

around the optima for the symbol detection problem in large MIMO systems.

Consequently, the conventional FA sometimes converges to local optima and

needs to be modified for symbol detection in uplink mMIMO systems. In

this Chapter, the proposed MFA maintains a balance between exploration

and exploitation of the search space.

The following terminology is used in this Chapter. Boldface lowercase

and uppercase alphabets represent vectors and matrices respectively. u l v

denotes that there is a path l from vertex u to vertex v. An attribute a for

vertex u is represented by u.a. Similarly, an attribute a for an edge (u, v)

is denoted by (u, v).a and Adj[u] denotes the adjacent vertices of vertex u.

|| . ||p denotes the Lp-norm. xi refers to the ith element of a vector x. FEs

implies the ML-cost evaluations. (.)T denotes the matrix transpose.

The Chapter is organized as follows. Section 2.2 gives a brief overview

of FA followed by the description of the shortest path problem in Section

2.3. MFA is presented in Section 2.4. Section 2.6 analyzes the convergence

of MFA. Simulation results of MFA are discussed in Section 2.7. Complexity

analysis of MFA is presented in Section 2.8. Section 2.9 summarizes the

Chapter.

2.2 Overview of firefly algorithm

This section briefly describes the conventional FA.

2.2.1 Bioluminescence

Bioluminescence refers to the flashing of light from a firefly’s abdomen to

attract its mating partner [55]. Three rules govern the flashing character-
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istics of fireflies in FA [56]: (a) all fireflies are assumed to be unisex, (b)

attractiveness is directly proportional to the brightness of flashing, and both

attractiveness and flashing decrease with the distance d between the fire-

flies, and (c) the brightness of a firefly is determined by the landscape of the

objective function.

Algorithm 2.1 Firefly algorithm

1: Objective function f(x).
2: Generate initial population P .
3: Evaluate attractiveness β and light intensity I for each firefly xi ∈ x in

population P .
4: while N < Max-function-evaluations do
5: for i=1:Population-size do
6: for j=1:i do
7: if Ij > Ii then
8: Move firefly i to j
9: end if
10: Update β using (2.2)
11: Evaluate new solution using (2.3)
12: end for
13: end for
14: Arrange the fireflies in ascending order of objective function value and

update global best solution
15: N = N + 1
16: end while

2.2.2 Attractiveness

Attractiveness is one of the important parameters involved in FA for efficient

exploration of the search space. It is computed by the intensity I of flashing

light. The intensity I in a medium with a fixed absorption coefficient γ is

expressed as [54]

I = Ioe
−γdk , (2.1)

where Io refers to the light intensity at d = 0. Hence, attractiveness, β, of a

firefly is defined as
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β = βoe
−γdk (k ≥ 1), (2.2)

where βo is a firefly’s attractiveness at d = 0.

2.2.3 Movement of fireflies

In conventional FA, a firefly always tries to move towards an attractive firefly

using the following update equation [54]

xi = xi + βoe
−γdkij(xj − xi) + α[r1 − 0.5] (2.3)

The distance dij denotes the Cartesian distance between ith and jth fireflies

at positions xi and xj respectively. α refers to the randomization parameter

and r1 ∈ [0, 1]. The pseudo code [54] of FA is given in Algorithm 2.1.

2.3 Shortest path problem

The problem of finding the shortest path in a directed acyclic graph is dis-

cussed in this section. Consider a weighted, directed graph G(V,E), where

V denotes the set of vertices, and E refers to the set of edges. The shortest

path l from vertex u to v is defined by the following equality [57] .

w(l) = δ(u, v), (2.4)

where w(.) is the path-weight function. δ(u, v) is the shortest path-weight

function between u and v. u, v ∈ V and
(
u, v

)
∈ E. The weight function w

on the path l =< v0, v1, ..., vn > is computed as

w(l) =
n∑

i=1

w(vi−1, vi), (2.5)

where n denotes the number of vertices. The shortest path-weight function

δ(u, v) is defined as

25



2.4. MODIFIED FIREFLY ALGORITHM FOR SYMBOL DETECTION

δ(u, v) =




min {w(l) : u l v}
∞

, (2.6)

where u l v implies the existence of a path l from u to v.

2.4 Modified firefly algorithm for symbol de-

tection

In this section, MFA is presented for symbol detection in the uplink mMIMO

system. To apply, firefly algorithm for symbol detection in mMIMO systems,

the large MIMO system model is simplified as [58]

ŷ = Rx+ n̂, (2.7)

where ŷ = QTy, n̂ = QTn. Q and R are respectively the unitary matrix

and the upper triangular matrix obtained from the CSI matrix H = QR.

Hence, in terms of Euclidean distance , the ML cost function is simplified as

E(x) =
2Nr∑

i=1

ui.di, (2.8)

where

ui.di = ||ŷi −
2Nt∑

j=i

rijxj||22 (2.9)

ui.di = ||ŷi −
2Nt∑

j=i+1

rijxj − riixi||22, (2.10)

where rij ∈ R and xi ∈ x refers to the symbols to be detected. Each transmit

antenna is assumed as a firefly nest having two fireflies inside. Each firefly

inside a nest corresponds to a 4-QAM modulated symbol (after considering

a real-valued system model of large MIMO). As a consequence, the symbol
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Figure 2.1: Flow diagram of MFA.
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detection problem is modelled as a shortest path problem. A firefly from one

nest searches for its best mating partner in near nests. Two dummy nests

are considered as source and the destination vertices. The traversing starts

from the source and ends at the destination vertex, which maintains a queue

T of fireflies chosen from the nests. The detected symbols are the fireflies

dequeued from T in reverse order. The detection scheme is depicted as a

directed acyclic graph in Fig. 2.2.

Figure 2.2: MIMO detection in MFA.

The flow chart and pseudocode of the proposed algorithm are given in

Fig 2.1 and Algorithm 2.2. MFA works as follows. A firefly starts its journey

from the source vertex s and calculates the distance u.d to its nearby fire-

flies/symbols at vertex u and selects the firefly/symbol based on the attrac-

tiveness of the firefly/symbol. The following equation is used for converting

the distance metric to attractiveness value at the ith nest.

βui−1,ui
= e−γui.d

k
i (2.11)

The probability of selecting ith firefly by the (i− 1)th firefly from ith nest

is

pui−1,ui
=

βui−1,ui∑
ui−1∈B,(ui−1,ui)∈E

βui−1,ui

(2.12)
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Algorithm 2.2 Proposed MFA algorithm

1: T = {}
2: for iterations ≤ iT do
3: for i = 2Nt : 1 do
4: Choose si−1 as source
5: for each ui ∈ G.Adj[si−1] do
6: ui.di =∞
7: end for
8: while G.Adj[si−1] 6= {} do
9: B = G.Adj[si−1]
10: end while
11: for each ui ∈ B do
12: Compute Euclidean distance (ui.di) using (2.10)
13: Compute attractiveness βui

= e−γui.d
k
i

14: end for
15: psi−1,ui

=
βsi−1,ui∑

si−1∈B,(si−1,ui)∈E

βsi−1,ui

16: Select si based on psi−1ui

17: B = {}
18: T = T ∪ {si}
19: end for
20: Update the best solution.
21: end for
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In line 1 of Algorithm-2.2 , an empty queue T is initialised. At each

iteration, i, the symbol transmitted by the ith antenna is estimated in lines

3-19. The previously chosen symbol is updated as the new source vertex in

line 4. In lines 5-7, the distance to the adjacent vertices from the source is

set as infinity. Each adjacent vertex of the source is stored in the queue B

in lines 8-10. Euclidean distance using equation (2.10) is calculated in line

12 for each element of B. The attractiveness parameter of symbols from the

source is computed in line 13. In line 16, the symbol is chosen based on the

probability metric, p computed in line 15. The set B is reinitialized in line

17 as an empty set. Line 18 stores the detected symbols in T . The best

solution achieved so far is selected in line 20. The proposed algorithm stores

the detected symbols in T , starting from the last nest. The correct sequence

of the symbols corresponding to different antennas is obtained by dequeuing

the symbols in reverse order from queue T . The solution with the minimum

value of E(x) is considered the best solution.

2.5 Analytical expression of BER

Considering ˆ̃x as the estimated symbol vector, the term || H̃(x̃ − ˆ̃x) ||22 can

be rewritten as || H̃(x − x̂) ||22=
∑Nr

i=1 h̃i(x̃ − ˆ̃x)(x̃ − ˆ̃x)†h̃†i , where h̃i is the

ith row of the matrix H̃. Each element of H̃ is independent and identically

distributed. Moreover, the rank of the matrix (x̃ − ˆ̃x)(x̃ − ˆ̃x)† is unity.

Hence, MGF corresponding to average instantaneous received SNR γ̃ is [59]

Yγ(s) =
(
1− sγ̃

)−Nr

. Thus, probability of error is computed as [60]

Pe ≤
1

π

∫ π/2

0

Yγ(−
κ2

2 sin2 θ
)dθ

≤ c2F1(1, Nr +
1

2
;Nr + 1;

Nr

Nr + κ2γ̃
),

where c =
√
κΓ(Nr+

1
2
)

2
√
π(1+κ)m+1

2 Γ(Nr+1)
. 2F1(., .; .; .) refers to hypergeometric function,

Nr is the number of receive antennas and κ is a modulation dependent pa-
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rameter.

2.6 Convergence analysis of MFA

In this section, the theoretical convergence of MFA is analyzed. The upper

bound on the probability of reaching the optimal solution at least once, for

a fixed iteration, iT gives crucial information on the convergence character-

istic of MFA. Necessary definitions are stated below before analyzing the

convergence of MFA.

Definition 1 Let S be a finite region where n = 22Nt+1 nodes are distributed

in a directed acyclic graph G = (V,E) where V is the set of nodes and E is

the set of vertices. V = {v1, v2, ..., vn}

Definition 2 Let D be a dynamic set of already visited nodes and I = V ∩Dc

denotes the set of nodes to be visited. If a node belongs to set D, it can not

be visited again. Let Z be the set of neighborhood nodes directly linked to the

present node.

Remark 1 It is obvious that all the nodes in I are the nodes that can be

visited in future, however, all the nodes in set V or I will not be visited for

searching. The actual set of nodes to be visited is (V ∩Dc) ∩ Z.

Definition 3 Let L = {l1, l2, ..., lm} be the set of m = 22Nt feasible unidirec-

tional paths from the source node v1 to the destination node vn in the directed

acyclic graph G = (V,E) where v1, vn ∈ V , |L| = 22Nt. A feasible path from

source to destination contains a node at most once.

Definition 4 Let l∗ ∈ L be the unique optimal path to be determined. The

attractiveness value is assumed to satisfy βvi,vj(w) > 0 along the optimal path

l∗ for (vi, vj) ∈ E and partial path w ⊂ V . The term partial path denotes

the path traversed so far in search of the optimal path. As optimal path l∗ is

a collection of nodes, partial path can be understood as a subset of l∗. When

the optimal path is achieved, partial path merges with the optimal path.
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Definition 5 Let (Ω, F , P) be the probability space associated with the

search process of the proposed algorithm. Ω be the sample space, F be the set

of events and P be the probability measure defined over the probability space.

Definition 6 Let Ft, Bt and H be the subsets of F . Et denotes the event

that the optimal path l∗ is found in tth iteration. Bt is the event that the

optimal path l∗ is not found in tth iteration. Hence, Bt = Ec
t . If H denotes

the event that the optimal path is found atleast once in t iterations. Hence,

H = (
i=t∩
i=1
Bi)

c

Definition 7 Two variables K and R are considered such that

K = min{βvi,vj(w) ∈ l∗, w ⊂ l∗} > 0 (2.13)

and

R = max{βvi,vj(w) ∈ l∗, w ⊂ l∗} < 1 (2.14)

Proposition 1 The probability P(Bt) that the optimal solution l∗ is not

found in tth iteration is lesser or equal to (1−K2Nt)t.

Proof Since, βvi,vj(w) > 0 for (vi, vj) ∈ E and w ⊂ l∗, the following

equality can be established for conditional transition probabilities

pvi,vj(t, wvi |wvi−1
) =

βvi,vj(wvi)∑
vk 6∈wvi

,(vi,vj)∈E
βvi,vk(wvi)

(2.15)

where wvi denotes the partial path from the source node v1 to the current

node vi and i ∈ R = {1, 2, 3, ..., n}.
By equation (2.13), the inequality can be written as

vi=2Nt∏

vi=1,vj∈(V ∩Dc)∩Z
pvi,vj(t, wvi |wvi−1

) ≥
vi=2Nt∏

vi=1,vj∈(V ∩Dc)∩Z
K (2.16)

P(Et) ≥
vi=2Nt∏

vi=1,vj∈(V ∩Dc)∩Z
K (2.17)
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P(Et) ≥ K2Nt (2.18)

P(Bt) ≤ 1−K2Nt (2.19)

Proposition 2 P(Bt|B1 ∩ B2 ∩ B3 ∩ ... ∩Bt−1) ≤ (1−K2Nt)t

Proof This proposition is obvious because the inequality (2.16) holds

independent of previous conditions and B1 ∩ B2 ∩ B3 ∩ ... ∩ Bt−1. Hence,

P(Bt|B1 ∩ B2 ∩B3 ∩ ... ∩ Bt−1) ≤ (1−K2Nt)t

Theorem 1 The proposed algorithm achieves the optimal path (solution) l∗

at least once in a fixed iteration t = iT with a probability P = 1.

Proof From definition (6), H = (B1 ∩ B2 ∩ ... ∩ Bt)
c.

P(H) = P(B1 ∩B2 ∩ ... ∩Bt)
c. (2.20)

P(H) = 1− P(B1 ∩B2 ∩ ... ∩ Bt). (2.21)

By using proposition (1) and (2),

P(H) ≥ 1− (1−K2Nt)t. (2.22)

P(H) ≥ 1− f(t, Nt). (2.23)

where f(t, Nt) = (1 −K2Nt)t. From the above expression, it concludes that

f(t, Nt) tends to zero for a sufficient large value of t = iT when Nt is fixed.

Hence, when t = iT is a relatively large value,

P(H) ≥ 1− ǫ ≈ 1. (2.24)

Remark An upper bound on iT can be found from equation (2.23) and

(2.24),
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log ǫ = iT log(1−K2Nt). (2.25)

Using inequality log x ≤ x− 1 for x > 0,

iT ≤ log(1/ǫ)

K2Nt
. (2.26)

The number of iterations is upper bounded by the number of transmit

antennas Nt, and the minimum value of attractiveness parameter K. The

parameter K has an inverse relation with the modulation order. Conse-

quently, keeping Nt fixed, the number of iterations required for convergence

to near-ML performance increases with the modulation order.

2.7 Simulation results

In this section, the simulation results for BER performance comparison and

convergence of MFA are presented. MFA is simulated in matrix Laboratory

(MATLAB) for 4x4, 8x8 and 16x16 MIMO systems with 4-QAM and up

to 103 errors are counted for averaging during simulations. The simulation

parameters for MFA are listed in Table 2.1.

In Figs. 2.3 and 2.4, performances of MFA are compared with MMSE,

MMSE-OSIC and SD techniques. As observed in Figs. 2.3 and 2.4, MFA

outperforms MMSE and MMSE-OSIC in terms of BER performance, and

provides near-ML performance. An SNR gain of 2.73 dB for a target BER

of 10−2 is achieved in MFA over MMSE-OSIC as illustrated in Fig. 2.4.

Fig. 2.5 illustrates the performance of MFA with an increase in the num-

ber of antennas. Improvement in BER performance with an increase in the

number of transmit and receive antennas makes MFA an ideal candidate for

large MIMO detection. A comparison of BER performance of MFA with

several conventional detection techniques is shown in Table 2.2.

In Fig. 2.6 and 2.7, MFA is also compared with nature-inspired BPSO,

SPSO, MPSO, UCCACO, CCACO, FA and FANA algorithms for symbol
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Figure 2.3: BER performance comparison of MFA for 8 × 8 large MIMO
system with 4-QAM modulation.
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Figure 2.4: BER performance comparison of MFA for 16 × 16 large MIMO
system with 4-QAM modulation.
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Figure 2.7: Comparison of BER performance of MFA with other nature-
inspired algorithms for 16×16 large MIMO system with 4-QAM modulation.
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Figure 2.8: BER performance of MFA under CSI error at the receiver for
8× 8 large MIMO system with 4-QAM modulation.
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Table 2.1: Simulation parameters for the proposed MFA algorithm with 4-
QAM modulation.

Algorithm parameters Value
Absorption coefficient (γ) 0.5
k 1
No of feasible paths (Nl) 22Nt

Table 2.2: Comparison of BER performance of MFA with conventional
MIMO detection algorithms

No of
Antennas MIMO De-

tector
BER
(SNR=12 dB)

Approximate
SNR gain over
MMSE for a
targeted BER of
10−2

Nt = Nr = 16 MMSE 3.366× 10−2 0 dB
MMSE-
OSIC

1.173× 10−2 4.2 dB

ML 2.4× 10−4 7.69 dB
Proposed 7.719× 10−4 6.93 dB

Nt = Nr = 8 MMSE 3.7× 10−2 0 dB

MMSE-
OSIC

1.375× 10−2 4.4 dB

ML 1.32× 10−3 7 dB
Proposed 1.803× 10−3 7 dB
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Table 2.3: Description of different parameters used for simulation of large
MIMO detection algorithms.

Parameter Description

γ Absorption coefficient.
βo Attractiveness at the source.
α Mutation coefficient.
αdamp Mutation coefficient damping ra-

tio.
βmin Minimum value of attractiveness.
kbest Number of neighborhood fireflies.
c1 Cognitive parameter of the

swarm.
c2 Social parameter of the swarm.
ω Inertia weight.
ω1 Pheromone evaporation coeffi-

cient.
α1 Pheromone weight controlling pa-

rameter.
ρ Multiplicative constant for con-

gestion control.
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Table 2.4: Abbreviations and simulation parameters of different nature-
inspired MIMO detection algorithms.

Abbreviation Parameters

Binary particle swarm optimization
(BPSO) [32]

c1 = 2, c2 = 2, ω = 2

Standard particle swarm optimization
(SPSO) [61]

c1 = 2, c2 = 2, ω = 2

Memetic particle swarm optimization
(MPSO) [62]

c1 = 2, c2 = 2, ω = 2

Congestion control ant colony opti-
mization (CCACO) [12]

α1 = 0.8, ρ = 0.3,
ω1 = 0.5

Unordered congestion control ant
colony optimization (UCCACO) [12]

α1 = 0.8, ρ = 0.3,
ω1 = 0.5

FA [54] γ = 1, β0 = 2, α =
0.2, αdamp = 0.98,
m = 2

Firefly algorithm with neighborhood
attraction (FANA) [63]

γ = 1, β0 = 2, βmin =
0.2, α = 0.2, kbest = 2,
m = 2

Table 2.5: BER performance of MFA under imperfect CSI at Nt = Nr = 8
for 4-QAM modulation.

Error Approximate SNR gain over MMSE for targeted
BER of 10−1

e=0% 1.4 dB
e=5% 1.2 dB
e=10% 1 dB
e=20% 0 dB
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detection in large MIMO systems. The simulation parameters required for

implementing those nature-inspired algorithms for large MIMO detection are

listed in Tables 2.3 and 2.4.

As depicted in Fig. 2.6 for 8 × 8 large MIMO system, SNR gains of

1.36 dB, 1.3 dB and 3.69 dB are achieved in MFA over BPSO, CCACO and

SPSO respectively for a targeted BER of 10−2. Moreover, Fig. 2.7 shows that

MFA outperforms BPSO and SPSO with SNR gains of 2.5 dB and 2.3 dB

respectively of target BER of 10−2, and achieves 2.3 dB gain over CCACO

for targeted BER of 10−3. However, the BER performances of FA and FANA

are far inferior compared to MFA. Hence, Figs. 2.6 and 2.7 prove that MFA

is an appropriate choice for large MIMO detection.

Robustness of MFA is observed from Figs. 2.8 and 2.9. Fig. 2.8 shows

that MFA is capable of providing near-ML performance even at 5% CSI

mismatch. As illustrated in Fig. 2.9, by increasing the number of antennas

even under CSI mismatch conditions, MFA provides improved performance.

For Nt = Nr = 2 and e = 10%, the BER degrades to 1.77×10−2 for SNR= 12

dB. However, the BER improves to 7.94× 10−3 and 3.1× 10−3 when Nt and

Nr are increased to Nt = Nr = 4 and Nt = Nr = 8 respectively for SNR= 12

dB. A comparative analysis of SNR gains in MFA for targeted BER of 10−1

under different imperfect CSI scenarios is summarized in Table 2.5. This

highlights the robustness of MFA under practical consideration.

The performance of MFA depends on two important parameters: the

absorption coefficient γ and the variable k. The absorption coefficient γ

plays a vital role in the convergence and performance of MFA. A comparative

analysis of various values of γ on the performance of MFA is illustrated in Fig.

2.10. High values of γ lead to rapid convergence to a suboptimal solution.

Based on simulations, the value of γ is found to be 0.5.

Another crucial parameter that affects the convergence and performance

of MFA is the variable k. Analysis on the effect of the above parameter on

the performance of MFA is shown in Fig. 2.11. The value of the constant k

must be kept as unity to get a rapid convergence of MFA to a near-optimal
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Figure 2.11: Analysis of performance of MFA with variation in k for 8 × 8
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result.

Figs. 2.12 and 2.13 show the convergence behaviour of MFA. As observed

from Figs. 2.12 and 2.13, MFA converges to near-ML solution as the number

of iterations increases. It is also observed that as the number of antennas

increases, the number of iterations required for convergence of MFA also

increases.

2.8 Complexity analysis

In this section, the computational complexities of contending detection algo-

rithms are compared. The computational complexity of MFA is computed in

terms of the number of real-valued multiplications required while estimating

the transmitted symbols. In Fig.2.14, the computational complexity of the

proposed algorithm is plotted against different numbers of antennas Nt = Nr

and iterations iT . As observed from Fig. 2.14, the computational complex-

ity of MFA increases as the number of antennas increases. However, in Fig.

2.14, it is observed that as the number of antennas increases, the difference

in computations decreases and becomes nearly equal for various values of

iT . Additionally, MFA uses a significantly fewer number of computations

than ML detection because the complexity of ML detection exponentially

increases with the constellation size A. Consequently, Fig. 2.14 concludes

that the proposed detection algorithm is computationally more efficient than

the ML. Hence, the MFA is suitable for deployments where a large number

of antennas are deployed in the MIMO systems.

2.9 Summary

This Chapter is devoted to the symbol detection problem in large MIMO

systems. In this Chapter, a novel and robust symbol detection algorithm

MFA motivated by the concept of bioluminescence of fireflies are proposed.

A new path selection strategy based on probability metric has been proposed
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for FA. Randomness in FA is reduced by devising an effective value of the ab-

sorption coefficient, which improves quality of the solution, and avoids early

convergence to a local minimum. Simulation results support the improved

performance of MFA over MMSE, MMSE-OSIC, UCCACO, CCACO, BPSO,

MPSO, SPSO, FA and FANA based MIMO detection techniques. The BER

performance of MFA is near-ML which makes the algorithm a suitable can-

didate for large MIMO detection. Moreover, to validate the robustness of

MFA, BER performance is also analyzed under different CSI estimation er-

rors. It is observed that MFA is capable of yielding near-ML solutions under

considerable CSI mismatch, and the performance of the algorithm improves

with an increase in the number of antennas even under CSI estimation error

scenarios at the BS.

A significant improvement in spectral efficiency is achieved in mMIMO

and MBM-mMIMO systems compared to large MIMO systems. However,

due to high computational complexity and degraded performance, the al-

gorithms proposed for large MIMO are not suitable for mMIMO systems.

Hence, in the subsequent chapters, symbol detection in uplink mMIMO and

MBM-mMIMO systems are explored, and viable low complexity detection

algorithms are proposed.
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Chapter 3

Improved approximate

algorithms for massive MIMO

detection

3.1 Introduction

In mMIMO systems, hundreds of BS antennas are deployed to serve few

tens of users, resulting in high spectral efficiency and high link reliability

in mMIMO compared to large MIMO systems. Consequently, as a massive

number of antennas are involved in mMIMO systems, the existing evolu-

tionary algorithms discussed and the MFA algorithm proposed in Chapter

2 are not computationally efficient for symbol detection in uplink mMIMO

systems.

This Chapter is devoted to designing and studying low complexity it-

erative detection algorithms for uplink mMIMO systems. In this Chapter,

the drawbacks of existing low-complexity iterative detection techniques are

explored, and improved approximate iterative algorithms are proposed for

uplink mMIMO systems. Existing detection algorithms for mMIMO systems

are based on AMI [6, 33, 64] and MII [39, 65] and approximates high di-

mensional matrix inversion to avoid cubic order computational complexity
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in terms of the number of transmit antennas. Among AMI techniques, NI is a

promising but simplest technique for finding approximate matrix inversion in

mMIMO systems. However, the computational complexity of NI intractably

increases with the number of iterations. Alternatively, RI is the simplest MII

based technique [65] for symbol detection in mMIMO; however, RI requires a

large number of iterations to yield a near-MMSE solution. Besides, most of

the existing iterative detection techniques [6, 33, 39, 65] perform iterations

over an initial estimate of the transmitted symbol vector, which may lead

to error propagation if the initial approximation of the transmitted symbol

vector is erroneous.

In this Chapter, at first, a low-complexity hybrid pseudo-stationary it-

erative detection algorithm, HA, is developed by removing the limitations

of NI and RI for mMIMO systems. The proposed HA overcomes the draw-

backs of NI and RI, and exploits their advantages by integrating two novel

techniques, NSNI and ISRI, which are proposed in this Chapter. Major con-

tributions in HA are : a) a nonstationary iteration based NSNI is proposed to

improve the performance and overcome the drawbacks of NI for approximate

matrix inversion in mMIMO, b) the optimal step size for each symbol-index

is computed to boost BER performance of RI with a small number of iter-

ations, and a novel iterative sequential method, ISRI is proposed c) a novel

and robust algorithm HA, based on NSNI and ISRI is proposed to further

boost BER performance for symbol detection in mMIMO systems, d) BER

superiority, robustness and low complexity of proposed HA compared to NI,

RI, JSDJI and CG is validated through simulations. Next, in this Chapter,

the iterative line search (ILS) algorithm is proposed to achieve near-optimal

BER performance in uplink mMIMO systems. In ILS, at first, the residual

error is computed based on a low complexity initial symbol vector. Iterative

refinement is performed on both the estimated error and the symbol estimate

using a line search technique. Finally, the output solution is obtained by re-

fining the estimated symbol with the estimated error. Through simulations,

it is observed that the proposed HA and ILS algorithms perform superior to
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several symbol detection algorithms with comparable complexity and achieve

superior BER performance.

The following notations are used in this Chapter. | . | denotes absolute

value. 〈., .〉 and 〈., .〉F denotes inner product, and Frobenius inner product

respectively. [.◦.] implies Hadamard product. || . || refers to the matrix norm.

∇(.) denotes the gradient operator. x(∗) refers to the estimated symbol vector

at convergence. (.)−1 denotes matrix inverse.

The Chapter is organized as follows. Proposed HA is presented in Section

3.2. Error refinement based ILS algorithm is discussed in Section 3.3. Finally,

Section 3.4 summarizes the Chapter.

3.2 Hybrid Pseudo-stationary Iterative De-

tector

In this section, NSNI and ISRI algorithms are discussed, followed by the

promising HA. NI performs stationary iterations and yields suboptimal so-

lution for less number of iterations. NSNI enhances NI by introducing non-

stationary iterations where the step size at each iteration changes with the

search direction. The performance of RI is improved in ISRI by computing

the step sizes from the eigen values of the approximate inverse of the MMSE

filter matrix, instead of exploiting a fixed step size for each iteration. Finally,

to further boost BER performance, NSNI and ISRI are integrated into a low

complexity pseudo-stationary HA.

3.2.1 Initial approximation

One of the interesting properties of mMIMO is the channel hardening phe-

nomenon [66], which implies that the off-diagonal elements of gram matrix G

become weaker compared to diagonal elements when the number of antennas

increases (Nr ≥ Nt). Mathematically,
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lim
Nr→∞

HHH

Nr

→ I,
Nr

Nt

= α (3.1)

As a consequence, the MMSE filter matrix A is also diagonally dominant.

Hence, A−1 is approximated exploiting the diagonal dominant nature of A.

Hence,

W(0) ≈ D−1 (3.2)

where D is the diagonal matrix of A, W(0) is an approximation of A−1 and

W(∗) = A−1.

3.2.2 NSNI for uplink mMIMO detection

This subsection introduces proposed NSNI for matrix inversion in mMIMO

systems. NI for the mMIMO system is derived from 1st order Taylor series

expansion, and gives an approximate inverse of MMSE filter matrix A. The

(k + 1)th iteration of NI is

W(k+1) = W(k)(2I−W(k)A)

= W(k) +W(k)T(k), (3.3)

where T(k) =
(
I −W(k)A

)
is the iteration matrix and W(k+1) denotes the

inverse of matrix A after (k + 1)th iterations. The iteration matrix T(k) =

I−W(k)A eventually must vanish to assure convergence of W(k+1) to W(∗) =

A−1. Hence, each column vector T
(k)
i can be considered as a search direction

which leads W
(k)
i to the optimal vector W

(∗)
i . Hence, the update rule (3.3)

can be formulated as stationary iterative process.

W
(k+1)
i = W

(k)
i +W(k)T

(k)
i (3.4)
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In the above iterative process (3.4), iteration matrix W(k) does not depend

on search direction T
(k)
i at iteration k, which results in the early convergence

of NI to suboptimal solutions with small number of iterations. Hence, to

improve the convergence speed and performance of NI, NSNI is proposed as

W(k+1) = W(k) + γ(k)o (I−AW(k)) (3.5)

In equation (3.5), nonstationary step size γ
(k)
o adapts itself with search direc-

tion (I−AW(k)) and hence, yields superior performance than NI with same

computational complexity. Inspecting the columns of equation (3.5),

W
(k+1)
i = W

(k)
i + γo

(k)
i (Ii −AW

(k)
i ), (3.6)

where Ii denotes the ith column of I. T
(k)
i = (Ii − AW

(k)
i ) is defined as a

search direction for the nonstationary iterative process (3.6) and γo
(k)
i as the

nonstationary step size. From equations (3.5) and (3.6), assuring convergence

of W(k+1) to W(∗), it is obvious that
〈
T(k),T(k+1)

〉
F
= 0. Since T is real,

[
T(k) ◦T(k+1)

]
i,j

= 0. Hence,

〈T(k)
i ,T

(k+1)
i 〉 = 0 (3.7)

Hence, from (3.6) and (3.7), γo
(k)
i is computed as follows

γo
(k)
i =

T
(k)
i

(
T
(k)
i

)T

(
AT

(k)
i

)T

T
(k)
i

(3.8)

If equation (3.2) is considered as initial approximation of W, it can be shown

from MMSE filter matrix A that the smallest diagonal element of D corre-

sponds to the minimum value of error and hence, it yields the smallest step

size [40]. Hence, to reduce the computational load in each iteration k with-

out compromising with exploitation capability of the algorithm, a constant
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value of γ
(k)
o = γo

(k)
j is considered ( where j denotes the index corresponding

to the minimum diagonal element of D) for all indices of x at an iteration k,

instead of computing γo
(k)
i for each index i. However, the value of γ

(k)
o = γo

(k)
j

must change with iteration k. The pseudocode of proposed NSNI is given in

Algorithm 3.1.

Algorithm 3.1 Proposed NSNI algorithm

1: Inputs: A,D,b
2: Outputs: W(∗)

3: Initialization: G = HTH, b = HTy, W(0) = D−1

4: for k = 1, k ≤ L do
5: Choose index ’i’ corresponds to minimum diagonal element of W(k−1)

6: T
(k)
i = Ii −AW

(k−1)
i

7: γ0
(k)
i =

(
T

(k)
i

)T

T
(k)
i(

AT
(k)
i

)T

T
(k)
i

8: Set γ0
(k) = γ0

(k)
i

9: W(k) = W(k−1) + γo
(k)T(k)

10: end for
11: W(L) ≈W(∗)

3.2.3 ISRI for uplink mMIMO detection

In this subsection, ISRI for symbol detection in the uplink mMIMO system is

presented. RI [65] for mMIMO uses the fixed step size ω = 0.00645. However,

choosing a fixed step size for all indices results in low convergence speed or

convergence to suboptimal points. Hence, it is proposed to use different step

sizes for different indexes. From Banach lemma [40], the iterative process

(3.3) converges if || T ||< 1. Consequently, the spectral radius ρ(T) ≤||
T ||< 1 [40]. Suppose, 0 < λ1 ≤ λ2... ≤ λi ≤ ... ≤ λn are the eigen values of

A. Hence, to assure convergence of (3.3),

lim
k→∞

T(k) = 0 (3.9)
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or,

lim
k→∞

(1− ωiλi)
(k) = 0 (3.10)

From the equation (3.10), it is concluded that | (1 − ωiλi) |< 1. Hence, to

improve the performance of RI, ISRI with step size ωi =
1
λi

is proposed as,

x
(k+1)
i = x

(k)
i + ωi

(
bi −

2Nt∑

j=1

ai,jx
(k)
j

)
(3.11)

3.2.4 Pseudo-stationary HA for symbol detection in

mMIMO

In this subsection, the hybrid pseudo-stationary iterative algorithm, HA

based on NSNI and ISRI is proposed. Since NSNI utilizes nonstationary it-

erations, it can achieve superior performance compared to NI with the same

computational complexity. Hence, proposed HA utilizes a single iteration of

the proposed NSNI method to generate an initial solution.

x(1) = W(1)b, (3.12)

where W(1) which is obtained by single iteration of NSNI, is an approximate

inverse of MMSE filter matrix A. Next, k ≤ (L − 1) iteration of ISRI is

performed on initial solution x(1) to enhance the performance. It is worth

mentioning that NSNI requires more matrix-vector multiplications than ISRI.

Hence, only a single iteration of NSNI and multiple (L−2) iterations of ISRI

are performed to reduce computational load of HA. The pseudocode of the

proposed HA is given in Algorithm 3.2.
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Algorithm 3.2 Proposed HA algorithm

1: Inputs: A,D,b
2: Output: x(∗)

3: Initialization: G = HTH, , b = HTy, W(0) = D−1

4: Compute W using NSNI (Single-iteration)
5: x(1) = W(1)b
6: for k = 2, k ≤ L do
7: for i = 1, i ≤ 2Nt do
8: Choose relaxation parameter ωi =

1
λi

9: x
(k)
i = x

(k−1)
i + ωi

(
bi −

∑2Nt
j=1 ai,jx

(k−1)
j

)

10: end for
11: end for
12: k = k + 1
13: x(∗) = x(L)

3.2.5 Convergence analysis of HA

In this subsection, the convergence of HA is theoretically analysed. To prove

convergence of the proposed hybrid detection algorithm, consider the errors

e1 and e2 associated with (3.6) and (3.11) respectively as

e
(k+1)
1 = Ii −AW

(k)
i (3.13)

e
(k+1)
2 = x(k+1) − x(k) (3.14)

From equations (3.11) and (3.14),

e2
(k+1)
i = (1− ωiai,i)e2

(k)
i

= (1− ωiai,i)
ke2

(1)
i (3.15)

From equations (3.6) and (3.13),
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e
(k+1)
1 = (1− γ

(k)
0 A)e

(k)
1 (3.16)

Hence, from equations (3.15) and (3.16),

lim
k→∞

e2
(k+1)
i = lim

k→∞
(1− ωiai,i)

ke1
(1) (3.17)

= lim
k→∞

(1− ωiai,i)
k(Ii − γ(0)o A)e

(0)
1 (3.18)

Since A is positive semi definite for mMIMO systems, D = A−1 and ωi =
1
λi
.

Hence, it can be shown that

lim
k→∞

e
(k+1)
2 ≈ 0 (3.19)

Consequently, the error e vanishes in the proposed HA with the number

of iterations. As a result, the proposed HA eventually converges to x(∗). In

addition, proposed NSNI and ISRI methods improve the convergence rate of

HA.

3.2.6 Simulation results and discussions

This subsection compares and analyzes the simulation results for the pro-

posed NSNI, ISRI and HA detection algorithms with NI, RI, JSDJI and

CG detection algorithm to justify superiority and robustness of the proposed

detection algorithms. For all simulations, 64-QAM modulation scheme, rate-

1/2 convolution code with [1330, 1710] polynomial, and hard decision Viterbi

decoder [67] are considered .

Comparison between NSNI and NI: Fig. 3.1 analyzes BER performances

of proposed NSNI and conventional NI methods. It is observed from Fig.

3.1 that a single iteration of NSNI outperforms two iterations of NI with
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Figure 3.1: BER performance comparison between NSNI and NI for 64-QAM
modulation.

86.8%, 77.7% and 80.6% improvement in BER performance at SNR=12 dB,

respectively for 128× 10, 128× 16 and 128× 32, mMIMO systems.

Comparison among ISRI , RI, JSDJI and CG: BER performance of

proposed ISRI method is compared with RI, JSDJI and CG in Fig. 3.2 for

128 × 16 and 128 × 32 mMIMO systems. As depicted in Fig. 3.2(a), SNR

gains of 2.5 dB, 3.2 dB and 4.1 dB are achieved in ISRI over RI, JSDJI

and CG respectively at a targeted BER of 10−3 for 128 × 16 mMIMO sys-

tem. Similarly, in Fig. 3.2(b), ISRI outperforms other contending detection

algorithms for 128× 32 mMIMO systems.

Comparison of BER performance of HA with other detection algorithms:

Fig. 3.3(a) depicts that the proposed HA with L = 2 outperforms state-of-art

mMIMO detection algorithms with L = 4 for 128×16 mMIMO system. Fig.

3.3(a) also depicts that an SNR gain of 2.45 dB is achieved in the proposed

HA with L = 2 as compared to CG with L = 4 for a target BER of 10−2.

Moreover, at SNR=16 dB, proposed HA shows BER improvements of 79%
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Figure 3.2: BER performance comparison among ISRI and other iterative
mMIMO detection algorithms for 64-QAM modulation.
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Figure 3.3: BER performance comparison among HA and other mMIMO
detection algorithms for 64-QAM modulation.
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compared to RI for 128× 16 mMIMO system.

BER performance of HA when users scale up: To demonstrate the effect

of increasing the number of users Nt, the BER performance of the proposed

HA for 128×32 mMIMO system is investigated. Fig. 3.3(b) reveals that the

proposed HA achieves superior BER performance than JSDJI, RI and CG,

even if the number of users increases in mMIMO systems. An SNR gain of

approx 3.8 dB is observed in the proposed HA with L = 2 as compared to

CG with L = 4 for a target BER of 10−3.

Complexity analysis: The computational complexities of the proposed

NSNI, ISRI and HA are compared with NI, RI, CG and JSDJI based on

the number of real valued multiplications. The computational complexities

in calculating the initial parameters and the values G, A, D, and D−1 are

ignored in comparing computational complexities as these initial parameters

require equal amount of computational loads for all mMIMO detection al-

gorithms mentioned above. Table 3.1 compares the number of real valued

multiplications involved in different mMIMO detection algorithms.

Table 3.1: Comparison of computational complexity of different detection
algorithms.

Detection algo-

rithm

Real valued multi-

plications

NI [33] (L = 2) 12N2
t + 2Nt

RI [65] 4LN2
t + 2LNt

CG [39] 4LN2
t + 8LNt

JSDJI[40] (4N2
t − 2Nt)L+ 6Nt

NSNI (Proposed)
(L = 1)

12N2
t + 2Nt

ISRI (Proposed) 4LN2
t + 2LNt

HA (Proposed) 2(2L+3)N2
t +2(L+

1)Nt

As shown in Table 3.1, it is observed that NSNI and NI have equal com-

putational complexities for mMIMO systems. However, it is depicted in Fig.

3.4 that a single iteration of NSNI yields superior BER performance over NI.

This corroborates computational efficiency of NSNI. On the other hand, as
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L = 2, under different imperfect CSI at the receiver.
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shown in Table 3.1, ISRI and RI require approximately the same number of

multiplications, however, Fig. 3.4 shows that ISRI outperforms RI for same

number of iterations, L = 2.

As shown in Fig 3.4, HA with L = 2 takes approximately 14N2
t multipli-

cations to achieve BER=5.72 × 10−6 at SNR=16 dB. However, CG, JSDJI

and RI with approximately 16N2
t multiplications produce inferior BER per-

formances as compared to HA with approximately 14N2
t multiplications.

Robustness Analysis: Fig. 3.5 validates the robustness of HA under im-

perfect CSI at the receiver. As depicted in Fig. 3.5, HA shows promising

BER performance even under CSI mismatch of e = 4% with Nt = 32 and

Nr = 128. Negligible SNR losses of approximately 0.1 dB, 0.5 dB and 2.3

dB are observed from Fig. 3.5 at e = 4%, e = 8% and e = 16% respectively

for a targeted BER of 3 × 10−3 as compared to perfect CSI at the receiver.

It proves the robustness of HA.

3.3 Error refinement-based line search for mas-

sive MIMO detection

The proposed ILS algorithm is presented in this section.

3.3.1 ILS for symbol detection in mMIMO systems

ILS starts with an initial estimate of the transmitted symbols. Utilizing the

channel hardening phenomenon, a suboptimal initial estimate of the trans-

mitted symbol vector is found as [38]

x̂(0) = D−1b, (3.20)

If x(∗) = A−1b is the desired symbol vector to be detected, the error e(∗) of

initial estimate symbol vector x̂(0) is

e(∗) = x(∗) − x̂(0) (3.21)
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Now, the accuracy of the initial solution x(0) can be improved if an approx-

imate estimate ê(1) of error vector e(∗) is iteratively refined by solving the

system of linear equations given by

Aê(1) = r(1), (3.22)

where r(1) is the residual vector given by

r(1) = b−Ax̂(0) (3.23)

Algorithm 3.3 Proposed ILS algorithm

1: Input: A,D,G, x̂(0),b
2: Outputs: x(∗)

3: for k = 1, k ≤ L do
4: r(k) = b−Ax̂(k−1)

5: ê(k) = D−1r(k)

6: t0
(k) = r(k) −Aê(k)

7: γ0
(k) =

(
t0

(k)

)T

t0
(k)

(
At0

(k)

)T

t0
(k)

8: ê(k+1) = ê(k) + γo
(k)to

(k)

9: x̂(k+1) = x̂(k) + ê(k+1)

10: k = k + 1
11: end for
12: x(∗) = x(L)

Furthermore, in the case of CSI mismatch, computing the direct inverse

of A is not only computationally expensive but also leads to large errors in

calculating x(∗). This comes from the fact that since the entries of H are i.i.d

Gaussian, the Gram matrix G = HTH is a Wishart Matrix [68] and hence,

based on the random matrix theory [68], the condition number η(A) can be

expressed as

η(A) =
λ
′

max

λ
′

min

=
(
√
α + 1)2λc + αλ

(
√
α− 1)2λc + αλ

(3.24)

where λc is a constant and λ is proportional to the eigen value of σ2

Ex
I2Nt

.
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Therefore, with increase in Nt, the matrix A becomes more ill-conditioned.

Hence, computing the direct inverse of A to get ê is not an intelligent choice.

By considering the diagonal dominance of A, error ê(1) is approximated as

ê(1) = D−1r(1) and the error refinement problem in equation (3.22) can be

rewritten as

ê = argmin
ê∈Q

{(r−Ae)T (r−Ae)}

= argmin
ê∈Q

{eTATAe− 2rTAe+ rT r} (3.25)

Since A is symmetric positive definite, the gradient of the function will be

ψ(e) = eTATAe − 2rTAe + rT r is ▽ψ(e) = Ae − r. Thus, the above

quadratic function has a critical point when Ae = r and solving equation

Ae = r is equivalent to minimizing the quadratic error function ψ(e) with

initial condition ê(1) = D−1r. Therefore, ê is iteratively refined through

nonstationary iterations with step size γo and search direction to.

ê(2) = ê(1) + γo
(1)to

(1) (3.26)

It is proven that iteration towards negative gradient direction results in rapid

convergence; hence, the search direction is chosen as

t0
(1) = −▽ ψ(ê) = −(Aê(1) − r(1)) (3.27)

The convergence rate of ILS is improved by performing a line search on γo

such that

< ▽ψ(ê(1)), to(1) >= 0 (3.28)

It can be shown from equations (3.22) and (3.28) that

γo =
||to||22

(Ato)T to
(3.29)

Note that to indicates how far the approximated value ê is from the optimum
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value ê(∗).

t0
(1) = r(1) −Aê(1) (3.30)

Hence, at each iteration k ≤ L, the approximated value of ê(k) is iteratively

refined and the refined value of ê(k) is added to the solution x̂(k). Hence,

the accuracy of the initial solution x̂(0) is improved at each iteration k. The

flowchart and pseudocode of ILS are given in Fig. 3.6 and Algorithm 3.3

respectively.

3.3.2 Convergence analysis of ILS

The convergence of ILS is analysed in this subsection. Based on the linear

convergence theorem, it can be shown from equations (3.25), (3.26) and (3.29)

that

ψ(ê(k+1))− ψ(e(∗)) ≤
(

(λ
′

max

λ
′

min

)− 1

(λ
′
max

λ
′

min

) + 1

)2
(

ψ(ê(k))− ψ(e(∗))
)

f(ê(k))− ψ(e(∗)) ≤
(

1− 2
λ
′
max

λ
′

min

)k−1
(

ψ(ê(1))− ψ(e(∗))
)

(3.31)

Since, λ
′

max

λ
′

min

> 0, it is obvious that

lim
k→∞

(

1− 2
λmax

λmin

)k−1

≈ 0 (3.32)

As a consequence, having promising initial conditions, f(ê(k))− f(e(∗)) con-

verges to zero with increasing k. In other words, the approximate error ê

converges to the exact error e(∗). Moreover,

lim
k→∞

x̂(k+1) = lim
k→∞

(x̂(k) + ê(k)) = lim
k→∞

x̂(k) + e(∗)
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Figure 3.6: Flowchart of ILS.
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and thus,

lim
k→∞

(x̂(k+1) − x̂(k)) = e(∗) = A−1r(∗)

= A−1(b−Ax(∗)) ≈ 0 (3.33)

Therefore, ILS converges to the exact solution x(∗) after a sufficient number

of iterations.

3.3.3 Simulation results

This subsection depicts the simulation results wherein performance of ILS is

compared with several existing mMIMO detection algorithms which include

NS, DBNI, Newton iteration with iterative refinement (NIIR), diagonal band

Newton iteration with iterative refinement (DBNIIR) and JSDJI methods.

For simulations, 128×16 and 144×24 mMIMO systems with 64-QAM modu-

lation in MATLAB are considered. An ensemble of 103 errors are considered

for averaging the BER performance over random channel and noise condi-

tions.

BER performance of ILS: In Fig. 3.7, the BER performance of ILS is

investigated for 128× 16 mMIMO system with 64-QAM modulation for dif-

ferent number of iterations L. In Fig. 3.8, the BER performance of ILS is

compared for different values of loading factor α with L = 2. It is observed

that ILS shows improvement in BER performance with an increase in L and

achieves within 0.05 dB of the MMSE performance at a target BER of 10−4

with L = 3 as shown in Fig. 3.7. Furthermore, it is also observed from Fig.

3.8 that the BER performance of ILS improves with the increase in α which is

the direct consequence of the channel hardening. As depicted in Fig. 3.8, at

SNR = 20 dB, the BER performance of ILS changes from BER = 4.2× 10−3

with 128× 32 system to BER = 1.47× 10−7 with 128× 16 system, when the

loading factor is increased from α = 4 to α = 8.

BER performance comparison with other detection algorithms: In Fig.

3.9, performance of ILS is compared with other recently reported detection
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Figure 3.7: Uncoded BER performance of ILS with different number of iter-
ations L.
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Figure 3.9: Comparison of uncoded BER performance of ILS for 128 × 16
mMIMO system.
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Figure 3.10: Comparison of uncoded BER performance of ILS for 144 × 24
mMIMO system.
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Figure 3.11: Comparison of uncoded BER performance of ILS with zero
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algorithms. It is observed that ILS with L = 3 performs superior in terms

of BER when compared with the existing mMIMO detection algorithms for

128 × 16 mMIMO system and achieves near MMSE performance. An SNR

gain of 1.7 dB is achieved in ILS over DBNIIR for a target BER of 10−3 as

depicted in Fig. 3.9. Since a single iteration of JSDJI requires less number

of computations compared to ILS, ILS is compared with L = 3 (approxi-

mately 36N2
t multiplications) and JSDJI with L = 9 (approximately 40N2

t

multiplications). As shown in Figs. 3.9 and 3.10, JSDJI even with L = 9

yields far inferior BER performance compared to ILS for both 128× 16 and

144 × 24 mMIMO systems. A BER improvement of approximately 96% at

SNR=20dB is achieved in ILS compared to JSDJI as observed from Fig.

3.10.

The BER performance ILS with zero initial solution is also compared in

Fig. 3.11 with other contending detection algorithms. In Fig. 3.11, ILS, even

with zero initial solution, outperforms other algorithms initialized with the

diagonal dominance property of MMSE filter matrix. Moreover, as depicted

in Fig.3.11, SNR gain of approximately 1.8 dB is achieved in ILS as compared

to JSDJI for a targeted BER of 4× 10−3.

3.3.4 Computational analysis

In this subsection, the computational complexity of ILS is compared with

several contending detection algorithms for uplink mMIMO systems. Table

3.2 analyzes and compares the computational complexity of ILS with different

state-of-the-art mMIMO detection algorithms in terms of the number of real

valued multiplications. The computational complexity of ILS is computed as

follows. The computation of residual error in line 2 of Algorithm 3.3 requires

4N2
t real valued multiplications. Since D is a diagonal matrix, 2Nt multipli-

cations are sufficient to get the actual error vector e in line 3. Line 4 involves

matrix-vector multiplications, and hence requires 4N2
t multiplications. The

computation of γo requires 4N2
t + 4Nt real-valued multiplications. Lines 6

and 7 respectively, require 2Nt and 0 multiplications. Hence, for L iterations,
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ILS requires total (12N2
t + 8Nt)L real-valued multiplications. For fair com-

parison, the computational complexity in calculating the initial parameters

G, A, b, D, D−1 and D−1b are ignored, as these parameters are required

to be calculated in all detection algorithms. However, the number of terms

ω and iterations in NS, diagonal band Newton iteration (DBNI), NIIR and

DBNIIR methods are restricted to 2 only to avoid matrix-matrix multiplica-

tions, which increases their computations to O(N3
t ). As the computations of

JSDJI requires approximately 4(L+1)N2
t real valued multiplications, L = 3

is set for the proposed algorithm while L = 9 for JSDJI, so that JSDJI ap-

proximately requires more real valued multiplications compared to ILS for

fair comparison. However, the simulation results in subsection 3.3.3 corrob-

orate that ILS outperforms JSDJI for both 128× 16 and 144× 24 mMIMO

systems.

Table 3.2: Number of real valued operations

Detection algo-
rithm

No of real val-
ued multiplica-
tions

NS (L = 2) [6] 12N2
t + 2Nt

DBNI (L = 2, ω =
2)[33]

20N2
t + 8Nt

NIIR (L = 2)[69] 20N2
t + 10Nt

DBNIIR (L =
2, ω = 2)[69]

28N2
t + 16Nt

JSDJI[38] 4(L+1)N2
t +2(L+

4)Nt

ILS (12N2
t + 16Nt)L

Therefore, from Figs. 3.7-3.11 and Table 3.2, it is well-explained that

ILS yields a superior performance-complexity trade-off compared to several

existing detection algorithms.
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3.4 Summary

In this Chapter, two detection algorithms called HA and ILS are proposed

for uplink mMIMO systems. In the proposed HA, nonstationary iteration

based NSNI and stationary iteration based ISRI are combined to circumvent

the drawbacks of existing iterative detection techniques. NSNI overcomes

the limitations of NI and yields superior BER performance than NI with

the same computational complexity. Similarly, RI and ISRI have the same

computational complexity; however, ISRI outperforms RI. Accordingly, the

proposed HA yields superior performance over NI, RI, JSDJI and CG in terms

of BER and computational complexity, under both perfect and imperfect

CSI at the BS. The proposed ILS iteratively refines both the actual error

and symbol estimate by using a line search and combines the estimated error

with the estimated symbol vector. Simulation results reveal the viability

and robustness of the proposed detection algorithms compared to several

existing stationary and nonstationary symbol detection algorithms for uplink

mMIMO systems.

This Chapter’s focus is to achieve near-MMSE performance, which is

near-optimal for the mMIMO system with small system loading factors. How-

ever, MMSE yields near-optimal performance when Nr

Nt
≥ 10 and achieves

suboptimal results when users scale up in the mMIMO system. Hence, in

the next Chapter, a low complexity detection algorithm is devised for large

user mMIMO systems.
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Chapter 4

Reliability feedback–aided

detection in uplink massive

MIMO systems

4.1 Introduction

In the preceding Chapter, it is seen that pseudo-stationary iterations based

HA and nonstationary error refinement based ILS provides near-MMSE per-

formance. Both HA and ILS exhibit comparatively low computational com-

plexity to achieve better BER results than conventional iterative detectors

for mMIMO systems. However, MMSE yields near-optimal performance for

mMIMO systems for high system loading factors. The uplink symbol detec-

tion in mMIMO systems becomes a more challenging task when users scale

up in the system. In this Chapter, the signal detection problem in mMIMO

systems is explored when there are a large number of users in the system.

In this Chapter, RFOD is proposed for large user uplink mMIMO sys-

tems. First, a low-complexity initial solution is used to compute the quality

metric for finding the detection sequence. Next, for detecting the symbol

corresponding to each user, the interference from all other users is cancelled,

followed by RFM. Ordering of the users along with the reliability feedback re-
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duces the effect of error propagation. Through multiple iterations of RFOD,

an enhanced BER performance is achieved. Furthermore, RFOD outperforms

several existing detection algorithms (including MMSE) with quadratic com-

putational complexity for symbol detection in large user mMIMO systems.

Simulation results corroborate the superiority of RFOD over the recently in-

troduced mMIMO detection algorithms in terms of both the computational

complexity and the BER performance.

The Chapter is structured as follows: Initialization is described in Section

4.2. In Section 4.3, the quality metric-based ordered detection is presented,

and RFM is described in Section 4.4. Convergence analysis of RFOD is

provided in Section 4.5. The simulation results on BER performance are

drawn in Section 4.6. The computational complexity analysis is done in

Section 4.7. Finally, Section 4.8 summarizes the Chapter.

4.2 Initialization

A low-complexity initial solution is expressed using the diagonal dominance

of MMSE filter matrix [44, 46], as discussed in Chapter 3.

x(0) ≈ W−1b. (4.1)

It is worth mentioning that RFOD can be initialized with zero initial solution.

However, for a fair comparison with existing detection algorithms, the above

initial solution is chosen for RFOD.
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4.3 Quality metric based ordered detection

In this section, quality metric-based detection is proposed. The mMIMO

detection problem is written as

x̂ = Q

(

argmin
x∈A2Nt

{

‖y −Hx‖22
}

)

, (4.2)

where Q(·) is the quantization function. Each component of the gradient of

the cost functionφ(x) = ‖y−Hx‖22 is nullified at the global minima/optimal

point. The gradient of the cost function φ(x) is

∇ψ(x) = −2HT (y −Hx) (4.3)

Similarly, the ith component of the gradient of the cost function φ(x) is

∇iψ(x) = −2hT
i (y −Hx) (4.4)

At the global optimal point, the following conditions must hold

∇ψ(x∗) = 0

or,−2HT (y −Hx∗) = 0 (4.5)

∇iψ(x
∗) = 0

or,− 2hT
i (y −Hx∗) = 0 (4.6)

If x̂ is assumed to be the estimate of x, the term (y−Hx̂) is called the residual

error (as discussed in Chapter 3). Residual error gives vital information

about the deviation of the estimate Hx̂ from the received symbol vector y.

The residual error at iteration (k + 1) after the (i − 1)th symbol update is
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represented as

re
(k+1)
(i−1) = y −

2Nt
∑

j=1,j<i

hjx̂
(k+1)
j −

2Nt
∑

j=1,j≥i
hjx̂

(k)
j (4.7)

The quality metric is the projection of the residual error onto the column

space of H. Hence, the quality metric for the ith symbol is computed as

[70, 71]

q
(k+1)
i =

hT
i

|| hi ||22
re
(k+1)
(i−1) (4.8)

Hence, the quality metric for the ith symbol denotes the error associated

with the estimated ith symbol. Consequently, an estimated symbol with

a greater value of the quality metric will contribute more to the interuser

interference. As a result, before detecting the symbols, the symbols are

ordered in descending order (quality ordering, O) of the quality metric, which

leads to the improved BER performance.

Suppose the detection algorithm converges at (k+1)th iteration. Further

suppose, at (k + 1)th iteration, the ith symbol is to be updated. Since the

symbols are being sequentially detected based on the quality order O, the

symbols for which j < i hold updated values from iteration (k + 1). On the

other hand, the symbols for which j ≥ i are yet to be updated. Hence, from

(4.6),

hT
i

(
y −

∑

j<i

hjx̂
(k+1)
j −

∑

j>i

hjx̂
(k)
j − hix̂

(k)
i − hid

(k+1)
i

)
= 0, i ∈ O, (4.9)

where O contains indices of the elements, xi ∈ x in descending order of

quality metric, and d
(k+1)
i is the deviation of the symbol x̂

(k)
i from x̂

(k+1)
i .

d
(k+1)
i is defined as

d
(k+1)
i = x̂

(k+1)
i − x̂

(k)
i , i ∈ O (4.10)
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Hence, from equation (4.9),

hT
i

(
y −

∑

j<i

hjx̂
(k+1)
j −

∑

j>i

hjx̂
(k)
j − hix

(k)
i + hix̂

(k)
i

)
= hT

i hix̂
(k+1)
i , i ∈ O

(4.11)

x̂
(k+1)
i = x̂

(k)
i +

(
bi − hT

i

∑
j<i hjx̂

(k+1)
j − hT

i

∑
j≥i hjx̂

(k)
j

)

|| hi ||22
, i ∈ O (4.12)

Analysis of residual error: Residual error denotes the lack of agreement

between the estimate Hx̂ and the received vector y. A continuously de-

creasing residual error confirms the substantial mitigation of noise during

detection. At iteration (k + 1), the residual error vector after the update of

(i+ 1)th symbol x̂
(k+1)
i+1 is

re
(k+1)
(i+1) = y −

2Nt∑

j=1,j≤i+1
hjx̂

(k+1)
j −

2Nt∑

j=1,j>i+1

hjx̂
(k)
j . (4.13)

Since q
(k+1)
i+1 = x̂

(k+1)
i+1 − x̂(k)i+1, the residual error re

(k+1)
(i+1) from equation (4.13) is

further simplified as

re
(k+1)
(i+1) = re

(k+1)
(i) − hi+1

(
x̂
(k+1)
i+1 − x̂

(k)
i+1

)

= re
(k+1)
(i) − hi+1q

(k+1)
i+1 . (4.14)

The detection algorithm arranges the symbols in descending order of qi and

hence, the largest amount of residual error is minimized even in the first

symbol update compared to ISD[8]. Mathematically,

q
(k+1),P roposed
1 > q

(k+1),ISD
1 ,

re
(k+1),P roposed
(1) < re

(k+1),ISD
(1) . (4.15)
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Since hT
i+1re

(k+1)
(i+1) = 0, using the expression of re

(k+1)
(i) from (4.14),

|| re(k+1)(i+1) ||22 =|| re
(k+1)
(i) ||22 − || hi+1q

(k+1)
i+1 ||22

=|| re(k+1)(i) ||22 −
(
q
(k+1)
i+1

)2
|| hi+1 ||22 . (4.16)

Since
(
q
(k+1)
i+1

)2
|| hi+1 ||22> 0, it is obvious from (4.16) that

|| re(k+1)(i+1) ||22 <|| re
(k+1)
(i) ||22 . (4.17)

It concludes that the L2-norm of residual error or ML cost reduces after each

symbol update in the QO based detection algorithm. Hence, QO significantly

mitigates the effect of interference and noise during symbol detection.

Analysis of actual error: Actual error gives the deviation of the detected

value from the true value. The actual error e
(k+1)
i = x

(k+1)
i − x

(∗)
i associated

with symbol x
(k+1)
i after each iteration (k + 1) is defined as

e
(k+1)
i = e

(k)
i −

hT
i

∑2U
j=1
j≥i

hje
(k)
j + hT

i

∑2U
j=1
j<i

hje
(k+1)
j

|| hi ||2
, (4.18)

where x(∗) is the optimal detected symbol from the ith user. Since e
(k)
i > 0,

it is obvious from (4.18) that

e
(k+1)
i < e

(k)
i . (4.19)

Thus, it concludes from the above analysis that the actual error associated

with each symbol reduces after each iteration in the QO based detection algo-

rithm. Hence, as the number of iteration increase, the actual errors related

to the symbols decrease, and the QO based detection algorithm gradually

reaches the optimal solution.
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Algorithm 4.1 Proposed RFOD algorithm

1: Inputs: y,H, σ2, Ex, Nr,Nt and lth
2: Outputs: x(∗)

3: Initialization: G = HTH,A = G + σ2

Ex
I2Nt,W = diag(A),b =

HTy,x(1) = W−1b
4: Preprocessing: ti = (||hi||2)−1, i = 1, 2, ..., 2Nt
5: for i = 1, i 6 2Nt do

6: r
(1)
i =

(
bi −GT

i x
(1)

)

7: end for
8: for k = 1, k 6 L do
9: qi = tir

(k)
i

10: r
(k)
i ∈ r(k), i = 1, 2, ..., 2Nt

11: Order qi ∈ q in descending order, O(k) = arg
i

sort | qi |, i =

1, 2, ..., 2Nt
12: for l = 1, l 6 2Nt do
13: m = O(k)(l)

14: x
(k+1)
m = x

(k)
m + 1

gm,m

(
bm − ∑

j∈O(k)(l),j≥m
gm,jx

(k)
j −

∑
j∈O(k)(l),j<m

gm,jx
(k+1)
j

)

15: L(k)m =| x(k+1)m −Q(x(k+1)m ) |
16: if L(k)m ≤ lth then
17: x

(k+1)
m = Q(x(k+1)m )

18: else
19: x

(k+1)
m = V(x(k+1)m )

20: end if
21: r

(k+1)
(m) = r

(k+1)
(m−1) − gm,m

(
x
(k+1)
m − x

(k)
m

)

22: end for
23: end for
24: Final output: x(∗) = x(L)
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f

Figure 4.1: Flowchart of RFOD.

4.4 Reliability feedback mechanism

RFM is proposed to improve the quality of the solution estimated through

QO based ordered detection. In RFM, at each iteration (k+1), before feeding

the estimated symbol x̂
(k+1)
i to the next iteration (k + 2), the reliability of

the estimated symbol is checked. Suppose the unquantized symbol x̂
(k+1)
i lies

between two constellation points Z1 and Z2. The reliable regions are defined
as

Rt =
{
x̂
(k+1)
i : Zt − lth < x̂

(k+1)
i < Zt + lth

}
, t = 1, 2, (4.20)

where lth is the decision boundary of the reliable regions. The reliability of

the unquantized symbol is checked by the metric defined as

L(k+1)i =| x̂(k+1)i −Q(x̂(k+1)i ) | (4.21)
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After that, the symbol x̂
(k+1)
i is quantized according to the rule given below,

x̂
(k+1)
i =




Q

(
x̂
(k+1)
i

)
, if Li ≤ lth

V
(
x̂
(k+1)
i

) (4.22)

where V(x(k+1)i ) = Z1+Z2

2
is considered as a virtual constellation point taken

between two corresponding constellation points Z1,Z2 ∈ A. Similar ap-

proach is performed for all the symbols x̂
(k+1)
i ∈ x̂(k+1). Next, a hard quan-

tization of the detected symbol vector x̂(k+1) is performed. Furthermore, in

order to enhance the performance, multiple iterations (say k ≤ L) of RFOD

are performed. The pseudocode and flowchart of RFOD are presented in

Algorithm 4.1 and Fig 4.1 respectively.

4.5 Convergence analysis

This section analyzes convergence of the RFOD algorithm. For mathemat-

ical tractability, RFM is not considered in this analysis. Without loss of

generality, the symbol update rule (4.12) is represented as a matrix-vector

equation,

x̃(k+1) = x̃(k) + D̃−1
(
b− G̃x̃(k)

)

=
(
I− D̃−1G̃

)
x̃(k) + D̃−1b

= Mx̃(k) + D̃−1b (4.23)

where x̃ = Px, G̃ = GP−1, D̃−1 = PD−1 and P is a 2Nt × 2Nt row

permutation matrix based on permutation defined by order O. It is certain

that the convergence of update rule (4.23) ensures the convergence of (4.12).

For mathematical tractability, the row permutation matrix is assumed to

obey the following properties [71].

• P is nonsingular and P−1 = PT .
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• Matrix norm is invariant under permutation, i.e || PD ||= ‖DP−1‖
=|| D ||

Equation (4.23) is a stationary iteration with iteration matrix M =
(
I −

D̃−1G̃
)
. Hence, the convergence analysis of (4.23) is carried out based on

the iteration matrix M and iteration (4.23). Gram matrix G is expressed

as G = L + LT + D using standard matrix splitting [72], where L is a

2Nt × 2Nt strictly lower triangular matrix and D is a 2Nt × 2Nt diagonal

matrix. The diagonal matrix D is obtained using the diagonal elements of

the matrix G, while keeping the off-diagonal elements to zero. The strictly

lower triangular matrix L is obtained from G by keeping both the diagonal

and the off-diagonal elements above the main diagonal to zero. Taking the

matrix norm of M,

||M || =|| I− D̃−1G̃ ||
=|| I−PD−1GP−1 ||

=|| I−PD−1
(
LT + L+D

)
P−1 ||

=|| I−PD−1
(
LT + L

)
P−1 −PD−1DP−1 ||

=|| −PD−1
(
LT + L

)
P−1 ||

=|| PD−1
(
LT + L

)
P−1 || (4.24)

Lemma 1 Given a diagonally dominant matrix G, the matrix norm of the

iteration matrix, M =
(
I− D̃−1G̃

)
is less than unity.

Proof 1 Given G is diagonally dominant i.e
∑

j 6=i | gi,j |<| gi,i | and hence,

2Nt∑

j=1

| mi,j |=
∑

j 6=i | gi,j |
| gi,i |

< 1 (4.25)

Since the matrix norm is invariant under the permutation [73], using

equation (4.24), ||M || is simplified as
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||M || =|| PD−1
(
LT + L

)
P−1 ||

=|| D−1
(
LT + L

)
|| (4.26)

Hence, (4.25) and (4.26) conclude that

||M ||< 1 (4.27)

Theorem 2 Given a nonsingular matrix G and a permutation matrix P,

limk→∞ x(k) → x(∗) if ρ(M) ≤ 1

Proof 2 At first, for mathematical tractability, the matrix I−M is expressed

in terms of matrices G, P and D.

I−M = I−
(
I− D̃−1G̃

)

= D̃−1G̃

= PD−1GP−1 (4.28)

From the system model of mMIMO (given in Chapter 1), it is obvious that the

Gram matrix G = HTH and diagonal matrix D are nonsingular. Since G,

D and P are nonsingular, hence, I−M is also nonsingular and
(
I−M

)−1

exists.

(
I−M

)−1
=

(
I+M+M2 + ...

)
(4.29)

Hence, the stationary iterative update rule (4.23) is expressed as

x̃(k+1) = M(k)x̃(1) +
( k−1∑

i=0

Mi
)
D̃−1b (4.30)
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Taking limk→∞ on both side of equation (4.30),

lim
k→∞

x̃(k+1) = lim
k→∞

M(k)x̃(1) +
(
I+M+M2 + ...

)
D̃−1b

= lim
k→∞

M(k)x̃(1) +
(
I−M

)−1
D̃−1b (4.31)

Hence, from Lemma 1 given in this Chapter, the spectral radius ρ(M) ≤
‖M‖ < 1. Further, limk→∞M(k) = 0, Hence,

lim
k→∞

x̃(k+1) =
(
I−M

)−1
D̃−1b

= PG−1b

lim
k→∞

x(k+1) = G−1b = x(∗) (4.32)

Thus, it is proved from (4.32) that the iteration (4.23) converges to the op-

timal solution x(∗) when the quality ordering O is applied.

4.6 Simulation results

This section draws the simulation results for comparing the BER performance

of RFOD with some of the existing algorithms for 128 × 64 and 128 × 74

mMIMO systems with 16-QAM modulation1. An ensemble of 2 × 103 is

considered to average the BER performance over the random channel and

noise conditions.

BER performance comparison among contending detection algorithms:

Figs. 4.2 and 4.3 compare BER performance of RFOD with RI, CG,

JSDJI and ISD for approximately equal number of multiplications of 20Nt
2.

As observed from Fig. 4.2, SNR gains of 5.3 dB for BER = 4× 10−3 and 3.5

dB for BER = 10−3 are observed in RFOD over CG and ISD respectively for

128×64 mMIMO system. Moreover, as depicted in Fig. 4.3, RFOD achieves

1Both 128× 74 and 128× 64 systems have a system loading factor of approximately 2.
Hence, the detection with such a large number of users is a more challenging task in these
system models than the system models considered in the previous chapter.
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Figure 4.2: BER performance comparison for 128× 64 mMIMO system with
approximately equal real valued multiplications.

82.9% and 76.2% improvements in BER at SNR=20 dB as compared to CG

and ISD respectively for 128× 74 mMIMO systems.

Comparison of BER performance with increased number of antennas:

As depicted in Figs. 4.4-4.5, the BER performances of both CG and

ISD improve when the number of iterations increases from L = 4 to L = 6.

This proves that CG and ISD are not capable to reach global optima with

L = 4 iterations in Figs 4.2-4.3. Hence, the number of iterations at L = 4 is

not sufficient to justify and compare the contending algorithms’ performance

with RFOD. Hence, for fair comparisons, a higher number of iterations are

explored.

In Figs. 4.4-4.5, RFOD with L = 6 outperforms MMSE, which re-

quires approximately 28Nt2 real valued multiplications for both 128 × 64
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Figure 4.3: BER performance comparison for 128× 74 mMIMO system with
approximately equal real valued multiplications.

and 128 × 74 mMIMO systems. However, CG even with L = 14 archives

near-MMSE performance and requires double number of multiplications (ap-

proximately 56Nt2) as compared to RFOD. Moreover, ISD with 56Nt2 mul-

tiplications yields inferior performance than RFOD for both 128 × 64 and

128 × 74 mMIMO systems. Hence, Figs. 4.2-4.5 prove the superiority of

RFOD compared to RI, CG, JSDJI and ISD in terms of real valued opera-

tions.

Analysis of BER performance in terms of FLOPs: To further verify

the viability of RFOD, BER performances of contending algorithms are com-

pared in Figs. 4.6-4.7 in terms of the number of FLOPs. As depicted in Fig.

4.6-4.7, the BER performances of RI and JSDJI are far inferior as compared

with RFOD. The RFOD algorithm with L = 6 outperforms MMSE and re-
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Figure 4.4: BER performance comparison for 128× 64 mMIMO system with
increased number of iterations.

quires 3.98 × 105 FLOPs for 128 × 64 and 5.31 × 105 FLOPs for 128 × 74

mMIMO system.

However, as shown in Fig. 4.6, CG requires L = 14 to achieve near-MMSE

performance and consumes 7.5×104 more FLOPs as compared to the RFOD

algorithm (with L = 6) for 128 × 64 mMIMO systems. On the other hand,

CG requires 105 more FLOPs for 128 × 74 mMIMO system than RFOD

(with L = 6) as depicted in Fig. 4.6. In Fig. 4.6, ISD with L = 14 requires

6.7×104 more FLOPs than RFOD (with L = 6) for 128×64 mMIMO systems.

Furthermore, ISD at L = 14 consumes 9 × 104 more FLOPs as compared

to RFOD at L = 6 for 128 × 74 mMIMO systems. Nevertheless, for both

128×64 and 128×74 mMIMO systems, ISD yields inferior performance than

RFOD. Moreover, the performance of RFOD improves with the number of
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Figure 4.5: BER performance comparison for 128× 74 mMIMO system with
increased number of iterations.

iterations L. However, CG and ISD do not show significant improvement in

BER after L = 14. Hence, from Figs. 4.6-4.7, the superiority of RFOD over

RI, CG, JSDJI and ISD is again validated for both BER and computational

complexity in terms of the number of FLOPs.

Influence of reliability feedback and quality ordering on BER performance:

Fig. 4.8 illustrates the effect of the proposed QO and RFM on detec-

tion, which are consequences of equations (4.8) and (4.22) respectively. Fig.

4.9 depicts that BER performance of RFOD improves with initial solutions.

However, as depicted in Fig. 4.9, the RFOD algorithm even initialized with

zero initial solution outperforms ISD with x(0) = D−1b. Furthermore, SNR

gain of approximately 1.7 dB is achieved in RFOD (initialized with zero ini-

tial solution) as compared to ISD (with x(0) = D−1b) for a targeted BER of
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Figure 4.6: BER performance comparison for 128× 64 mMIMO system with
approximately equal number of FLOPs.

10−2. Hence, it confirms viability of RFOD over ISD.

4.7 Complexity analysis

In this section, the computational complexity of various mMIMO detection

techniques are compared in terms of both real-valued operations and FLOPs

[74]. Both Table 4.1 and Table 4.2 compare the computational complexity

of RFOD with other contending mMIMO detection algorithms [8, 38, 39,
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Detectors Multiplications Additions
RI [65] 4LNt2 + 2LNt 4LNt2 + 2LNt
CG [39] 4LNt2 + 2LNt 4LNt2 + 6LNt
JSDJI [38] 4(L+1)Nt2+2(L+

4)Nt
4LNt2 + 4LNt

ISD [8] 4LNt2 + 2(2L +
1)Nt

4LNt2 + 2LNt

RFOD 4(L + 1)Nt2 +
2(3L+ 1)Nt

4(L+ 1)Nt2 + 6LNt

Table 4.1: Number of real-valued operations required for detection.

(Nr,Nt,L) FLOPs
(×105)

BER at
SNR=20dB

RI [65] (128,64,6) 0.33 1.95× 10−1

(128,74,6) 0.44 2.74× 10−1

JSDJI
[38]

(128,64,6) 4.28 1.07× 10−1

(128,74,6) 5.72 2.24× 10−1

CG
[39]

(128,64,14) 4.73 1.77× 10−4

(128,74,14) 6.30 9.62× 10−4

ISD
[8]

(128,64,14) 4.65 2.34× 10−4

(128,74,14) 6.21 3.34× 10−4

RFOD (128,64,6) 3.98 3.92× 10−5

(128,74,6) 5.31 1.24× 10−4

Table 4.2: Average number of FLOPs (×105) required for detection.
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Figure 4.7: BER performance comparison for 128× 74 mMIMO system with
approximately equal number of FLOPs.

65]. However, the computational complexities in Table 4.1 are computed

in terms of real valued multiplications and additions. On the other hand,

the computational complexities in Table 4.2 are computed in terms of the

number of FLOPs. Since the initial parameters likeG, A, W, W−1 and b are

similar in all contending detection algorithms mentioned in this section, the

number of real valued operations as well as FLOPs for calculating those initial

parameters are neglected, while comparing the computational complexities.

The values of real valued multiplication and real-valued additions given in
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Figure 4.8: Effect of initial solution, reliability feedback and quality ordering
on the BER performance of RFOD.

Table 4.1 for other contending algorithms are taken from their respective

articles on symbol detection in mMIMO systems [8, 38, 39, 65]. However,

the values for RFOD algorithm are computed from Algorithm 4.1 as shown in

Table 4.3 [75]. In lines 12-14 of Table 4.3, m is the number of multiplications

during mth symbol update. Furthermore, the computations in lines 1-3 are

ignored as these steps are common in all contending detection algorithms.

In order to further verify the computational efficiency of RFOD, the com-

putational complexities of contending mMIMO detection techniques are also

compared in terms of the number of FLOPs [58] in Table 4.2. The val-

ues given in Table 4.2 are computed using ”FLOPs()” function available in

the linear equations software package (LINPACK) software library [76]. It

must be noted from both Table 4.1 and Table 4.2 that RFOD requires less
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Figure 4.9: BER performance comparison for 128× 64 mMIMO system with
different initial solution.

Line
Nos

No of multiplications No of additions

1− 3 Ignored Ignored
4 2Nt 0
5-7 2Nt× 2Nt = 4Nt2 ((2Nt− 1) + 1)× 2Nt = 4Nt2

8 0 0
9-11 2NtL 0
12-14 ((2Nt − m) + (m − 1)) × 2Nt +

4Nt)L = 4Nt2L+ 2NtL
((2Nt − 1) × 2Nt + 2Nt)L =
4Nt2L

15-20 0 2NtL
21 2NtL 4NtL

Total 4(L+ 1)Nt2 + 2(3L+ 1)Nt 4(L+ 1)Nt2 + 6LNt

Table 4.3: Real valued operations.
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computational complexity to yield significant BER improvement over other

contending mMIMO detection algorithms.

4.8 Summary

In this Chapter, the RFOD algorithm is proposed for low-complexity symbol

detection in mMIMO systems with a large number of users. In RFOD, an

initial symbol estimate is iteratively refined in an ordered sequence obtained

through QO, followed by reliability feedback aided detection of each symbol.

While detecting a symbol, QO mitigates interference from other users, and

RFM helps in improving the reliability of the detected symbol. Thus, the

error propagation reduces, thereby resulting in enhanced BER performance.

Simulation results validate the superiority of RFOD over recent state-of-the-

art mMIMO detection algorithms in terms of both the BER performance as

well as the computational complexity.

In Chapters 2 to 4, the symbol detection problem in uplink mMIMO is

solved using model-driven approaches, where AMI and/or MII based tech-

niques are utilized. Hence, the algorithms proposed in these chapters are

not capable of learning high-level features from given data and constrained

to provide fixed performance based on the inherent predefined mathematical

model. In the next Chapter, a data-driven DL model is proposed for sym-

bol detection in uplink mMIMO systems to circumvent these drawbacks of

conventional iterative detection algorithms.
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Chapter 5

Deep Unfolded Sparse

Refinement Network Based

Detection

5.1 Introduction

The promising detection techniques proposed in previous Chapters are based

on specific mathematical models and have limitations in translating the the-

ory into practical models. The complex signal processing involved in those

algorithms may preclude the low latency requirement while achieving high

BER performance in mMIMO systems. Those conventional algorithms are

not data-driven approaches and cannot learn the interrelations of parameters

where mathematical models of communication scenarios cannot be readily

described. DL techniques can deliver high-quality results with maximum

utilization of data, thereby drawing enormous attention from companies and

international organizations such as the International communication union

(ITU), Huawei and Qualcomm [77][78].

In this Chapter, a low complexity SRN based detection model is proposed

for uplink mMIMO systems. SRN is designed by unfolding the conventional

JI [40]. The computational complexity of SRN based symbol detection is
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reduced by masking some ’unimportant’ network connections of a , leading

to a sparsely connected deep unfolded model. The theoretical convergence of

SRN is analyzed, which is further validated through simulations. SRN’s per-

formance is compared with the state-of-the-art mMIMO detectors measured

on BER performance and computational complexity.

The following terminology is used in this Chapter. α denotes the masking

ratio. ρ(.) refers to the activation function. L is the number of hidden

layers/iterations. µ denotes the step size. Pe implies the probability of error.

γ(.) refers to Fisher information.

The Chapter is organized as follows. SRN and symbol detection in SRN

are discussed in Section 5.2. Convergence of SRN is performed in Section 5.3.

Complexity analysis of SRN based symbol detection is performed in Section

5.4. Simulation results are drawn in Section 5.5. Finally, the summary is

outlined in Section 5.6.

5.2 Network Model and Symbol Detection

This section briefly describes the proposed detection model for uplink mMIMO

systems utilizing SRN.

5.2.1 Deep unfolded refinement network

The SRN architecture proposed for low complexity symbol detection in up-

link mMIMO systems is a model-driven network, and is developed by deep

unfolding of conventional JI [40]. JI is expressed as

x(k+1) = x(k) +D−1(b−Ax(k)), (5.1)

Each iteration of JI is a linear combination of D−1G, HTy and D−1HT .

To develop a detection network unfolding JI, the crucial components are

D−1G, HTy and D−1HT . Therefore, to achieve substantive performance
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improvements with DL, the crucial components of JI are mapped to a higher-

dimensional space, and standard nonlinearities are applied.

x(k) = ρ
(

ω1D
−1HTy + ω2D

−1HTy + β1

)

(5.2)

x(k+2) = ρ
(
ω3D

−1G+ (1− tk)x
(k+1) + tkx

(k) + β2
)
, (5.3)

where 0 < tk < 1. The proposed JI driven DL architecture utilizes an IDN

(Fig. 5.1), which takes y, H and D−1 as input and yields an estimation x̂.

The estimate is later refined using multiple layers of RDN, where each hidden

layer of RDN is represented as Fig. 5.2. Hence, trainable parameters of the

proposed network are θ = {ω1, ω2, ω3, β1, β2}Lk=1.

Figure 5.1: A hidden layer of IDN.

5.2.2 Sparsely connected refinement network

Detection networks are not considered fully connected to improve accuracy

and reduce the models’ computational complexity. A mask matrix ζ is con-

sidered that disables insignificant connections based on the masking ratio

α, leading to a sparse network (Fig. 5.3). The sparse weight matrix ωi is

computed as

ωsi = ωi · ζ (5.4)
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Figure 5.2: A hidden layer of RDN.

Figure 5.3: Differences between sparsely and fully connected networks.
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where ζm,n ∈ {0, 1}. Sparsely connected IDN and RDN models are expressed

as

x(k) = ρ
(
ωs1D

−1HTy + ωs1D
−1HTy + β1

)
(5.5)

x(k+2) = ρ
(
ωs3D

−1G+ (1− tk)x
(k+1) + tkx

(k) + β2
)

(5.6)

The forward propagation and backward propagation derivatives are com-

puted with respect to the sparse weight matrix ωsi. For convenience, the

subscript s is discarded in the rest of the Chapter.

5.2.3 Symbol detection

IDN and RDN are available for use in the BS after an initial training phase.

During the training phase, the networks are trained on all sets of potential

constellations of the mMIMO system under study. Since the network con-

siders CSI and the received symbol vector to be input parameters, it may

also be deployed in a variety of CSI scenarios at BS. The theoretical upper

bound on BER of the proposed detection technique can be stated as [60]

Pe ≤
1

π

∫ π/2

0

Yγ(−
κ2

2 sin2 θ
)dθ

≤ c2F1(1, Nr +
1

2
;Nr + 1;

Nr

Nr + κ2γ̃
),

where c =
√
κΓ(Nr+

1
2
)

2
√
π(1+κ)m+1

2 Γ(Nr+1)
. 2F1(., .; .; .) refers to hypergeometric function,

Nr is the number of receive antennas and κ is a modulation dependent pa-

rameter.

5.3 Convergence analysis

In this section, the convergence behaviour of SRN is analyzed theoretically.

SRN consists of a single layer of IDN, followed by multilayer RDNs. The

training of SRN involves two stages of propagation, namely forward and
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backward propagations. Assume an error exists in the estimated symbol

vector received from IDN. This estimated erroneous symbol vector x̂ is fed

to the RDN. The RDN absorbs the erroneous input x̂ and tries to minimize

the cost function ψ(x̂,x) in the mean square sense. In forward propagation,

x̂ is projected into an affine set defined by the bias β2 and weight ω3 of the

RDN. The operations done in the forward propagation phase are expressed

as

x̂(0) = ρ
(
ω1D

−1HTy + ω2D
−1HTy + β1

)
(5.7)

ẑ(k) = ω3D
−1G+ (1− tk)x̂

(k) + tkx̂
(k−1) + β2 (5.8)

x̂(k) = ρ
(
ẑ(k)

)
(5.9)

Once the output error is calculated, it is propagated through RDN to op-

timize the network parameters responsible for the error. Back-propagating

operations are written as

∇z(k)ψ(x̂,x) = ∇x(k)ψ(x̂,x)∇x(k)zk

∇x(k−1)ψ(x̂,x) = ∇z(k)ψ(x̂,x)ωi
(k)

∇ω(k)ψ(x̂,x) = y(k−1)∇z(k)ψ(x̂,x)

∇βi
(k)ψ(x̂,x) = ∇z(k)ψ(x̂,x), (5.10)

where ∇z(k)ψ(x̂,x) denotes the gradient of ψ(x̂,x) with respect to z(k). Fi-

nally, the weights and biases are updated as follows.

ωi
(k) =ωi

(k) − µ(k)∇ωi
(k)ψ(x̂,x)

βi
(k) =βi

(k) − µ(k)∇βi
(k)ψ(x̂,x) (5.11)

Since ψ(x̂,x) is non-negative; it can be shown to be bounded from below

E(x− x̂)2 ≥
(
I+ δ̃

(k)
x

)

γ(x)
+ β(x)2 (5.12)
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δ̃x = ∆β
∆x

. In addition, it can also be shown that ψ(x̂,x)) is Lipschitz contin-

uous.

|| ψ(x̂1,x1)− ψ(x̂2,x2) ||2≤|| ψ(ĉ, c) ||2 || x1 − x2 ||2,

where x1 ≤ c ≤ x2. As ψ(x̂,x) is Lipschitz continuous, it is obvious that

∇Wk
ψ(x̂,x) and ∇bk

ψ(x̂,x) are bounded on W and b respectively. Accord-

ingly, it is concluded that RDN converges if the following condition holds

[79].

∞∑

k=0

µ(k) =∞,
∞∑

k=0

(
µ(k)

)2
<∞, 0 < µ(k) ≤ 1 (5.13)

Consequently, RDN is able to refine the erroneous estimation of x̂. Hence, it

concludes that

|| I− ω3D
−1G ||≤ 1 (5.14)

This proves the convergence of SRN.
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Figure 5.4: Comparison of BER performances of SRN with other contending
algorithms for 128× 32 massive MIMO system with 16 QAM modulation.
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Figure 5.5: Comparison of BER performance of SRN with other contending
algorithms for 128×32 massive MIMO system with channel estimation error
e = 10% at the BS.

105



5.4. COMPLEXITY ANALYSIS

2 4 6 8 10

Number of layers /iterations

10
3

10
4

10
5

10
6

N
u

m
b

er
 o

f 
F

L
O

P
s

RI

JSDJI

CG

ISD

AMP

MDN

DetNet

MF

SRN

PL

8

7

7.5
10

4

128  8
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5.4 Complexity analysis

This section compares the computational complexity of SRN with other com-

peting algorithms. Computational complexities of contending algorithms are

shown in Fig. 5.6 in terms of FLOPs. It demonstrates that single layer of

SRN is computationally more efficient compared to other contending algo-

rithms.

5.5 Simulation results

In this section, SRN’s performance is compared with several top-of-the-line

detection techniques in terms of BER and computational complexity.
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Figure 5.7: Learning curves of SRN.

5.5.1 Learning curves

Learning curves play a crucial role in diagnosing the performance of DL

models. Learning curves of SRN are shown in Fig. 5.7. During the training

phase, SRN yields an mean square error (MSE) loss of 4× 10−2 with epochs

of 9 × 104. The ratio of training and test data is kept at 9 : 1, and Adam

optimizer is used to optimize parameters. The best activation function (ρ)

for SRN is the hyperbolic tangent. Real valued data are given directly to

the network for training and testing, rather than using encoding techniques.

As depicted in Fig. 5.7, the training and testing curves decrease towards the

point of stability. Test curves are consistent with the training loss curves,

indicating successful training of the network. Moreover, the difference be-

tween the training and testing loss is minimal. It implies that this learning

curve plot shows a good fit, and the model has successfully optimized its
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parameters with the given dataset.

5.5.2 BER performance

This subsection compares the BER performance of SRN with other contend-

ing detection algorithms.

In Fig. 5.4, the BER performance of the proposed SRN is compared

with MMSE and DL-based algorithms and other state-of-the-art iterative

detection algorithms for uplink massive MIMO systems. As depicted in Fig.

5.6, the computational complexity of a single layer of SRN is much less

than the other contending iterative and DL based algorithms. Hence, for

a fair comparison, we have chosen L = 8 for SRN and L = 6 for other

contending algorithms. However, the proposed SRN with L = 8 exhibits

at least 2.5× 104 less computational complexity than other algorithms with

L = 6. It is observed from Fig. 5.4 that the proposed SRN even with

comparatively less computational complexity, provides an SNR gain of .7 dB

over ISD and AMP for a targeted BER of 10−5. Other contending algorithms

have far inferior BER performance as compared to ISD and AMP. It proves

superiority of the proposed SRN for low complexity symbol detection in

uplink massive MIMO systems.

As depicted in Fig. 5.5, the proposed SRN outperforms several state-of-

the-art algorithms for uplink symbol detection in a massive MIMO system.

In a 128 × 32 massive MIMO system, proposed SRN even with e = 10%

channel estimation error at the BS, yields and SNR gain of 0.7 dB over ISD

for a targeted BER of 1.2×10−4. The other contending algorithms shows far

degraded BER performance as compared to SRN. It proves the robustness

of SRN for symbol detection in uplink massive MIMO systems.

As depicted in Fig. 5.8, SRN exhibits a performance complexity trade-

off. The performance of SNR improves with the number of hidden layers.

However, computational complexity in symbol detection using SNR increases

as the number of hidden layers increases.

Fig. 5.9 indicates the effect of parameter α in SRN. It is observed that
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Figure 5.8: Comparison of BER performances of SRN with different number
of hidden layers.

masking too many parameters leads to performance degradation in SRN.

However, SRN shows significant performance improvement compared to un-

masked SRN if the masking ratio, α ≤ 0.5. Therefore, the SRN uses signif-

icantly fewer trainable parameters, which results in an improved detection

model compared to DetNet. It is found that SRN with α = 0.5 utilizes 6×104

less parameters compared to DetNet for the same number of hidden layers

L = 30.

5.6 Summary

In this Chapter, SRN based detection is proposed for uplink mMIMO. SRN

prunes the insignificant parameters during training, giving a less complex

detection network. The network can also fine-tune an initial estimate of the
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Figure 5.9: Comparison of BER performances of SRN with different values
of masking ratio.

transmit symbol vector of mMIMO. Simulations are carried out to compare

the performance of SRN with state-of-the-art mMIMO detection techniques

measured on computational complexity and BER performance. The conver-

gence characteristic of SRN is analysed, and the simulations are substantiated

by a derived upper bound on the error performance. Simulation results val-

idate the viability of SRN against several detection techniques for symbol

detection in uplink mMIMO systems.

Chapters 3 to 5 essentially address the detection of symbols in mMIMO

systems. In mMIMO, multiplexing gain limits the supreme diversity be-

cause of the diversity multiplexing tradeoff, and depends on the rank of the

channel matrix. One cost-effective technique for further enhancing the spec-

tral efficiency of the mMIMO system is the incorporation of MBM into the
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mMIMO. Hence, the problem of symbol detection in the MBM-mMIMO sys-

tem is investigated in the following Chapters, and appropriate low-complexity

detection algorithms, SID, MEPD and MEPDRS, are proposed.
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Chapter 6

Detection Algorithms for

Uplink MBM-mMIMO Systems

6.1 Introduction

In the previous Chapters, mMIMO systems are taken into account, which

provides high spectral efficiency in comparison with SISO systems. In the

case of a static fading channel, diversity in an mMIMO system is achieved

at the expense of the reduction in spectral efficiency due to the diversity-

multiplexing trade-off. The spectral efficiency of the mMIMO system is fur-

ther enhanced when integrated with the MBM [47–49].

MBM [80] is a novel modulation technique that places multiple RF mir-

rors near the transmit antennas in a rich scattering environment and creates

different channel fade realizations. In MBM, the set of indices of RF mirrors

corresponding to the different possible channel fade realizations is called the

channel modulation alphabet. The set of information bits to be transmitted

is divided into two parts; one corresponding to the channel modulation alpha-

bet and the other corresponding to the conventional modulation alphabet. If

NRF is the number of RF mirrors and A is the conventional modulation al-

phabet, the spectral efficiency of single-user MBM is NRF +log2#A bits per

channel use. MBM has the inherent diversity in dealing with slow fading. It
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is a promising candidate for a rich scattering multipath fading environment

to yield high-speed data communication beyond 5G and 6G wireless commu-

nications without demanding excess transmit energy and resources. Though

being limited to low mobility or static communication scenarios, MBM with

Nr receiver antennas over a static multipath channel is capable of asymptot-

ically achieving the channel capacity of Nr parallel AWGN channels [5].

In the previous Chapters, symbol detection in mMIMO systems with

conventional modulation techniques is explored. However, algorithms pro-

posed in the preceding Chapters fail to detect the sparse transmit symbol

vectors in MBM-mMIMO systems. In this Chapter, symbol detection in

MBM-mMIMO is analyzed and modelled as a graph traversing problem. A

graph-traversal aided low-complexity symbol detection algorithm is proposed

inspired by socio-cognitive learning of swarm optimization.

The following terminology is used in this Chapter. hj,i,k denotes the

element in the ith row and the kth column of the sub-matrix Hj. hj,k denotes

the kth column of Hj. Hj refers to the matrix corresponding to the jth

user. xj,i refers to the ith element of xj. W denotes the moment generating

function (MGF). xj,l1 refers to the lth1 non-zero element of xj. E(.) denotes

the expectation operator. κ1 and κ2 respectively, refer to the Lagrangian

multiplier and the step size. PM(.) denotes projection onto a set M. D(., .)
is the Hamming distance operator.

The Chapter is organized as follows: System model of MBM-mMIMO is

presented in Section 6.2. Section 6.4.1 specifies the initialization requirements

for SID. SID algorithm is discussed in Section 6.4.2. Minim error pursuit

algrorithm is proposed in Section 6.5. Finally, Section ?? summarizes the

Chapter.

6.2 System Model of MBM-mMIMO

The system model of MBM-mMIMO is briefly explained in this section. An

uplink MBM-mMIMO system model is considered with Nr BS antennas and
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Figure 6.1: MBM-mMIMO system model.

Nt single antenna users with NRF RF mirrors placed before each transmit

antenna (Fig. 6.1). After demodulation and sampling, the received symbol

vector y at the BS is expressed as1 [47, 48]

y =

Nt
∑

j=1

Hjxj + n, (6.1)

1In mMIMO and large MIMO systems (system model (1.1) of Chapter 1), each user
transmits a symbol from the QAM constellation set A. However, in MBM-mMIMO,
a single RF mirror creates multiple channel realizations before each transmit antenna.
Hence, each user transmits a sparse vector corresponding to the MBM constellation set
M. Consequently, symbol detection in MBM-mMIMO at the BS is more difficult compared
to mMIMO systems.
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where xj ∈ CM×1 is the transmit MBM symbol vector from the jth user,

and M = 2NRF . Hj is defined as the channel matrix corresponding to

the jth user. All channel gains are assumed to be i.i.d. Gaussian random

variables with zero mean and unit variance. Each element of noise vec-

tor n ∈ CNr×1 is additive white Gaussian distributed with zero mean and

variance σ2. The MBM signal set M is expressed as M = {m : mi ∈
A ∪ {0}, || m ||0= 1}, where m is M × 1 vector. For example, if NRF = 1

and #A = 2, MBM signal set with BPSK for each user can be expressed as

M =

{[

1

0

]

,

[

−1
0

]

,

[

0

−1

]

,

[

0

1

]}

. Each of Nt users transmit a symbol

vector from M. The ML detection for system model (6.1) is expressed as

x̂ = argmin
x∈MNt

|| y −Hx ||22 (6.2)

It is worth noting that, the computational complexity of ML detection 2 is

exponential in NRF and Nt, O
(
(2NRF#A)Nt

)
. Consequently, ML detection

is not suitable for MBM-mMIMO .

6.3 Existing state-of-the-art detectors for MBM-

mMIMO

6.3.1 MMSE Detection

The estimated symbol vector at the base station is computed as

x̂ = A−1b,

where A = G a2

EX

I is the MMSE filter matrix, and G = HHH is called

the Gram matrix. b = HHy · σ2 denotes the noise variance and Ex is the

average energy per symbol. Due to channel hardening phenomenon, the

2As shown in Chapter 1, there are no RF mirrors employed in large MIMO and mMIMO
systems. Hence, ML detection’s computational complexity in mMIMO and large MIMO
systems exponentially increases only with the number of users Nt.
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gram matrix G becomes diagonally dominant. As a consequence, MMSE

yields near-optimal BER performance for mMIMO systems. However, in

MBM-mMIMO, the transmit symbol vector is sparse. As MMSE detector

fails to utilize the sparsity of the transmit MBM-mMIMO symbol vector, it

shows poor BER performance for MBM-mMIMO systems. Moreover, MMSE

involves high dimensional matrix inversion, and hence, MMSE is also not

suitable for mMIMO systems due to cubic order computational complexity.

6.3.2 IESP Detection

IESP [48] is a sparsity exploiting detection algorithm which utilizes the

inclusion-exclusion sparse structure of transmit MBM-mMIMO symbol vec-

tor. The transmit MBM-mMIMO symbol vector is sparse as all the possible

channel realizations are not utilized. However, the transmit MBM-mMIMO

symbol vector have an additional structure that only element in each block

corresponding to each user has a non-zero entity. IESP exploits this addi-

tional structure to yield low-complexity symbol detection in the uplink MBM-

mMIMO. IESP generates the initial estimate through orthogonal matching

pursuit (OMP) algorithm, followed by the computation of residual error. At

each iteration, IESP restricts estimated non-zero index to be from the set of

possible values of non-zero indices, B. Thus, IESP maintains the inclusion-

exclusion sparsity structure of the estimated MBM-mMIMO symbol vector.

IESP stops iterating when the residual error is more than the previous error.

IESP updates non-zero locations of the estimated MBM-mMIMO symbol

vector as follows:

l
(k)
i =

{
l
(k)
i , z

l
(k−1)
k

> zlk

l′i

where l′i = argmax
i∈B

hH
j,irj, and rj refers the residual vector corresponding to the

j th user. z =
(
HH
S(k)HS(k)

)−1
HH
S(k)y ·S(k) denotes the set of non-zero indices

at iteration k and HS(k) is a submatrix of H. Though IESP exhibits lower

computational complexity as compared to ML detection, however, the BER
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performance of IESP degrades with the increase in the number of antennas.

6.4 Graph Traversal Aided Detection in Up-

link MBM-mMIMO based on Socio-Cognitive

Knowledge of Swarm Optimization

6.4.1 Initialization

The sparsity level || x ||0 (the number of nonzero indices) of the transmit

symbol vector x is assumed to be known at BS. However, exact indices of

the nonzero elements of x are unknown. Hence, estimating the initial trans-

mit vector involves identifying both the nonzero indices and the values in

those nonzero locations. A set T of the nonzero indices of x are called the

support set. The initial estimate of the support set T is designed based on

Q-thresholding algorithm [81]

T = {Indices of Nt lagest elemests of hT
i y, i = 1, 2, ...,MNt}, (6.3)

The elements of T correspond to nonzero indices of the initial estimate x(0).

Thus, the initial estimate of the transmit symbol vector x(0) is computed as

x̂
(0)
i =




hT
i y if i ∈ T

0, otherwise
(6.4)

The above initial solution is iteratively improved in SID. Moreover, all users

in MBM-mMIMO are not equally affected by the noise. Hence, for efficient

and robust symbol detection, users are ordered based on the channel gain

and the initial solution. Thus, to achieve significant performance benefits,

the users are ordered based on the following set O

O = arg sort
i

|| y −Hix
(0)
i ||2, (6.5)
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where x̂
(0)
i and Hi respectively refer to the estimate of initial symbol vector,

and the channel matrix corresponds to the ith user. The elements in O are

sorted in descending order of || y−Hix
(0)
i ||2[82]. After that, a tree traversal

aided sequential detection approach based on social and cognitive knowledge

of swarm optimization has been considered to detect the users based on the

order mentioned in O.

6.4.2 Tree traversal aided symbol detection

SID which transforms and solves the uplink symbol detection problem in

MBM-mMIMO as minimum spanning tree (MST) is discussed in this section.

Figure 6.2: MBM-mMIMO symbol detection as a spanning tree.

Symbol detection as MST: The symbol detection problem at the BS in

uplink MBM-mMIMO system is modelled as finding an MST from an undi-

rected graph (Fig. 6.2). The undirected graph G = (V,E) is formed as

follows. The depth of G is equal to the number of users Nt. The root is cho-

sen as a dummy vertex at depth zero. The number of vertices at jth level is

| A |j −1, thereby making the total number of vertices at each level as |A|
j−1

|A|−1 .
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From the root s, SID performs a depth-first search with a probability metric

based on the residual error from the source node to the current node. SID is

initialized at the root with the initial solution (6.4) obtained in the Section

6.4.1. Each child vertex of a parent represents a possible MBM constellation

point under the MBM with single input single output (SISO) scenario.

Edge weight and Cost function: The complete weight function is consid-

ered as the ML cost defined as

φ(x) = rHr, (6.6)

where the residual error, r = b −Gx and G = HHH. (.)H denotes matrix

Hermitian. Hence, at level i, the partial weight function of an edge (s, u) ∈ E
is defined as

wi,(s,u) = b−
Nt∑

j=1,6=i

Gjxj −Gisi∈u (6.7)

where si∈u ∈M. Gi is the i
th sub-matrix of G, corresponding to the ith user.

Update strategy: SID first computes the initial solution x(0) and performs

user-ordering as defined in equation (6.5). For each parent node, SID chooses

the child node corresponding to the next user’s transmit symbol vector in O.

A probabilistic approach is taken to compute the attractiveness of a child

node towards a parent node. The child node selected at the ith level becomes

the parent node for the (i+1)th level. The probability metric must be chosen.

The probability at each node leads to the minimization of the overall square

loss penalty between the estimated transmit vector and receive symbol vector

defined in equation (6.6). The minimization of the square loss penalty also

must ensure the minimization of the BER at BS. Following minimum bit

error rate (MBER) criteria [83], the probability metric of correct detection
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is computed as

tanh
(
β(rHr+ 1)

)
+ tanh

(
β(rHr− 1)

)
= 0

exp(βrHr)− exp(−βrHr)
exp(βrHr)− exp(−βrHr) = 0

exp(2βrHr) = 1, (6.8)

where r denotes the residual error and β = σ2

2
. The equation (6.8) infers that

the probability metric becomes unity when MBER is achieved. Hence, the

probability metric for selecting the correct vertex v for the ith user is chosen

as

P(si∈v) = exp
(
− rT (σ2vI)

−1r
)
, (6.9)

where I is M ×M identity matrix. The symbol vector at the ith level for

the ith user is estimated by choosing the maximum value of the probability

metric.

x̂i∈v = argmax
si∈v∈M

P(si∈v) (6.10)

The choice of an exponential probability metric can also be explained from

the attractiveness parameter proposed in the swarm and evolutionary compu-

tation literature [84]. In case of FA, where two fireflies refer to two candidate

solutions, the attractiveness between two fireflies reduces with the increase

in their distance and is represented by an exponential function (discussed in

Chapter 2). Hence, a candidate solution (a possible transmit vector for a

user) that is nearest to the previously estimated transmit vector of another

user is more likely to be chosen. Consequently, as the detection of a transmit

vector for a user is considered as a multiclass classification from the MBM-

SISO constellation set, a softmax function that depends on the residual error

vector is considered as the probability metric. This probability metric refers

to attractiveness of the particle x̂i∈v towards a candidate solution si∈v. The
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performance of SID improves if the social and cognitive knowledge of the

search space is considered by keeping track of the global best and local best

solutions, respectively. To further enhance SID’s performance, L iteration

of SID is performed. Conventional iterative techniques do not utilize the

social and cognitive knowledge of the set of solutions achieved from different

iterations. Hence, to improve the exploration and exploitation capability of

SID, the local best solution is computed at each iteration. At iteration k,

once the symbol vector/position corresponding to the ith swarm is computed

at vertex u, the fitness of that solution x̂i is computed as

φ(x̂
(k+1)
i∈u ) =|| w(k+1)

i,(s,u) ||22, (6.11)

where w
(k+1)
i,(s,u) = w

(k)
i,(s,u) +Gi

(
x
(k)
i∈u− x

(k+1)
i∈u

)
. If the fitness of present solution

x̂
(k+1)
i is better than the previous solution

(
φ(x̂

(k+1)
i∈u ) < φ(x̂

(k)
i∈u)

)
, x̂

(k+1)
i∈u is

chosen as the local best solution of ith user. Finally, the global best solution

obtained from the local best solutions of L iterations are declared as the

output of SID. The flowchart and pseudocode of SID are given in Fig. 6.3

and Algorithm 6.1 respectively.

Figure 6.3: Flowchart of SID.

6.4.3 Theoretical analysis

In this section, the convergence analysis and analytical upper bound on BER

performance of SID are provided.
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Algorithm 6.1 Proposed SID algorithm
Input: Nr, Nt, M , H, y, L, σv
Output: xgBest

Preprocessing: G = HTH, b = HTy
Compute initial estimate using (6.4)
while iteration 6 L do

for i = 1, i 6 2Nt do
Perform user ordering based on (6.5)
Calculate probability metric using (6.9)
Calculate fitness using (6.11)
Update local best solution xlBest

end for
end while
Update global best solution xgBest

Update fitness using (6.11)

Convergence analysis

The convergence of SID is analysed based on the proposed MST detection

model. Suppose SID detects a symbol vector from the ith user and reaches

node u. (s, u) ∈ E. The error vector ti after detection of the symbol vector

from the ith user at the ith level is expressed as

ti = y −
Nt∑

j 6=i,i∈u
Hjxj −Hix̂i∈u, (6.12)

where r = HHt. While traversing the tree, suppose vertex v is selected at

the (i+1)th level and there exists an edge (u, v) ∈ E. From equation (6.12),

the error vector t at the (i+ 1)th level after detection of symbol vector from

the (i+ 1)th user is computed as

ti+1 = ti +Hi+1

(
xi+1 − x̂i+1∈v

)

= ti +Hi+1di+1, (6.13)
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where di+1 = xi+1 − x̂i+1∈v. Applying the square of L2-norm on both sides

of equation (6.13),

|| ti+1 ||22 =|| ti ||22 + || Hi+1di+1 ||22 +2
(
Hi+1di+1

)H(
ti+1 −Hi+1di+1

)

=|| ti ||22 − || Hi+1di+1 ||22 (6.14)

Since HH
i+1ti+1 = 0 [58], from (6.14),

|| ti+1 ||22<|| ti ||22 (6.15)

Hence, the error associated with the estimated symbol decreases while travers-

ing the tree. Thus, it concludes that SID achieves the minimum residual error

when it reaches the tree’s leaf node level. It proves convergence of SID.

BER analysis

An analytical upper bound on BER performance of SID is computed as

follows. The approximate received SNR for the jth user at the iteration k is

calculated as

γ
(k)
j =

1

σ2 +
∑Nt

i=1, 6=j || x
(k)
i − x̂

(k)
i ||22

Hence, MGF corresponds to the average instantaneous received SNR γ̃ under

CSI mismatch scenario at the BS is computed as

Wγ(s) =
(
1− s(1 + e2)γ̃

)−Nr

, (6.16)
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where e is the channel estimation error. Hence,the probability of error Pe is

computed as [60]

Pe =
1

π

∫ π

0

Wγ(−
1

2 sin2 θ
)dθ

=
1

π

∫ π

0

( sin2 θ
(1+e2)γ̃
2Nr

+ sin2 θ

)
dθ

≤
(1− µ(c)

2

)Nr
Nr−1∑

k=0

(
Nr + k − 1

k

)(
1 +

µ(c)

2

)k

, (6.17)

where µ(c) =
√

(1+e2)γ̃
2Nr+(1+e2)γ̃

. Setting e = 0 in expressions (6.16) and (6.17)

gives the expression of Pe for the perfect CSI at the BS.

6.4.4 Simulation results

This section compares SID with IESP [48] and MMSE in terms of BER

performance and computational complexity. Simulation parameters are listed

in Table. 6.1.

Table 6.1: Table of parameters

Parameter Value
NRF 2, 3, 4
Nr 128
Nt 16
e 0%, 0.5%, 10%, 30%
#A 4

In Fig. 6.4, BER performance of SID is compared with MMSE and IESP

detection techniques for an MBM-mMIMO system with Nr = 128, Nt = 16

and NRF = 2. In an MBM-mMIMO system with Nr = 128, Nt = 16 and

NRF = 2, the overall channel matrix formed between the users and BS is

tall. Hence, the MBM-mMIMO system becomes an overdetermined system

with a system loading factor (α = Nr

2NRF Nt
) of 2. As observed in Fig. 6.4, SID

outperforms both MMSE and IESP for such overdetermined MBM-mMIMO
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Figure 6.4: Comparison of BER performance of SID with other contending
techniques for Nr = 128, Nt = 16 and NRF = 2

systems. SID even with L=2 has superior BER performance as compared

to MMSE with L=4 and IESP with L=4. Moreover, even with half number

of iterations, proposed SID is capable of achieving SNR gains of 1.5 dB and

3 dB as compared to IESP and MMSE respectively for a targeted BER of

10−4. It shows that SID not only converges faster but also yields better BER

performance compared to both MMSE and IESP. This proves the viability

of SID for symbol detection in an overdetermined MBM-mMIMO with less

number of RF mirrors placed before each user.

As discussed in Section 6.1, the spectral efficiency of MBM-mMIMO sys-

tems improves with the number of RF mirrors placed before each user [80].

Hence, the viability of SID over MMSE and IESP needs to be justified for

a large number of RF mirrors. Accordingly, a determined and underdeter-

mined MBM-mMIMO systems are also considered with the number of RF

mirrors chosen for each user as NRF = 3 and NRF = 4, respectively.
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Figure 6.5: Comparison of BER performance of SID with other contending
techniques for Nr = 128, Nt = 16 and NRF = 3.

Fig. 6.5 depicts BER performance of SID compared with MMSE and

IESP detection techniques for an determined MBM-mMIMO system with

Nr = 128, Nt = 16 and NRF = 3. In an MBM-mMIMO system with

Nr = 128, Nt = 16 and NRF = 3, the overall channel matrix formed between

the users and BS becomes a square matrix, eventually converting MBM-

mMIMO system to a determined system with a system loading factor of

unity. For a fair comparison, the number of iterations is kept the same

(L = 4) for all the contending detection techniques. Fig. 6.5 shows that SID

achieves an SNR gain of 1.5 dB as compared to IESP for a targeted BER of

10−4. Furthermore, MMSE yields far inferior BER performance as compared

to SID. It concludes that SID is a promising technique for symbol detection

in determined MBM-mMIMO systems.

As MBM-mMIMO provides comparatively more spectral efficiency than

mMIMO, SID needs to be efficient under massive number of users. Hence,
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Figure 6.6: Comparison of BER performance of SID with other contending
techniques for Nr = 128, Nt = 32 and NRF = 3.

in Fig. 6.6, the BER performance of SID is compared with MMSE and IESP

for a scenario where the number of users scales up in the system. In Fig. 6.6,

the number of BS-antennas and RF mirrors are kept the same as in Fig. 6.5,

and the number of users is increased to Nt = 32. Fig. 6.6, depicts that SID

outperforms MMSE and IESP even for a large number of active users in the

MBM-mMIMO system. Hence, SID is a more suitable candidate compared

to MMSE and IESP for uplink symbol detection in MBM-mMIMO systems

for 5G and beyond wireless communications.

In Fig. 6.7, the number of RF mirrors for each user is further increased

to NRF = 4. As the dimension of the transmit MBM-mMIMO symbol de-

tector is more than the number of BS-antennas, the MBM-mMIMO system

considered in Fig. 6.7 is underdetermined with a system loading factor (α)

of 0.5, making the symbol-detection more challenging. However, even under

such a challenging scenario, SID achieves an SNR gain of 1.5 dB over IESP
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Figure 6.7: BER performance comparison of SID with other contending de-
tection techniques under perfect CSI scenarios, Nr = 128, Nt = 16 and
NRF = 4.

for the same number of iterations. In Fig. 6.7, MMSE shows substantial

degradation in BER compared to SID. Hence, from Fig. 6.4 to Fig. 6.7, it

is proven that SID is a more efficient detection technique in terms of BER

performance as compared to MMSE as well as IESP, justified against any

number of RF mirrors for each user.

From Fig. 6.4-Fig. 6.7, it is assumed that the CSI is perfectly known

at the BS, and there is no CSI error. However, BS has imperfect CSI due

to pilot contamination problem in practical wireless communication systems.

SID technique is suitable to be deployed for practical wireless scenarios if

the robustness of SID is validated under both perfect and imperfect CSI

scenarios. Hence, from Fig. 6.8 to Fig. 6.9, BER performance of SID is

compared with MMSE, and SID under CSI mismatch scenarios.

Fig. 6.8 compares the BER performance of SID under different CSI mis-
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Figure 6.8: BER performances of SID under different CSI mismatch scenarios
for Nr = 128, Nt = 16 and NRF = 3.

match conditions. It is found through simulations that SID shows minimal

degradation in BER performance if there exists CSI mismatch at the BS. It

corroborates robustness of SID under CSI mismatch scenarios.

To prove superiority of SID under CSI mismatch scenario, the Fig. 6.9

compares BER performance of the contending detection techniques for chan-

nel estimation error of e = 30%. SID attains an SNR gain of approximately

2 dB over IESP for a targeted BER of 4 × 10−5, even for a high value of

channel estimation error of e = 30% at the BS. MMSE shows very poor BER

performance under such CSI error scenario. SID detection technique is more

robust to even higher CSI estimation errors as compared to both MMSE and

IESP. Moreover, it is already proved from Fig. 6.8 that the BER perfor-

mance of SID with small CSI errors at BS does not degrade much compared

to the perfect CSI conditions. Hence, SID is more efficient and robust MBM-

mMIMO symbol detection technique compared to the MMSE and the IESP
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Figure 6.9: BER performance comparison of proposed detection technique
with other contending detection techniques under imperfect CSI scenario,
Nr = 128, Nt = 16 and NRF = 3.

from BER performance perspective.

The computational complexities of the competing detection techniques

are compared in Fig. 6.10-Fig. 6.11 in terms of FLOPs. Less number

of FLOPs of A detection technique which requires less number of FLOPs

helps faster processing in the floating point unit (FPU). Hence, a detection

technique with less number of FLOPs per iteration is computationally more

efficient for symbol detection in MBM-mMIMO systems.

As illustrated in Fig. 6.10, a single iteration of SID is computationally

more efficient as compared to both MMSE and IESP. Moreover, as shown

in Fig. 6.11, SID requires a significantly fewer number of FLOPs in symbol

detection than IESP and MMSE for the same number of BS antennas in

the system. Hence, it is proved from Fig. 6.10 and Fig. 6.11 that SID

is computationally more viable than MMSE and IESP for uplink MBM-
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Figure 6.10: Comparison of computational complexity under different num-
ber of iterations for Nr = 128, Nt = 16 and NRF = 4.

mMIMO.

SID technique detects the transmitted symbol vector from each user se-

quentially. It utilizes socio-cognitive knowledge from all iterations, which

prunes the interuser interference and provides superior performance. The

convergence of SID is analyzed theoretically in this Chapter. Simulation

results reveal that SID outperforms existing state-of-the-art detection tech-

niques in terms of both BER performance and computational complexity,

which are further validated through an analytic expression of upper bound

on BER. Moreover, SID’s robustness is also verified under imperfect CSI

scenarios at BS. It concludes that SID is a promising low-complexity can-

didate for uplink symbol detection in MBM-mMIMO systems with a large

number of users in terms of error performance, as well as robustness. How-

ever, except for the initial Q thresholding step, SID does not take advantage

of the transmit MBM-mMIMO symbol vector’s sparse nature. Such sparse

132



CHAPTER 6. DETECTION ALGORITHMS FOR UPLINK

MBM-MMIMO SYSTEMS

60 80 100 120 140 160

N  of receive antennas (Nr)

10
6

10
7

C
o
m

p
u
ta

ti
o
n
al

 C
o
m

p
le

x
it

y IESP

MMSE

SID

Figure 6.11: Comparison of computational complexity under different num-
ber of BS antennas for NRF = 4, Nt = 16 and L = 4.

signal detectors’ performance can further be improved if the actual support

set is retrieved at each iteration. Hence, the symbol detection problem in

MBM-mMIMO needs to be reconsidered. An efficient criteria needs to be

introduced to recover true support of the transmit MBM-mMIMO vector at

each iteration. In the subsequent algorithm, MSRE criteria-based enhanced

detectors, MEPD and MEPDRS, are proposed to achieve near-ML perfor-

mance for symbol detection MBM-mMIMO systems.

6.5 Minimum Error Pursuit Detection Agorithm

for MBM-mMIMO

The SID technique utilizes a graph-traversal-based probabilistic approach

to update the symbol vectors while maintaining a swarm intelligence-based
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exploration-exploitation trade-off. Consequently, SID outperforms IESP and

MMSE detection algorithms. However, SID does not ensure recovery of true

support set at each iteration, resulting in inferior performance compared to

ML detection. Hence, the design of low complexity algorithms for uplink

MBM-mMIMO systems considering the structured sparsity of the transmit

MBM-mMIMO symbol vector is cruial. Hence, at first, MSRE criteria based

low-complexity sequential symbol detection technique MEPD is proposed

for the uplink of MBM-mMIMO system. Another improved low complex-

ity detection technique, MEPDRS is devised by enhancing MEPD’s explo-

ration capability to a limited message space. Comparisons of the proposed

techniques are drawn with other state-of-the-art techniques for the uplink

MBM-mMIMO systems.

The following terminology is used in this chapter. xj,l1 refers to the lth1

non-zero element of xj. E(.) denotes the expectation operator. κ1 and κ2

respectively, refer to the Lagrangian multiplier and the step size. PM(.)

denotes projection onto a set M. D(., .) is the Hamming distance operator.

6.5.1 Problem Formulation and Symbol Detection

In this section, a support recovery (SR) technique is discussed first, followed

by the introduction of MSRE criteria.

Support Recovery

Suppose xj is the symbol vector transmitted by the jth user. The support

δj of xj is defined as the number of nonzero elements in the vector xj, as

δj =|| xj ||0. Since the signal of interest xj contains both zero and nonzero

elements, exact recovery of nonzero locations of xj at the BS is crucial for

reliable estimation of xj. If Tj is the set of all indices of xj, Tj can be

expressed as Tj = Vj ∪ ∅(M−δj)×1, where Vj and ∅(M−δj)×1 respectively refer

to the support set and the set of zero locations of the transmitted signal

xj. δj and M − δj respectively, denote the cardinalities of Vj and the set

∅(M−δj)×1. The received symbol vector y is simplified as y = Hjxj+ej, where
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ej =
∑Nt

u=1,u 6=j Huxu + n is the interference and noise term associated with

the jth user. Hence, the support set Vj is recovered as Vj = {argmin
k

1− |

h†j,kyj |, k = 1, 2, ...M}.

MSRE Criteria

As the transmit MBM-mMIMO symbol vector exhibits structured sparsity,

Hj satisfies the restricted isometry property (RIP) [5, 80, 85]. To ensure

recovery of true support from Vj, the channel matrix Hj must follow the

following criteria [86], max
k 6=i

| h+j,kyj |≤| h+j,iyj |, where yj = Hjxj + nj.

Hence, the probability of support recovery error (SRE) is expressed as

PSRE ≤
∑

k 6=i

P
(

h+j,kyj > xi

)

(6.18)

In noise-free environment, h+j,kyj is simplified as h+j,kyj =
∑M

l1=1
sj,l1 , where

sj,l1 =
∑Nr

l2=1
hj,l2,khj,l1,l2xj,l1 . Assume that P(| sj,l1 |< µj,max) = 1 and

E(s2j,l1) ≤
µ2
j,max

Nt
, where µj,max is the maximum cross-correlation on Hj, which

is defined as µj,max = max
i 6=k

| h+j,ihj,k |. Hence, applying Markov’s inequality

[87] on equation (6.18), the probability of error in support recovery is com-

puted as

PSRE ≤ 2(1−M)
(

1−
3x2j,i

6v + 2cxj,i

)

, (6.19)

where c = µj,max, M = 2NRF and v = c2

M
. Hence, to corroborate error-free

support-recovery and detection, the detection technique must minimize the

upper bound on support-recovery error-rate computed in the equation (6.19),

termed as MSRE criteria.

6.6 MSRE criteria based detection

In this section, the MSRE criteria derived in subsection 6.5.1 is utilised to

develop an efficient detection technique for MBM-mMIMO, which ensures
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minimum SRE. Based on the inequality constraint (6.19), the symbol detec-

tion problem at the BS is formulated as

min
x̂j,i

|| yj −Hjx̂j ||22

s.t 2(1−M)
(

1−
3x̂2j,i

6v + 2cx̂j,i

)

= 0 (6.20)

To solve problem (6.20) which exploits sparsity by incorporating SRE as a

constraint, Lagrangian function φ(xj,i, κ1) is formed as φ(xj,i, κ1) = g(xj,i) +

κ1f(xj,i), where g(xj,i) =|| yj −Hjxj ||22, f(xj,i) = 2(1 −M)
(

1 − 3x2
j,i

6v+2cxi,j

)

.

Solving (6.20), the symbol update strategy for the proposed MEPD is ob-

tained as x̂
(k+1)
j,i = PM

(

x̂
(k)
j,i −κ2∇iφ(x̂j,i, µ1)

)

, .Thus, the ith symbol of the jth

user, x̂j,i is updated based on a stochastic gradient descent method. PM(.)

projects the updated symbol vector to the nearest MBM constellation. Al-

though MEPD considers the multi-user interference as noise, it neither per-

forms an exhaustive search for each user nor updates the symbol using a

greedy approach. Moreover, to achieve a fast convergence rate, MEPD keeps

track of the global best cost ∆ and symbol vector û. After maximum iter-

ation, L, the global best symbol vector û is declared as the final estimated

output of the proposed detection technique. The pseudocode and receiver

block diagram of MEPD are given in Algorithm 6.2 and Fig. 6.12, respec-

tively.

Compute
initial
solution

Update
residual

Update
solution
ensuring
MSRE

Received symbol

vector

Channel matrix (iterate)

Estimated symbol

vector

Figure 6.12: Block Diagram of MEPD Technique.

MEPD is an iterative technique which does not explore the MBM con-

stellations. However, performance of MEPD is improved in MEPDRS with

restricted search by introducing a restricted exploration in a comparatively
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Algorithm 6.2 Proposed MEPD algorithm

1: Inputs: x̂(1), L, H, y, µ1, µ2, µmax, k = 1, M , Nt

2: Output: û
3: for j = 1 : Nt do

4: Compute residual r = H+
j y

5: Choose index l = argmax
i=1,2,...,M

| ri |

6: Update x̂j,l = (|| hj,l ||22)−1h+j,ly
7: end for

8: Update residual r = y −Hx̂

9: ∆ =|| r ||22
10: while k ≤ L do

11: for j = 1 : Nt do

12: yj = r+Hjx̂
(k)
j

13: lj ∈ Vj
14: Update x̂

(k+1)
j,lj

= PM
(
x̂
(k)
j,lj
− µ2∇lφ(x̂j,lj , µ1)

)

15: c(k) = r(k) +Hj(x̂
(k)
j − x̂

(k+1)
j )

16: if ∆ >|| c(k) ||22 then

17: r(k+1) = c(k)

18: ∆ =|| c(k) ||22
19: ûj = x̂

(k+1)
j

20: end if

21: x̂
(k+1)
j = ûj

22: end for

23: k = k + 1

24: end while
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Algorithm 6.3 Proposed MEPDRS algorithm

1: Inputs: x̂(1), L, H, y, µ1, µ2, k = 1, M , Nt

2: Output: û
3: for j = 1 : Nt do

4: Compute residual r = H+
j y

5: Choose index l = argmax
i=1,2,...,M

| ri |

6: Update x̂j,l = (|| hj,l ||22)−1h+j,ly
7: end for

8: Update residual r = y −Hx̂

9: ∆ =|| r ||22
10: while k ≤ L− 1 do

11: for j = 1 : Nt do

12: yj = r+Hjx̂
(k)
j

13: lj ∈ Vj
14: Update x̂

(k+1)
j,lj

= PM
(
x̂
(k)
j,lj
− µ2∇lφ(x̂j,lj , µ1)

)

15: for i = 1 : #NRS do

16: c(k) = r(k) +Hj(x̂
(k)
j − x̂

(k+1)
i∈NRS

)

17: if ∆ >|| c(k) ||22 then

18: r(k+1) = c(k)

19: ∆ =|| c(k) ||22
20: ûj = x̂

(k+1)
j

21: end if

22: end for

23: x̂
(k+1)
j = ûj

24: end for

25: k = k + 1
26: end while

27: for j = 1 : Nt do yj = r+Hjx̂
(k)
j

28: for i = 1 : #M do

29: c
(k)
i = r(k) +Hj(x̂

(k)
j − x̂

(k+1)
i∈M )

30: end for

31: l = argmin
i∈M

c
(k)
i

32: if ∆ >|| c(k)l ||22 then

33: r(k+1) = c
(k)
l

34: ∆ =|| c(k)l ||22
35: ûj = x

(k+1)
l

36: end if

37: end for
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Figure 6.13: Block Diagram of MEPDRS Technique.

small search space. The search space for restricted search (RS) is defined as

NRS = {x̂i, si ∈ M|D(̃si, x̂i) = 1}, where x̂i is the MEPD estimated symbol

vector for the ith user. MEPDRS explores the least number of vectors during

RS when D(̃si, x̂i) = 1. Hence, exploration with RS requires less computa-

tional cost (O(#A)) as compared to the computational cost (O(2NRF#A)) of
exploration over all the MBM constellations. Finally, to avoid getting stuck

into a local optima due to RS, MEPDRS performs a single exploration over

all MBM constellations. However, multiple explorations over all MBM con-

stellations do not substantially improve the BER performance of MEPDRS,

rather increasing the computational complexity. The pseudocode and re-

ceiver block diagram of MEPDRS are shown in Algorithm 6.3 and Fig. 6.13,

respectively. Moreover, theoretical upper bound on the probability of error

of MEPDRS is computed as [88] Pe ≤
(
1−κ(c)

2

)Nr ∑Nr−1
k=0

(
Nr+k−1

k

)(
1+ κ(c)

2

)k

,

where κ(c) =
√

γ̃
2Nr+γ̃

and γ̃ is the average received SNR.

6.6.1 Simulation results and discussion

The computational complexity and BER performances of MEPD and MEP-

DRS are analysed and compared with MMSE, IESP and IIC detection tech-

niques in this section.

Computational complexity: The computational complexities of ML, MMSE,

IESP, IIC , MEPD and MEPDRS are listed in Table 6.2 in terms of the num-

ber of FLOPs. T = #M denotes cardinality of MBM constellation set M.

It is observed from Table 6.2 that a single iteration of IIC significantly
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Table 6.2: Computational complexity

Detection
tech-
niques

FLOPs

ML (2NRF#A)Nt

MMSE
[89]

4N3
t + 8N2

t + 4(N2
t +Nt)Nr

IESP [48] (L+1)NtNrM +4(L+1)N2
t Nr +

2(L+1)N3
t +(2L+3)NtNr+(2L+

1)Nr

IIC [47] 3LTNtNrM + 3N2
t Nr + LN2

t +
2LNtNr +Nr(Nt + 1)

MEPD (2L+1)NtNrM+0.5N2
t Nr+(6L+

2.5)NtNr + ((M + 2T + 15)L +
3)Nt + 2Nr

MEPDRS (2L + 3MT − 1)NtNrM +
0.5N2

uNr + (6L − 0.5)NtNr +
((M + 2T + 15)L− ((T + 1)M +
2(T + 7)))Nt + 2Nr

requires more number of FLOPs compared to IESP, MEPD and MEPDRS.

However, the computational complexities of IESP and MPEDRS are compa-

rable.

BER Performance: In Fig. 6.14, the BER performances of MEPD and

MEPDRS are compared with MMSE, IESP and IIC detection techniques

for an MBM-mMIMO system with Nr = 128, Nt = 16 and NRF = 4. It

is observed that MPED outperforms MMSE, IESP and IIC with the same

number of iterations. An SNR gain of approximately 1 dB is achieved in

MEPD over IIC with the same number of iterations (L=2) for a targeted

BER of 4× 10−4. It is already proved from Table 6.2 that a single iteration

of MEPD requires substantially less number of computations as compared to

a single iteration of IIC. As mentioned in Section 6.6, MEPDRS is designed

to outperform MEPD for the same number of iterations and achieves an SNR

gain of approx. 0.5 dB over MEPD for a targeted BER of 3× 10−4.

In Fig. 6.15, the BER performance of MEPDRS is compared for large
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Figure 6.14: BER performance comparison of MEPD with MMSE, IESP and
IIC.

number of iterations with ML, IIC and IESP. It is found that the perfor-

mances of IESP and IIC do not improve after L = 20 and L = 4 respectively.

Fig. 6.15 depicts that MEPD with L=4 outperforms IESP with L = 20,

with an SNR gain of 0.6 dB for a targeted BER of 3 × 10−3. MEPDRS

with L = 4 reaches hypothetical lower bound (LB), giving IIC equivalent

BER performance. Moreover, MEPDRS with L = 4 yields near-ML perfor-

mance for MBM-mMIMO with Nr = 128, Nt = 16 and NRF = 4. Hence,

it is proved from Figs. 6.14-6.15 and Table 6.2 that MEPD and MEPDRS

are more viable candidates for uplink symbol detection in MBM-mMIMO as

compared to MMSE, IESP and IIC. For L ≤ 2, both MEPD and MEPDRS

outperform IIC. For L ≥ 3, MEPDRS requires comparatively less number of

141



6.6. MSRE CRITERIA BASED DETECTION

0 1 2 3 4 5 6

Average received SNR (dB)

10
-6

10
-4

10
-2

10
0

B
E

R

N
r
 = 128, N  = 16,  N

RF
 = 4

MMSE

IESP, L=20

IIC, L=4

MEPD, L=4

LB

ML

MEPDRS, L=4, sim.

MEPDRS, L=4, theo.

Figure 6.15: BER performance comparison of MEPDRS with MMSE, IESP
and IIC.

FLOPs than IIC to achieve equivalent BER performance.

The comparison of BER performance among contending algorithms is

shown in Figs. 6.16-6.17 for different number of RF mirrors for MBM-

mMIMO systems with Nr = 128 and Nt = 16. It is drawn from Figs.

6.16-6.17 that both MEPD and MEPDRS significantly outperform IESP and

IIC for NRF = 2, NRF = 3 and NRF = 4. The simulation results in Figs.

6.16-6.17 validate the superiority of MEPD and MEPDRS over IESP and

IIC for any number of RF mirrors placed before the transmit antennas. It

is also observed from Figs. 6.16-6.17 that the performance gains of MEPD

and MEPDRS over IIC are more significant when the number of RF mirrors

increases in the system. It concludes the superiority of MEPD and MEPDRS
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Figure 6.16: BER performance comparison of MEPD, IESP and IIC for
different number of RF mirrors.

over IESP and IIC for symbol detection in MBM-mMIMO incorporated in

high data rate wireless communications.

In Fig. 6.18, the BER performances of MEPD, MEPDRS, IESP and IIC

are analyzed for different numbers of BS antennas. It is depicted in Fig. 6.18

that IIC with the same number of iterations L=2 requires a greater number of

BS antennas to achieve BER equivalent to MEPD and MEPDRS. As shown

in Fig. 6.18, IIC achieves BER of 10−4 with Nr = 150 BS antennas; however,

MEPD and MEPDRS require only Nr = 135 and Nr = 130 respectively BS

antennas to achieve approximately equal BER performance.

It is observed in Figs. 6.19-6.20, MEPD and MEPDRS require less num-

ber of FLOPs compared to IIC for the same number of iterations as well as

the number of BS antennas. As shown in Fig. 6.20, IESP is computationally
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Figure 6.17: BER performance comparison of MEPDRS, IESP and IIC for
different number of RF mirrors.

comparable to MEPDRS in terms of the number of BS antennas. It is already

proved from Fig. 6.15 that the performance of IESP does not significantly

increase with the number of iterations.

Fig. 6.21 shows that IIC requires more number of FLOPs as compared to

both MEPD and MEPDRS for different system configurations with different

RF mirrors. This proves the cost-effectiveness of MEPD and MEPDRS in

terms of less BS antenna requirement, RF mirrors and computational com-

plexity.
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Figure 6.18: BER performance comparison of MEPD, MMSE, IESP and IIC
with different number of BS antennas.

6.7 Summary

In this Chapter, low complexity MBM-mMIMO symbol detection techniques,

MEPD and MEPDRS, are proposed. MEPD exploits MSRE criteria and se-

quentially detects the symbol vector transmitted by each user. The error rate

performance of MEPD is further enhanced with exploration in a restricted

search space. Both MEPD and MEPDRS detection techniques are analysed

through simulations, which demonstrate substantial viability over state-of-

the-art MBM-mMIMO symbol detection techniques in terms of error rate

performance as well as the computational complexity. Hence, MEPD and
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Figure 6.19: Comparison of computational complexity of contending detec-
tion techniques for different number of iterations.

MEPDRS are promising candidates for uplink symbol detection in MBM-

mMIMO systems for beyond 5G and 6G wireless communication systems.
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Figure 6.20: Comparison of computational complexity of contending detec-
tion techniques for different number of BS antennas.
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Chapter 7

Conclusion and Future Work

An in-depth study on the design and analysis of novel detection techniques for

uplink mMIMO systems is accomplished in this thesis. This chapter presents

the conclusions, the key points of this thesis and the future directions of the

work.

7.1 Conclusion

This thesis has extensively studied the design and analysis of novel detection

techniques for uplink mMIMO systems. The proposed novel techniques have

been presented in this thesis in six chapters.

In the second chapter, evolutionary algorithms are explored for symbol

detection, and a novel MFA is proposed for symbol detection in uplink large

MIMO systems. The proposed MFA utilises a probabilistic approach to es-

timate the symbols and is capable of maintaining a balance between explo-

ration and exploitation. Simulation results and convergence analysis of MFA

prove the viability of the algorithm compared against several conventional

large MIMO systems.

In the third chapter, AMI and MII techniques are investigated for uplink

massive MIMO systems. Two novel algorithms, pseudo stationary iteration-

based HA and nonstationary iteration based ILS are proposed for uplink

150



CHAPTER 7. CONCLUSION AND FUTURE WORK

mMIMO detection. Analyses on the convergence of the proposed algorithms

are also performed. Simulations are carried out to verify HA and ILS algo-

rithms’ superiority compared to several state-of-the-art mMIMO detection

techniques. Both HA and ILS are capable of reaching a near-MMSE solution

with comparatively less computational complexity than several state-of-the-

art detection algorithms. Analyses on the convergences of HA and ILS are

also performed.

In the fourth chapter, RFOD is proposed for mMIMO systems with a

large number of users. RFOD utilizes a quality metric for ordering the sym-

bols before detection and applies RFM to improve the estimated solution.

The convergence of RFOD is theoretically analyzed, which is further corrobo-

rated through simulation results. RFOD outperforms several state-of-the-art

uplink mMIMO detectors, including MMSE, even when the users scale-up in

mMIMO systems.

DL-based techniques are surveyed in the fifth chapter. A sparsely con-

nected SRN is proposed for uplink mMIMO systems, which obtains better

performance in terms of computational complexity and BER compared to

iterative detection techniques.

Finally, existing detectors for systems are explored in the sixth chap-

ter, and two low complexity detectors, SID and MEPDRS are proposed

for symbol detection in uplink MBM-mMIMO systems. SID transforms the

MBM-mMIMO symbol detection as graph traversal problem and outperforms

several existing detectors for MBM-mMIMO systems. MEPDRS uses a pro-

jected gradient descent-based update rule formed from MSRE constraint and

is able to achieve near-ML BER performance.

In conclusion, MFA is found to obtain superior performance than sev-

eral state-of-the-art detectors for large MIMO systems. However, MFA is

not suitable for symbol detection in mMIMO systems due to degraded BER

performance and high computational complexity. As an alternative, sta-

tionary and pseudo-stationary iteration based detection techniques, ILS and

HA outperform several existing detectors for mMIMO systems. However,
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they can only reach near-MMSE performance and show suboptimal perfor-

mance when users scale up in the system. RFOD is a promising solution for

symbol detection in mMIMO systems with a large number of users. How-

ever, being a model-based approach, it is capable of providing fixed perfor-

mance benefits based on the predefined mathematical model. Hence, deep

unfolding based detection SRN is proposed which outperforms precedent de-

tectors and provides superior performance than previously proposed detec-

tors for an mMIMO system with a large number of users. While SRN is a

promising detection technique for mMIMO systems, the performance ben-

efits of mMIMO systems improve when incorporated with MBM. Having

said that, SRN shows degraded BER performance when deployed for sparse

transmitted vector detection in MBM-mMIMO systems. Consequently, SID

and MEPDRS are proposed, which outperforms several competing detection

techniques for MBM-mMIMO systems. The superior BER performance and

improved computational complexities of the algorithms proposed in the the-

sis corroborate that the proposed detection algorithms are convenient and

promising for the practical realisation of beyond 5G and 6G wireless com-

munication systems.

7.2 Limitations and Future Work

As future work, the algorithms proposed and the results discussed in the

thesis can be extended as follows.

• Swarm intelligence-based algorithms are promising for symbol detection

in large MIMO systems. The MFA algorithms proposed in Chapter

2 outperforms several swarm intelligence based detection algorithms

for large MIMO systems. However, the computational complexity of

MFA presented in Chapter 2 is relatively high for symbol detection in

mMIMO systems. Further reduction in the computational complexity

of MFA for mMIMO systems remains an open problem.
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• DL techniques outperform conventional AMI and MII techniques. How-

ever, traditional DL techniques possess high memory requirements and

training time. Model-driven DL techniques fuse principled algorithms

with DL, giving improved performance and computational complexity.

Iterative algorithms proposed in this thesis are constrained to specific

mathematical models with non-trainable parameters. They may be ex-

plored to design computationally efficient model-driven DL networks

for mMIMO systems.

• Fixed-point analysis (FPA) of the algorithms proposed in this is crucial

for practical implementation of the proposed algorithms. Fixed point

refers to the fixed number of digits after the decimal point. Hence,

FPA plays a crucial role in the successful hardware realization of the

proposed algorithms to maintain a fixed precision of the estimated so-

lution. Hence, FPA of the proposed detection algorithm needs to be

completed before their hardware implementation.

• The proposed algorithms can be extended to cell-free mMIMO (CF-

mMIMO) systems targetted for beyond 5G wireless communications.

CF-mMIMO system is an energy-efficient and cost-effective technology

for realising high-speed data communication in 6G wireless commu-

nication systems. In CF-mMIMO, a massive number of individually

controllable access points (APs) are deployed to simultaneously serve

a comparatively few numbers of user equipments (UEs) in a time divi-

sion duplex (TDD) mode. As a massive number of APs are deployed

in CF-mMIMO, the distance between an arbitrary UE and the closest

AP substantially reduces, resulting in approximately uniform quality

of service (QoS) for all users in comparison with mMIMO systems. The

proposed detection techniques show promising results for low complex-

ity detection in conventional mMIMO systems. Hence, this project

should explore detection techniques proposed in this thesis and possi-

bly extend for low complexity symbol detection in uplink CF-mMIMO
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systems.

• Quadrature channel modulation (QCM) is an emerging area of re-

search in wireless communications. Quadrature channel modulation

is a novel modulation technique that combines QSM with MBM. Con-

sequently, QCM has better spectral efficiency than both MBM and

QSM. QSM exploits the in-phase and quadrature components of the

information symbols and transfers additional information through the

channel states generated through RF mirrors. Furthermore, when in-

corporated with mMIMO, QSM-mMIMO yields far superior data rates

than mMIMO, QSM-mMIMO and MBM-mMIMO. As QCM-mMIMO

fuses QSM-mMIMO and MBM-mMIMO, the symbol detection at the

BS in QCM-mMIMO is comparatively challenging due to the sparse

nature of the transmitted symbol vector and interuser interference.

Hence, it will be interesting to investigate the performance of proposed

MBM-mMIMO detection algorithms for QCM-mMIMO systems.

• The achievable data rate in diffusion-based molecular communication

is slow as diffusion plays the primary role in information propaga-

tion. Consequently, communication with a massive number of molecu-

lar transmitters and receivers provides a superior data rate than con-

ventional molecular communication. Hence, the algorithms proposed

in this thesis can be explored and investigated for low complexity de-

tection in molecular mMIMO communication.

• Recent developments in meta-materials make the intelligence reflecting

surfaces (IRS) emerge as a suitable solution for high-speed communi-

cation. IRS aided mMIMO systems are capable of reconfiguring the

phase shifts in real-time, providing high link reliability with high spec-

tral efficiency for 5G and beyond wireless communication systems. The

mMIMO detection algorithms in this thesis are yet to be studied for

IRS assisted mMIMO systems. It remains an exciting area of future

research.
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• The proposed detected algorithms are yet to be investigated for in-

dex modulation and quadrature spatial modulation (QSM) based sym-

bol detection in uplink mMIMO systems. QSM is a novel modulation

technique that extends the conventional spatial modulation (SM) con-

stellation using real and imaginary dimensions. Hence, when incorpo-

rated with mMIMO, it provides improved throughput as compared to

conventional SM-mMIMO systems. However, the transmitted symbol

vector in SM-mMIMO is sparse, making the symbol detection more

challenging in uplink QSM-mMIMO systems. Consequently, the al-

gorithms proposed in this thesis for MBM-mMIMO systems can be

further extended for QSM-mMIMO systems for symbol detection in

uplink QSM-mMIMO systems.

• The novel detectors proposed in this thesis for mMIMO can further be

extended for visible light communication (VLC). With the extensive

use of light-emitting diodes (LED), visible light communication (VLC)

has emerged as a promising solution for high speed and short-range

communication. When multiple LEDs are deployed in a coordinated

multi-point network, mMIMO-VLC provides several advantages such

as low electromagnetic interference, high security, and high spectral ef-

ficiency as compared to its radio-frequency counterpart in conventional

mMIMO systems. Consequently, the study of the proposed detectors

for mMIMO-VLC systems remains a future research direction.
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[24] N. Taşpınar and M. Yıldırım, “A novel parallel artificial bee colony

algorithm and its PAPR reduction performance using SLM scheme in

OFDM and MIMO-OFDM systems,” IEEE Communications Letters,

vol. 19, no. 10, pp. 1830–1833, 2015.

[25] P. M. Pradhan and G. Panda, “Pareto optimization of cognitive radio

parameters using multiobjective evolutionary algorithms and fuzzy de-

cision making,” Swarm and Evolutionary Computation, vol. 7, pp. 7–20,

2012.

[26] R. Eberhart and J. Kennedy, “A new optimizer using particle swarm

theory,” in Micro Machine and Human Science, 1995. MHS’95., Pro-

ceedings of the Sixth International Symposium on. IEEE, 1995, pp.

39–43.
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