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Preface 

 

This report on “Fault Diagnosis of Reciprocating Compressors Using Artificial Neural 

Networks" is prepared under the guidance of Dr. Anand Parey 

An experimental investigation has been carried out to find the vibration signal 

characteristics of a reciprocating compressor when it ran under varying frequencies and 

blockages. I have conducted experiments to find the dependence of two major features, 

amplitudes of the Fourier transform and energy of the waveform. Using a neural network, 

accuracies for the different combinations of frequency and amplitudes have been tabulated 

for future use which is in good accordance with multiple test data. 

          The results obtained from the present experimental study are presented in the tabular 

form.  
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Abstract 

Condition Monitoring and Fault Diagnosis are very active and important fields of research as 

they facilitate the reduction of maintenance and reparation costs. Traditional condition 

monitoring is based on analyzing a specific feature of a vibration signal and understanding 

the variations observed. Artificial Neural Networks are relatively crude electronic models 

that can be used for non linear pattern recognition. 

 

An experimental investigation has been carried out in constant frequency condition to study 

the effect of varying blockage on the characteristics of vibration data of a reciprocating 

compressor, ½ HP with blocked suction filter provided along with the Machinery Fault 

Simulator. One tri-axial accelerometer is placed near the discharge valve of the compressor 

which is connected to a laptop via an analyzer. The frequencies are varied from 10 to 40 Hz 

in increments of 5 Hz and for each frequency, the blockages are varied from 0 to 80 % in 

increments of 10 %. The Fourier transforms of the waveforms obtained by the accelerometer 

are further studied using MATLAB. Using the FFT, the trend of the Fourier transforms is 

studied and a suitable feature is extracted to be used in classification. From observation, it 

was found that only a certain band of frequencies is effected when the blockage is increased 

at a constant compressor RPM. All the blockages are classified using binary algorithm with 

the base 0% using Artificial Neural Network. It has been observed, blockage with higher 

degree is classified with higher accuracy when taken with base 0%. 

.  
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Chapter 1 

INTRODUCTION 

1.1General Background  

Condition monitoring is the process of monitoring a parameter of condition in a machine element, in 

order to recognize a significant change which indicates a developing fault. When a certain input parameter 

goes out of a range of values, the system can be said to be developing a fault. Condition monitoring has a 

unique benefit in that conditions that would reduce normal lifespan can be addressed before they develop 

into a major breakdown.  These techniques are normally used on rotating elements, with periodic inspection 

using non-destructive testing techniques.  

Temperature gradients across a surface can be discovered with visual inspection and non-destructive 

testing with thermography. Heat is a sign of developing faults, especially degrading electrical contacts and 

terminations. Thermography can also be successfully applied to high-speed bearings, fluid couplings, 

conveyor rollers, and storage tank internal build-up. 

Ultrasound can be used for high-speed and slow-speed mechanical applications and for high-pressure 

fluid situations. Digital ultrasonic meters measure high frequency signals from bearings and display the 

result as a dBuV (decibels per microvolt) value. This value is trended over time and used to predict increases 

in friction, rubbing, impacting, and other bearing defects. The dBuV value is also used to predict proper 

intervals for re-lubrication. Ultrasound monitoring, if done properly, proves out to be a great companion 

technology for vibration analysis.  

 

Most vibration analysis instruments today utilize a Fast Fourier Transform (FFT) which is a special 

case of the generalized Discrete Fourier Transform and converts the vibration signal from its time domain 

representation to its equivalent frequency domain representation. 

 

This report will mainly deal with vibration signals.  

 

           

1.2 Compressor 

A gas compressor is a mechanical device that increases the pressure of a gas by reducing its volume. 

An air compressor is a specific type of gas compressor. Compressors are similar to pumps: both increase the 

pressure on a fluid and both can transport the fluid through a pipe. It converts power (using an electric motor, 

https://en.wikipedia.org/wiki/Frequency_domain
https://en.wikipedia.org/wiki/Discrete_Fourier_Transform
https://en.wikipedia.org/wiki/Fast_Fourier_Transform
https://en.wikipedia.org/wiki/Thermography
https://en.wikipedia.org/wiki/Time_domain
https://en.wikipedia.org/wiki/Non-destructive_testing
https://en.wikipedia.org/wiki/Non-destructive_testing
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diesel or gasoline engine, etc.) into potential energy stored in pressurized air (i.e., compressed air). By one of 

several methods, an air compressor forces more and more air into a storage tank, increasing the pressure. 

 

1.3 Types of compressors 

1.3.1 Reciprocating 

Reciprocating air compressors are positive displacement machines, meaning that they increase the pressure 

of the air by reducing its volume. This means they are taking in successive volumes of air which is confined 

within a closed space and elevating this air to a higher pressure. The reciprocating air compressor 

accomplishes this by a piston within a cylinder as the compressing and displacing element.  

 

1.3.2. Rotatary Screw 

Rotary air compressors are positive displacement compressors. The most common rotary air compressor is 

the single stage helical or spiral lobe oil flooded screw air compressor. These compressors consist of two 

rotors within a casing where the rotors compress the air internally. There are no valves. These units are 

basically oil cooled (with air cooled or water cooled oil coolers) where the oil seals the internal clearances.  

 

1.3.3. Centrifugal 

The centrifugal air compressor is a dynamic compressor which depends on transfer of energy from a rotating 

impeller to the air. Centrifugal compressors produce high-pressure discharge by converting angular 

momentum imparted by the rotating impeller (dynamic displacement). In order to do this efficiently, 

centrifugal compressors rotate at higher speeds than the other types of compressors. These types of 

compressors are also designed for higher capacity because flow through the compressor is continuous. 

 

1.4 Types of faults in compressors 

1.   Leaking Valve- This occurs when there is gas leaking out of the compressor valve, either the discharge of 

the inlet.  

Cause- Main cause of this type of fault is mechanical looseness in the discharge fastenings or breakage in the 

valves.  

Solution- Looseness can be solved by tightening the bolts and replacement is the solution when it comes to 

breakage. 
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2. Blockages in discharge- This occurs when there is blockage in the discharge section of the compressor 

which prevents or restricts air flow and causes mechanical vibrations and noise. 

Cause- The major cause of this type of fault is bad quality of air used which causes particles to deposit in the 

discharge of compressor and thus producing a blockage to air flow. Another cause of blockage can be 

breakage of a component in the discharge section getting sucked up to the discharge orifice and choking it 

up. 

Solution- This can be solved by cleaning the effected section of the compressor using a compressed air blow 

or a solvent solution or removing the broken part from the discharge orifice. 

 

1.5 Artificial Neural Networks 

An artificial neural network is an interconnected group of nodes, similar to the vast network of neurons in a 

brain. Here, each node signifies an artificial neuron and an arrow represents a connection from the output of 

one neuron to the input of another. Each node in the next layer is connected to each node in its previous layer 

by a weight. Value of each node can be found by summation of product of the value of the node by the 

corresponding weight. The lesser the weight, more is the generalization property of the network. The weights 

are determined by using the training data sets that are available, and in validating, the errors are minimized 

and network is further optimized in algorithms such as back propagation. 

 

Back propagation, an abbreviation for "backward propagation of errors", is a very popular method of training 

that is used along with an optimization method such as gradient descent. It calculates the change of a loss 

function (function that maps the errors into a real number) with respect to all the weights in the network; so 

that the gradient is fed to the optimization method which in turn uses it to update the weights, in an attempt 

to minimize the loss function. The ANN used is a binary classifier with input, hidden and output layer having 

1,2 and 2 neurons respectively. 

 

Figure 1.1 Structure of the ANN used 

https://en.wikipedia.org/wiki/Loss_function
https://en.wikipedia.org/wiki/Gradient_descent
https://en.wikipedia.org/wiki/Mathematical_optimization
https://en.wikipedia.org/wiki/Loss_function
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Calculation of weights and minimization of errors (Delta Rule) 

The calculation of weights and optimization process is done by the Neural Network toolbox in MATLAB. 

The mathematical way of doing it manually is as follows, 

 

Figure 1.2 Relation between output of successive node with previous layer [38] 

 

(Equation 1a) 

                                                                                                                (1a) 

and  

(Equation 1b) 

                                                                                                                    (1b) 

where Sj is the sum of all corresponding products of weights and outputs from the previous layer i, wij 

represents the relevant weights connecting layer i with layer j, ai represents the activations of the nodes 

(output corresponding to the set of inputs) in the previous layer i, aj is the activation of the node at hand, and 

f is the activation function. 
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Delta Rule employs the error function, which involves the adaptation of weights along the most direct path in 

weight-space to minimize error; change applied to a given weight is proportional to the negative of the 

derivative of the error with respect to that weight. The error function is commonly given as the sum of the 

squares of the differences between all target and actual node activations for the output layer. For a particular 

training pattern (i.e., training case), error is thus given by:  

(Equation 2a) 

                                                                                                   (2a)  

where Ep is total error over the training data sets, ½ is a number applied to simplify the function’s derivative, 

n represents all output nodes for a given training data set, tj sub n represents the target value for node n in 

output layer j, and aj sub n represents the actual activation for the same node. This particular error measure is 

striking because its derivative, whose value is imperative for use of the Delta Rule, is easily calculated. Error 

over an entire set of training patterns (i.e., over one iteration, or epoch is calculated by summation of all Eps:  

(Equation 2b) 

                                                                              (2b) 

where E is total error, and p represents all training patterns. An equivalent term for E in Equation 2b is sum-

of-squares error. A normalized version of Equation 2b is given by the mean squared error (MSE) equation:  

(Equation 2c) 

                                                                                    (2c) 

where P and N are the total number of training patterns and output nodes, respectively. It is the error of 

Equations 2b and 2c that gradient descent attempts to minimize. 
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1.6 Review of literature  

 

Modern industrial facilities are heavily automated and instrumented; consequently there is a lot of process 

data available which can be used to monitor the condition of the system. The difficulties attached to the 

development of accurate and reliable first-principle models of large and complex industrial facilities have 

motivated the development of data driven monitoring algorithms such as Principal Component Analysis 

(PCA), Partial Least Squares (PLS) or Canonical Variate Analysis (CVA) [1]. Literature gives examples of 

extensive application of these methods for detection and diagnosis of faults using computer simulated data 

[2–5] or real data obtained from industrial facilities or experimental test rigs [6–12].  

 

Despite their success, PCA and PLS(and their corresponding dynamic approaches known as Dynamic PCA 

and Dynamic PLS [13,14]) have been reported not to be as efficient as othe rstate-space based methodologies 

such as Canonical Variate Analysis(CVA).The benefits of CVA are especially relevant when applied to 

systems working under variable loading conditions, principally due to their presentation of the system 

dynamics [2,15,16]. 

 

The simplest and most commonly used method for detecting the presence of faults using vibration analysis 

involves the comparison of different signal features (such as RMS value, peak amplitude) in the measured 

signal against a machine working under healthy conditions. Assuming that the initial status of the machine 

was healthy, any changes in the measured feature response may be assumed to be due to the deterioration of 

the machine condition. However, this assumption is only valid if all the measurements are taken under the 

same loading conditions, as different levels of load will generate different vibration levels [17]. 

 

 It is possible to find in literature some examples of techniques used to monitor the condition of machines 

working under variable loading conditions using vibration data. McFadden [18, 19] proposed a method based 

on band pass filtered time- domain synchronous averaging (TSA) and the Hilbert transform, with Kurtosis 

being used as an indicator of fault severity. However there are some disadvantages in this technique due to 

the requirement of the user to configure the bandwidth for the band-pass filter [20].  

 

Other methods are based on the examination of time-frequency maps where the instantaneous power 

spectrum is represented [21], but this method does not produce a single indicator of the machine condition 

that can be tracked in time. Parker Jr. et al. [22] proposed a method based on change detection in the 

bispectral domain which produced severity indicators which are independent of the loading conditions. 
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However, the method requires long computational times. The work presented by Zhan et al. [23] proposes a 

technique based on motion residuals, which are calculated as the difference between the TSA of a signal and 

the average vibration observed in the healthy state under different loading conditions. This area has gained 

importance in the last years and Braun [24] reviewed the state of the art of vibration diagnostics using TSA 

in 2011. Other methodologies presented recently are based on capturing the correlation between features 

extracted from the vibration signal and the operating conditions. This kind of approach has been applied 

successfully for diagnostics of planetary gearboxes in a bucket wheel excavator [25] and wind turbine 

bearing diagnostics [26].  

 

[28–29] present the feature extraction method of vibration signals using time frequency techniques for fault 

diagnosis of rotating machinery. Model- based FDD methods have been employed for centrifugal chiller 

system and gas turbine [30, 31]. Fuzzy logic based FDD methods are also developed for diagnosis of gas 

turbine [32,33] and centrifugal compressor [37] 

 

The application of machine learning methods like artificial neural networks (ANN) and support vector 

machine (SVM) in rotating machinery fault diagnosis are presented in [38,39]. 

 

 

 

1.7 Scope of Dissertation  

 

1. Fault diagnosis of Blockages in reciprocating compressors has not been conducted in the literature. 

2. Use of Artificial Neural Networks not studied much in this aspect. 
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Chapter 2 

Fault Diagnosis of Reciprocating Compressors Using Artificial Neural Networks 

 

2.1 Introduction  

The objective of the present study is to use Artificial Neural Networks to help in the fault diagnosis process 

of reciprocating compressors. Here, a faulty compressor given in the faulty compressor kit of the MFS 

(Machinery Fault Simulator) is used. An accelerometer is used that is connected near the discharge section of 

the compressor which records the vibrations and sends it to a laptop. A total of 63 Tests have been carried 

out for different value of frequency (0-40 Hz, increments of 5Hz) and blockages (0-80%, increments of 

10%). Energy of the waveform is extracted from each sets and fed into an ANN (Artificial Neural Network). 

The accuracy achieved in classifying the different blockages with the base (0% blockage) for each frequency 

is noted. The implications of the accuracies achieved are discussed.  

2.2 Experimental Setup and Procedure 

2.2.1 Test facility 

The main apparatus being used to perform the experiments is the MFS or the machinery fault simulator. It is 

manufactured by Spectra Quest inc. and comes with attachments and provisions to use different 

combinations of couplings, components and make them operate at different frequencies. The MFS is shown 

labelled in figure 2.1 along with the different components that are attached to it. 

 

The schematic view of the test facility developed for the present investigation is shown in Figure 2.1. The 

test facility consists machinery fault simulator which consists of a compressor, air tank, power supply 

system, motor and additional accelerometer, connecting wires, analyzer and laptop. A ½ HP reciprocating 

compressor has been used as the rotator component in this study. The component is fixed as shown in figure 

2.2 to the MFS (Spectra Quest Inc.) on a sliding plate that can be used to tighten the belt which drives the 

compressor. The bottom plate is then tightened using bolts so that it stays affixed to the MFS. The 

compressor is connected to a belt that couples it with the rod that is connected to the motor of the MFS. A 

tri-axial accelerometer (as shown in figure 2.2) is connected to the discharge section of the compressor using 

wax. The accelerometer is connected to an analyser (figure 2.4) using connecting wire. The analyser (figure 

2.4) is connected to the laptop using a LAN cable which has the NV gate software for recording the vibration 

signals. The frequency of the compressor can be controlled using a control box (SMV Tech, Lenze AC) 

(figure 2.3) that is mounted on the MFS. The maximum permissible frequency under which the compressor 
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can operate is 55 Hz. The air tank (figure 2.5) of the compressor kit is attached to the compressor using the 

air tube and before performing the experiment the inlet valve of the air tank is opened so that air can flow 

from the compressor.  

 

There are 4 bolts on the top section of compressor under which a plate with flap is provided. The flap blocks 

the path of air coming out of the discharge section as shown in figure. This flap (figure 2.6) simulates the 

presence of a blockage in the compressor discharge. A screw is present on the flap that controls the degree of 

blockage by moving the flap closer or away from the discharge orifice. The blockages are classified 

according to the displacement of the screw. When the flap completely blocks the discharge section, the 

blockage is said to be 100% and the displacement of the screw in radians is noted. Then the flap is taken to 

the maximum possible distance away from the orifice and the blockage and displacement are made to be 0 at 

this point. The blockages are linearly graded with the displacement of the screw.  
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Figure 2.1.Experimental Setup 
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Figure 2.2. -Position of Tri Axial Accelerometer and compressor plate 

 

Figure 2.3. Control Box(SMV Lenze AC Tech) 
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Figure 2.4. Analyzer 

 

 

Figure 2.5. Air Tank 
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Figure 2.6. Restricted discharge orifice 

 

 

2.2.2Experimental procedure and data reduction 

 

Tests are carried out at room temperature and atmospheric pressure in the present investigation. Two 

parameters: frequency of compressor and degree of blockage are present in the experimental investigation 

(Table 2.1). The rotational speed of the compressor is controlled by the control box to provide the desired 

flow rate of air. Air is directed into the air tank in which pressure develops eventually. First, a time of 10 

secs is given to the compressor to set into steady state. The compressor is run for 20 secs after achieving 

steady state and the NV gate software is calibrated to give out 50 data sets in the given time.   

 The accelerometer (ACC301) used in the present investigation is having a sensitivity of 10.57 

mV/(m/s
2
).  

During experiments, three trial runs are conducted to check the working of the accelerometer. The range of 

operating parameters considered in the present experimental study is listed in Table 2.3. The run time is 

considered and the belt is checked for cases of overheating. 

The sampling frequency for MATLAB Operations is kept at 1024 Hz. 
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Table 2.1 Experimental Plan 

      

 

Frequencies         

    10 HZ 15 HZ 20 HZ 25 HZ 30 HZ 35 HZ 40 HZ 

  0% 0%,10HZ 0%.15HZ 0%.20HZ 0%.25HZ 0%.30HZ 0%.35HZ 0%.40HZ 

  10% 10%,10HZ 10%,15HZ 10%,20HZ 10%,25HZ 10%,30HZ 10%,35HZ 10%,40HZ 

  20% 20%,10HZ 20%,15HZ 20%,20HZ 20%,25HZ 20%,30HZ 20%,35HZ 20%,40HZ 

Blockage 30% 30%,10HZ 30%,15HZ 30%,20HZ 30%,25HZ 30%,30HZ 30%,35HZ 30%,40HZ 

  40% 40%,10HZ 40%,15HZ 40%,20HZ 40%,25HZ 40%,30HZ 40%,35HZ 40%,40HZ 

  50% 50%,10HZ 50%,15HZ 50%,20HZ 50%,25HZ 50%,30HZ 50%,35HZ 50%,40HZ 

  60% 60%,10HZ 60%,15HZ 60%,20HZ 60%,25HZ 60%,30HZ 60%,35HZ 60%,40HZ 

  70% 70%,10HZ 70%,15HZ 70%,20HZ 70%,25HZ 70%,30HZ 70%,35HZ 70%,40HZ 

  80% 80%,10HZ 80%,15HZ 80%,20HZ 80%,25HZ 80%,30HZ 80%,35HZ 80%,40HZ 

 

2.2.3 Vibration data and waveform 

A sample of the vibration data set obtained during experimental study by using from the NV gate software is 

detailed below. 
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Table 2.2 Sample data at 0% blockage, 10Hz 

Time 

(ms) Acceleration 

Time 

(ms) Acceleration 

Time 

(ms) Acceleration 

Time 

(ms) Acceleration 

0 2.44E-01 35.82225 5.68E-01 17.67231 5.89E-01 53.97219 -1.17E-01 

0.47763 1.00E+00 36.29988 1.22E-01 18.14994 3.51E-01 54.44982 -7.46E-01 

0.95526 4.31E-01 36.77751 -4.78E-01 18.62757 5.97E-01 54.92745 -3.50E-01 

1.43289 4.64E-01 37.25514 -3.42E-01 19.1052 1.93E-01 55.40508 4.20E-01 

1.91052 7.75E-01 37.73277 -6.75E-01 19.58283 6.58E-01 55.88271 3.27E-01 

2.38815 5.48E-01 38.2104 -7.49E-01 20.06046 7.27E-02 56.36034 -6.10E-01 

2.86578 -2.75E-01 38.68803 -1.16E+00 20.53809 -1.68E+00 56.83797 -3.99E-02 

3.34341 1.46E-01 39.16566 -9.76E-01 21.01572 9.98E-02 57.3156 -4.15E-02 

3.82104 -1.08E-01 39.64329 -7.99E-03 21.49335 -2.69E-01 57.79323 2.84E-02 

4.29867 -9.31E-01 40.12092 -1.23E+00 21.97098 -2.99E-01 58.27086 -2.26E-01 

4.7763 -3.92E-01 40.59855 -9.39E-01 22.44861 -2.93E-01 58.74849 2.44E-01 

5.25393 -3.55E-02 41.07618 -6.22E-01 22.92624 8.87E-01 59.22612 -5.03E-01 

5.73156 6.92E-01 41.55381 -3.10E-01 23.40387 6.42E-01 59.70375 8.76E-01 

6.20919 -7.66E-01 42.03144 -7.53E-02 23.8815 -1.10E+00 60.18138 9.19E-01 

6.68682 -3.21E-01 42.50907 5.03E-02 24.35913 -5.75E-01 60.65901 3.46E-01 

7.16445 -9.59E-01 42.9867 4.83E-01 24.83676 8.67E-02 61.13664 8.33E-01 

7.64208 -2.08E-01 43.46433 9.00E-01 25.31439 -1.26E-01 61.61427 6.13E-01 

8.11971 2.67E-01 43.94196 1.06E+00 25.79202 4.74E-01 62.0919 6.70E-01 

8.59734 4.63E-01 44.41959 7.08E-01 26.26965 6.23E-02 62.56953 3.89E-01 

9.07497 2.67E-01 44.89722 -1.21E-01 26.74728 5.10E-01 63.04716 7.52E-01 

9.5526 1.31E-01 45.37485 1.09E+00 27.22491 -3.67E-01 63.52479 8.60E-01 

10.03023 3.02E-01 45.85248 1.41E+00 27.70254 -6.69E-01 64.00242 1.81E-01 

10.50786 -1.52E+00 46.33011 8.71E-01 28.18017 -2.84E-01 64.48005 5.31E-02 

10.98549 -1.16E+00 46.80774 5.03E-01 28.6578 -4.86E-01 64.95768 5.34E-02 

11.46312 4.08E-01 47.28537 4.44E-01 29.13543 2.75E-01 65.43531 1.83E-01 

11.94075 3.35E-01 47.763 4.93E-01 29.61306 7.51E-01 65.91294 -1.44E-01 

12.41838 -6.28E-01 48.24063 2.20E-01 30.09069 3.42E-01 66.39057 5.76E-02 

12.89601 9.95E-02 48.71826 4.15E-01 30.56832 -1.57E-01 66.8682 -2.20E-01 

13.37364 1.80E-01 49.19589 -2.85E-01 31.04595 1.38E-01 67.34583 -3.07E-01 

13.85127 -5.71E-01 49.67352 1.22E+00 31.52358 6.87E-01 67.82346 8.92E-02 

14.3289 -6.88E-02 50.15115 -6.17E-01 32.00121 1.19E-01 68.30109 -4.47E-01 

14.80653 1.03E+00 50.62878 2.02E-01 32.47884 5.64E-01 68.77872 -5.24E-01 

15.28416 1.35E+00 51.10641 -8.12E-01 32.95647 7.52E-01 69.25635 -6.64E-01 

15.76179 5.22E-01 51.58404 -6.80E-02 33.4341 9.72E-01 69.73398 -2.68E-01 

16.23942 8.18E-01 52.06167 4.25E-01 33.91173 8.96E-01 70.21161 -1.44E-01 

16.71705 1.05E+00 52.5393 -1.25E+00 34.38936 1.52E-01 70.68924 1.21E-01 

17.19468 -1.01E+00 53.01693 -9.29E-01 34.86699 6.38E-01 71.16687 -2.20E-01 
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This raw vibration data in time domain was converted into frequency domain in MATLAB. Samples of 

graph of raw data and Fourier transform given below, 

 

Figure 2.7 Raw signal for 0% blockage, 10 Hz 

 

Figure 2.8 Frequency domain signal for 0% blockage, 10 Hz 

2.2.4 Feature extraction 

After looking at the trends in the graphs in frequency domain, it was seen that the amplitudes of a certain 

frequency range(400-600 Hz)  increase with increase in blockage, for a constant frequency. Taking this fact 

into consideration, energy feature (sum of squares of amplitudes multiplied by the signal duration) of the 

wave is extracted. 
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This energy is used as the input parameter in the ANN. While classifying, 0% blockage is given an output of 

0 and the blockage to be classified is given an output of 1 and classification is carried out.  

2.2.5 Neural Network Toolbox interface 

The classification is done in the neural network toolbox. The toolbox interface for a test case is shown 

below, 

 

Figure 2.9 Startup page for test case (0%, 10 Hz) 

The start page for the neural network pattern recognition tool, 
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Figure 2.10 Input/output page for test case(0%, 10Hz) 

Here you select the input and output matrices from the drop down menu. The output is usually a matrix 

containing an array of 0’s and 1’s aligned with the corresponding inputs. 
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Figure 2.11 Training/Results page for test case(0%, 10 Hz) 

 

This is the view after one round of training is done. When you click on train, the network trains itself using 

the data that you input. This being a back propagation algorithm validates and tries to retrain using the errors 

found in validation. The training, validation and testing errors and mean squared errors are shown on the 

right hand side. The errors found here for each test case is noted and the accuracies are calculated by 

subtracting from 100. 

In the beginning, multi-class ANN was considered for use in the classification but looking at the number of 

classes (5 classes) and the fact that all the signals were not that different from each other(the 0% and 10% 

signal were similar and so were the 10% and 30% signals), that idea was scrapped. Instead all the blockages 

were taken with base 0% and classified using binary ANN. Now what this did was, this used the similarity of 

the waves with base 0% instead of using the difference. A lower percentage blockage like 10% and 30% will 
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be more similar to the 0% blockage signal than say 50% or 70% and hence they can be classified on the basis 

of their classification accuracies. So the accuracies of each pair were tabulated and an increasing trend in 

accuracies on increasing the blockage was observed as discussed. 

So the classification can be said to be of the form ‘nnclass (b0, bx)’, 

Where nnclass is the neural network classifier function, b0 and bx are the matrices containing the energy 

values of blockage 0% and x% (x=10, 30, 50, 70) at a particular frequency. 

 The results and observations are listed in the next section. 
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Chapter 3 

RESULTS AND DISCUSSIONS 

3.1 Vibration data and Fourier transform characteristics 

Looking at the graphs, it can be seen that a particular band of frequencies increases with increase in the 

blockage. The graphs for the Fourier transform of the vibration data for a constant frequency are given 

below. 

 

Figure 3.1 FFT plot (0% blockage, 10 Hz)                                    Figure 3.2 FFT plot(10% blockage, 10 Hz) 

 

 

Figure 3.3 FFT plot (20% blockage, 10 Hz)                                   Figure 3.4 FFT plot(30% blockage, 10 Hz) 
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Figure 3.5 FFT plot (40% blockage, 10 Hz)                                  Figure 3.6 FFT plot(50% blockage, 10 Hz) 

 

 

Figure 3.7 FFT plot (60% blockage, 10 Hz)                                  Figure 3.8 FFT plot(70% blockage, 10 Hz) 

 

 

Figure 3.9 FFT plot (80% blockage, 10 Hz) 

It can be seen that as we increase the blockage, the whole band of frequencies from 400-600 Hz increases in 

amplitude. The rest of the graph more or less remains unchanged. However, taking linear mean of the graph 

did not give good results in classification and powers of amplitude more than 2 also failed because it was 

classifying all the pairs with the same accuracy. This trend observed in the graph was the motivation to use 
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energy or squares of amplitudes (time being constant for all signals was not a factor) as a characterizing 

parameter in the ANN.  

3.2 Accuracy of classification 

The neural network toolbox was used and the extracted feature is input. The results obtained were from the 

toolbox interface were noted and tabulated. 

The classifying accuracies in tabular form for 10%, 30%, 50%, and 70% with base 0% are given below 

Table 3.1  Accuracy table for nnclass(b0, b10) at varying frequencies 

Frequency 

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy Average Accuracy 

10 HZ 66.14 66.66 66.33 66.3766 

15 HZ 69.34 64.1 71.2 68.21333333 

20 HZ 67.15 66.667 83.44 72.419 

25 HZ 71.98 70.22 65.87 69.35666667 

30 HZ 63 64.76 73.3334 67.03113333 

35 HZ 64.56 67.8 79 70.45333333 

40 HZ 69.98 68.65 72 70.21 

 

In this first step of classification, it can be seen that not much accuracy is achieved. The average accuracy is 

around 63.953% and the range of accuracies is approximately from 66-70.45%. This is quite natural as a 

10% blockage will not be as different from base 0% as a higher percentage blockage signal, like 30%. The 

increasing trend in accuracies is evident from the following tables, 

 

Table 3.2  Accuracy table for nnclass(b0, b30) at varying frequencies 

Frequency 

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy Average Accuracy 

10 HZ 75.7322 61.98 70.11 69.27406667 

15 HZ 90 75.73 74.6 80.11 

20 HZ 67.15 66.667 83.44 72.419 

25 HZ 76.34 74.1 67.37 72.60333333 

30 HZ 76 74.12 72 74.04 

35 HZ 69.56 72.6 79 73.72 

40 HZ 75.38 88.65 71 78.34333333 

The average accuracy is 74.353% and the range of accuracies is approximately from 69-80.11%. 
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Table 3.3  Accuracy table for nnclass(b0, b50) at varying frequencies 

Frequency 

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy Average Accuracy 

10 HZ 76 79.9 80 78.63333333 

15 HZ 85 80 86.87 83.95666667 

20 HZ 75.7 85.67 83.44 81.60333333 

25 HZ 88.98 80.22 85.87 85.02333333 

30 HZ 91 84.76 87.1 87.62 

35 HZ 84.14 87.8 81 84.31333333 

40 HZ 81.98 88.65 92 87.54333333 

The average accuracy is 84.097% and the range of accuracies is approximately from 78.63-87.54%. 

 

Table 3.4  Accuracy table for nnclass(b0, b70) at varying frequencies 

  

Training 

Accuracy 

Validation 

Accuracy 

Testing 

Accuracy Average Accuracy 

10 HZ 82.8124 86.73 86.667 85.40313333 

15 HZ 94.219 93.334 100 95.851 

20 HZ 94.28579 95 100 96.42859667 

25 HZ 91.429 93.334 93.334 92.699 

30 HZ 88.58 92.84 86 89.14 

35 HZ 93.34 97.124 100 96.82133333 

40 HZ 98.18 98.65 80 92.27666667 

The average accuracy is around 92.65% and the range of accuracies is approximately from 85.4-96.82%. 

The implications and conclusions that can be drawn from the above mentioned tables are presented in the 

following section. 
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Chapter 4 

CONCLUSIONS AND SCOPE FOR FUTURE WORK 

4.1 Conclusions 

The main objective of the report is to classify the degree of blockages. Experiments were performed on the 

MFS faulty compressor kit and using the energy feature of the Fourier transform plot, classification was 

done. The observations of classification accuracies were shown above. The following conclusions can be 

deduced from the observations, 

1. It is found that the classification accuracies increase as x (blockage being classified) increases. 

2. A slight deviation is found when the frequency is 10Hz for each combination of blockage because the 

compressor could not function properly at such small RPMs. 

3. It can be seen that the average classification accuracy for each class differs by approximately 9.56 

percentage points. 

4. The following table displays  the values of classification accuracies for each blockage and 

summarizes the results 

Degree of 

Blockage  

Accuracy in 

classification 

with base 0% 

0-10% 0-70.453%   

10-30% 69.27-80.11% 

30-50% 78.63-87.54% 

50-70% 85.4-96.82% 

Table 4.1 Final Result Table of degree of blockage vs. accuracy 

 

5. The blockage severity can be analyzed by taking the vibration reading of the faulty compressor and 

classifying it with base 0% blockage. The accuracy achieved in classifying the pair can be mapped in 

the following table and the corresponding degree of blockage can be found out. 

 

4.2 Scope for future work 

1. To increase the gap between classifying accuracies using other modes of decomposition like empirical 

mode decomposition, wavelet transform  
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2. To use multi class ANN to try and incorporate all classes in a single framework using increased number of 

input parameters including features like entropy, rms value.  

3. To study the characteristics of valve leakage, also provided in the faulty compressor kit in a similar 

manner.  

Nomenclature 

n                   Output nodes for a given training pattern 

Sj                Sum of all relevant products of weight and output from previous layer 

aj                Activations of the nodes in the previous layer i,  

aj                Activation of the node at hand,  

f()               f is the activation function. 

Ep                 Total error over the training pattern 

tj                    Represents the target value for node n in output layer j 

E                 Energy 

T                 Duration of signal 

E                   Total error 

p                   Represents all training patterns 

P                   Total number of training patterns 

N                  Total number of output nodes 

MSE             Mean squared error 

nnclass (,)    Neural Network classifier function 

b0                 Energy matrix corresponding to 0% blockage 

bx                 Energy matrix corresponding to x% blockage where x=10,30,50,70 
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