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Abstract 

 

Condition monitoring and fault diagnosis of rolling element bearings (REBs) are very important to ensure the 

steadiness of industrial and domestic machinery. Failures occurring during production operation, lead to 

serious negative implications like such as increase in machine downtime, low productivity and sometimes can 

even cause safety risks. Therefore, method to detect machinery faults has evolved from preventive maintenance 

to condition based maintenance (CBM) in order to make sure that the production operation can reach maximum 

capacity. 

Detection of incipient degradation requires extraction of sensitive features accurately when signal-to-noise 

ratio (SNR) is very poor, which appears in most rotating mechanical equipment. Vibration signals of REBs 

are widely used for bearing fault diagnosis. In this BTP report I present denoising and extraction of weak 

signature technique based on wavelet packet transform (WPT), and this technique is very useful in detecting 

early stage outer race fault.  Minimal Shannon entropy is used to optimize the Daubechies wavelets shape 

factor, and 3 level wavelet decomposition is used to achieve satisfactory results. 

 

  



6 

 

Table of Contents 

                                                                                                                      Page no. 

 Candidate’s Declaration ……………………………………………….2  

 Supervisor’s Certificate…………………………………………….......2  

 Preface………………………………………………………………….3  

 Acknowledgements………………………………………………..........4  

 Abstract…………………………………………………………………5  

   

 1. Introduction….…………………………………………………..10 

2. Motivation……………………………………………………….12 

3. Description of proposed method…………………………………13 

4. Experimental setup and results…………………………………...20 

5. Conclusion and scope of future work…………………………….30 

 

   

 References………………………………………………………………..31 

 

 

   

   

   

   

   

 

  



7 

 

List of Figures 

Fig. No. Figure Description  Page No. 

1 Spherical ball bearing and cylindrical roller bearing 13 

2 Bearing geometry 15 

3 Bearing fault frequencies 15 

4 Bearing test rig 20 

5 Sensor placement illustration 21 

6 Run-to-failure vibration signal ending with an outer race fault 23 

7 RMS measurement 24 

8 RMS measurement of bearing for whole life cycle  25 

9 The vibration signal with early stage defect 26 

10 Spectrum of vibration signal with early stage defect 26 

11 The vibration signal with serious defect 27 

12 Outer race defect 27 

13 Spectrum of vibration signal with outer race defect  28 

14 Spectrum of vibration signal with serious outer race defect 29 



8 

 

 

 

List of Tables 

 

Table No. Table description  Page No 

1 Structural parameters and kinematical parameters of the experiment 

bearing 

22 

2 Not Available  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



9 

 

CONTENT DETAILS 

                                                                                                                    Page no. 

1. Introduction…………………………………………………………..10-11 

2. Motivation……………………………………………………………12 

3. Description of proposed method……………………………………...13-19 

3.1 Rolling element bearings……………………………………….....13 

3.2 Vibration from faulty rolling element bearing………………….....13-14 

3.3 Wavelet Packet Transform (WPT)………………………………...16 

3.4 Shannon entropy…………………………………………………….17 

3.5 Wavelet decomposition-based-denoising………………………..….17-18 

3.6 Proposed methodology…………………………………………...….18-19 

   4.  Experimental setup and results ……………………………………………20-29 

4.1 Experimental setup of run-to-failure test…………………………….20-22 

4.2 The analysis of outer race fault signal …………………..…………..22-29 

   5.  Conclusion and scope of future work……………………..……………….30 

   References…………………………………………….....……………………31-32 

     

 

 

 

 



10 

 

CHAPTER 1 

 

INTRODUCTION 

 

Rolling element bearings are used in many classes of rotating machinery where compact, high-load-capacity 

rotor support systems are required. They have low starting and high running friction. There is a frequency 

barrier which seriously limits the use of REBs in high speed application. 

 

Rolling element bearing are of paramount importance to almost all forms of rotating machinery and are among 

the most common machine elements. Bearing failure is one of the foremost causes of breakdowns in rotating 

machinery and such failure can be catastrophic, resulting in costly downtime. In order to prevent these kinds 

of failures from happening, various bearing condition monitoring techniques have been developed. Among 

them, vibration analysis has been used extensively due to its intrinsic advantage of revealing bearing failure. 

 

 Traditional concepts of preventive and corrective maintenance are gradually supplemented by diagnosis form. 

The main objective of this maintenance type is to ensure the dependability of industrial systems and increase 

their availability with lower cost. However, fault diagnosis is not an easy task; itis essentially a problem of 

pattern recognition.  

 

The signature of a damaged bearing consists of exponentially decaying ringing that occurs periodically at the 

characteristic frequency. The vibration signal of a defective bearing usually considers being amplitude 

modulated at the characteristic defect frequency. Matching the measured vibration spectrum with the defect 

characteristic frequency enables defect detection and enables diagnosis of the defective area. 

 

 

As for the vibration signal of rolling element bearing, signal modulation effect and noise are two major barriers 

in incipient defect detection. Because of the amplitude-modulated effect, the spectrum of defect signals 
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consists of a harmonic series of frequency components present at the bearing defect frequency with the highest 

amplitude around the resonance frequency. 

 

 

Most of the time vibration signals are collected with a vibration sensor installed on the bearing housing. The 

sensors are subject to collecting vibration responses from other mechanical components and noise sources. 

The inherent deficiency of the measuring mechanism introduces a great amount of noise to the signal. The 

signature of a defective bearing is spread across a wide frequency band and hence can easily become masked 

by noise and low frequency effects. The weak signature, at the early stage of defect development, is even more 

difficult to detect. A signal enhancing method is needed to provide more evident information for incipient 

defect detection of rolling element bearings. 

 

 

The problem of signal de-noising has a strong connection to roller element bearing prognostics. De-noising 

and extraction of the weak signature are crucial to fault prognostics in which case features are often very weak 

and masked by noise. Prognostics is achieved by detecting the defect at its initial stage and alerting 

maintenance personnel before it develops into a catastrophic failure. 

The wavelet transform has been widely used in signal de-noising due to its extraordinary time-frequency 

representation capability, which is discussed in detail later in this report. The performance of wavelet 

decomposition-based de-noising on signals from mechanical defects reveal that it is suitable and reliable to 

detect weak and impulse-like signatures of mechanical defect signals. 

 

Minimal Shannon entropy is used as a criterion to optimize the shape factor of a Daubechies wavelets. 
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CHAPTER 2 

 

MOTIVATION  

Rolling element bearings (REBs) are widely used in rotating machines. One of the fundamental problems 

currently faced a wide range of industries is how to identify a bearing fault before it reaches a critical level and 

even its catastrophic failure. REB is one of the important parts of rotating machinery and their failure is one 

of the most frequent reasons for machine breakdown. Approximately 45% of the failures are due to the bearing 

faults. A failure survey by the Electric Power Research Institute (EPRI) indicates that bearing-related faults 

are about 40% among the most frequent faults in induction motors. 

The maneuver of rotating machinery is entirely dependent upon the health state of the REBs, which accounts 

for almost 45–55% of these equipment failures. The presence of bearing faults such as galling, spalling, 

peeling, subcase fatigue or failure of the bearings due to misalignment, shaft slope, surface roughness, high 

extent of waive-ness and inclusions, etc. causes a catastrophic collapse of the system thereby reducing the 

reliability and availability of the plant. This in turn increases the production downtime causing a massive 

financial loss to the organization and may every so often prove dangerous to the safety of the workers. 

 

Thus, it becomes very important to implement and expand effective maintenance strategies to minimize the 

impact of failures due to malfunctioning of the rolling element bearings. 

If we can identify a problem before a catastrophic failure occurs, then we can schedule a cost-effective 

maintenance. 
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CHAPTER 3 

DESCRIPTION OF PROPOSED METHOD  

3.1 Rolling Element Bearings   

There are two major classes of rolling element bearings:- 

1. Spherical  ball bearing 

2. Cylindrical roller bearing 

 

 

Figure 1: Spherical ball bearing and cylindrical roller bearing 

 

3.2 Vibrations from Faulty Rolling Element Bearings  

Since no bearing is perfect, all rolling element bearings will have faults such as irregularities in the surface of 

the race and in the roundness of the balls. When a bearing spins, these faults create periodic frequencies called 

fundamental defect frequencies. 

There are four fundamental defect frequencies in REBs: 
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1. FCF – Fundamental Cage Frequency. This is the rotational speed of the bearing cage and ball/roller 

assembly. 

2. BPFI – Ball Pass Frequency of Inner Race. This is the frequency created as all the balls roll across a 

fault in the inner race. 

3. BPFO – Ball Pass Frequency of Outer Race. This is the frequency created as all the balls roll across a 

fault in the outer race. 

4. BSF – Ball/Roller Spin Frequency. This is the circular frequency of each ball/roller as it spins during 

revolution around the shaft. 

Fundamental defect frequencies depend on both the bearing geometry and the shaft speed. 

The bearing fault frequencies equations are the following (all in Hz): 

 

  

 

Equation 1-4 
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Figure 2 : Bearing geometry  

 

 

Figure 3: Bearing Fault Frequencies 
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The amplitude of vibration in REBs depend largely on the extent of bearing fault. All the machines have natural 

frequencies of vibration and are excited by the impact forces. When the rolling elements of bearing strike a 

crack or pitted area in its runway, the natural frequency of the bearing, shaft or bearing support may be excited. 

 

3.3 Wavelet Packet Transform (WPT) 

  Wavelet transform (WT): 

The wavelet is obtained from a single function  𝜓(𝑎,𝑏)(𝑡) by translation and dilation: 

 

Where a is the so-called scaling parameter, b is the time localization parameter and 𝜓(𝑡) is called the ‘‘mother 

wavelet’’. The parameters of translation b∈R and dilation a > 0, may be continuous or discrete. 

The wavelet transform of a finite energy signal x(t) with the analysing wavelet ψ(t) is the convolution of x(t) 

with a scaled and conjugated wavelet: 

 

Where ψ*(t) stands for the complex conjugation of ψ(t). The wavelet transform W(a,b) can be considered as 

functions of translation b with each scale a. Above equation indicates that the wavelet analysis is a time-

frequency analysis, or a time-scaled analysis. Different from the Short Time Fourier Transform (SFFT), the 

wavelet transform can be used for multi-scale analysis of a signal through dilation and translation so it can 

extract time frequency features of a signal effectively. 

However, WT does not split the high frequency bands where the modulation information of machine fault 

always exists. A better representation of signal is extending WT to wavelet packet transform (WPT). WPT 

further decompose the high-frequency bands and the frequency resolution may be enhanced. A signal can be 

decomposed into a set of wavelet packet nodes with the form of a full binary tree by the WPT. 

WPT is more efficient than continuous wavelet transform (CWT) and discreet wavelet transform (DWT) of 

the time-scale analysis to describe bearing fault signal in different frequency bands of local information. The 
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proposed method uses the WPT as a powerful tool to do orthogonal decomposition of vibration signals in the 

whole frequency domain. As a result, WPT can process all frequency bands, especially high frequency bands, 

more efficiently where bearing characteristic frequencies exist. 

 

3.4 Shannon Entropy 

The sparseness of wavelet coefficients is often used as the rule for evaluating the efficiency of wavelet 

transforms. The wavelet corresponding to the fewest and dominant wavelet transformation coefficients of a 

signal is ideal. An optimal wavelet transformation should be able to condense the signal into several large 

coefficients. The simplest definition of sparseness states that in a sparse matrix or vectors, most of the elements 

are zero. 

The sparseness of a series can be evaluated by various criteria. Among them, Shannon entropy is one of the 

well-adopted sparseness criterion. Shannon entropy was first introduced by Shannon in connection with 

communication theory in 1948. 

Shannon entropy is defined as: 

 

Where Pi is the probability of observing the ith possible value of random variable X ∈ [x1; x2; . . . ; xn]. 

Shannon entropy is the central role of information theory sometimes referred as measure of uncertainty. The 

entropy of a random variable is defined in terms of its probability distribution and can be shown to be a good 

measure of randomness and sparseness. Shannon Entropy, thus can be used to evaluate the sparsity of wavelet 

coefficients. Wavelet transform coefficients with minimal Shannon entropy can be treated as the sparsest 

result. Therefore, the corresponding shape factor can be adopted as the optimal result. 

3.5 Wavelet decomposition-based de-noising 

The objective of de-noising is to suppress the noise part of the signal and to recover original signal. Wavelet 

de-noising is based on the principle of multi-resolution analysis. By multi-level wavelet decomposition the 

discrete detail coefficient and approximation coefficient can be obtained. Grossmann proved that the variance 
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and amplitude of the details of white noise at various levels decreases regularly as the level increases, whereas 

the amplitude and variance of the wavelet transform of the available signal are not related to the change of  

 

 

scale. According to this property, noise can be weakened or even removed by adjusting the wavelet coefficients 

properly. 

The general de-noising procedure involves three steps. The basic version of the procedure is as follows: 

1. Signal decomposition. Choose a wavelet basis, and choose a level N. Compute the wavelet decomposition 

of the signal at level N.  

2. Threshold detail coefficients. For each level from 1 to N, select a threshold and apply soft thresholding to 

the detail coefficients.  

3. Signal reconstruction. Compute wavelet reconstruction using the original approximation coefficients of 

level N and the modified detail coefficients of levels from 1 to N. 

 

In the application of machinery prognostics, what attracts attention in the original noisy signal is the periodicity 

and relative energy level of the impulse components, which are indicators of impacts due to cracks, spalling, 

or corrosion, etc. Therefore, the objective of weak signal detection is to detect the target signal, instead of 

recreating the signal. Specifically, in roller bearing prognostics, I will attempt to detect the hidden periodic 

impulses. 

 

 

 

3.6 Proposed Methodology  
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CHAPTER 4 

 

EXPERIMENTAL SETUP AND RESULTS 

4.1 Experimental setup of run-to-failure test 

In order to reflect the real defect propagation processes, bearing run-to-failure tests were performed under 

normal load conditions on a specially designed test rig. The test rig is shown in Figure 4. This test rig hosts 

four test bearings on one shaft driven by an AC motor and coupled by rub belts. The rotation speed is kept 

constant at 2000 rpm. A radial load of 6000 lbs. is added to the shaft and bearing by a spring mechanism. All 

the bearings are forced lubricated. An oil circulation system regulates the flow and the temperature of the 

lubricant. A magnetic plug installed in the oil feedback pipe collects the debris from the oil as an evidence of 

bearing degradation. The test will automatically stop when the accumulated debris adhered to the magnetic 

plug exceed a certain level and causes an electrical switch to close. 

 

 

 

Figure 4: Bearing test Rig 
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Figure 5: sensor placement illustration 

Four Rexnord ZA-2115 double row bearings were installed on one shaft as shown in Figure 5. The bearing 

characteristic frequencies are usually calculated by Eqs below: 
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The outer-race fault frequency 𝑓𝑜                                    The fundamental cage frequency 𝑓𝑐 

The inner-race fault frequency 𝑓𝐼                                     The ball spin frequency 𝑓𝐵𝑆 

Rolling element fault frequency 𝑓𝐵         

Where n is the number of balls, d is the diameter of the rolling element , 𝐷𝑝 is the groove section size, 𝜃 is the 

contact angle, 𝑓𝑟  is the shaft frequency. The structural parameters and kinematical parameters of the four 

experiment bearings are listed in Table 1. 

 A PCB 353B33 High Sensitivity Quartz ICPs Accelerometer was mounted on the housing of each bearing. 

For monitoring the lubrication, four thermocouples were attached to the outer race of each bearing to record 

bearing the temperature. Vibration data of the bearings collected every 10 min by a National Instruments DAQ 

Card-6062E data acquisition card. The data sampling rate is 20 kHz and the data length is 20480 points. Data 

collection conducted by a National Instruments LabVIEW program. Data can be downloaded from 

Prognostics Centre Excellence (PCoE) through prognostic data repository contributed by Intelligent 

Maintenance System (IMS), University of Cincinnati. 

 

 

 

 

Table 1 
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4.2 The analysis of the outer race fault signal  

The RMS increased to a certain level, then decreased and rose again. The fluctuating trend in Figure 7and 8 

can be explained by the intrinsic characteristics of the damage propagating process. When the surface defect 

of the  

 

Outer raceway just initiated, small spall or cracks were formed and later smoothed by the continuous rolling 

contact. When the damage spread over a wider area, the vibration level rises again. 

 

 

 

Figure 6: Run-to-failure vibration signal ending with an outer race defect 
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As it is clearly visible from the Figure 6&7, that bearing developed fault after 4.86 days of continuous running. 

My aim is to detect fault at early stage of failure.   

 

 

Figure 7: RMS measurement  

 

 

From Figure 7&8, we can say that abrupt change in RMS value after 4.86 days of running is the clear indication 

of some kind of fault in bearing. 
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Figure 8: RMS measurement of bearing for whole life cycle 

 

 

From Figure 8, we can conclude in phase 1 region bearing is in healthy state, as time progress it started 

developing fault i.e in phase 2, and finally as time progress it develops serious defect in phase 3. 
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Figure 9: The vibration signal with early stage defect 

 

Figure 9, amplitude of vibration signal is lower as compared to that of vibration signal with serious defect in 

Figure 11. 

 

 

Figure 10: Spectrum of vibration signal with early stage defect 
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Figure 10, is the power spectrum of de-noised vibration signal, which is of phase 1 region. That is why we 

are unable to see peaks of higher power at calculated outer race fundamental fault frequencies. 

 

 

 

Figure 11: The vibration signal with serious defect 

 

 

Figure 12: Outer race defect 
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               Figure 12, indicate outer race fault developed after 7 days of run-to-failure test. 

 

Figure 13: Spectrum of vibration signal with outer race defect 

 

Figure 13, We can clearly see the peaks at calculated outer race fault frequencies, it indicates that outer race 

fault started developing in bearing after 4.86 days of running. 
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Figure 14: Spectrum of vibration signal with serious outer race defect 

 

 

Figure 14, Power Spectrum of vibration signal after 6.5 days. Peaks at outer race fault frequencies are clearly 

visible which indicates the outer race fault is fully developed and its power is higher than the previous one 

(fig 13). 
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CHAPTER 5 

 

CONCLUSION AND SCOPE OF FUTURE WORK 

 

De-noising and extraction of the weak signature from the noisy signal are crucial to fault prognostics, in which 

case features are often very weak and masked by the background noise. Prognostics is achieved by detecting 

the defect at its initial stage and alerting the operator or maintenance personnel before the defect develops into 

a catastrophic failure.  

The performance of traditional wavelet decomposition-based de-noising methods is greatly impacted by 

relative energy levels of signal coefficients and white noise coefficients. When dealing with smooth signals, 

satisfactory results can generally be achieved by manipulating the threshold. The underlying reason is because 

with smooth signals, a small number of large coefficients can characterize the original signal. However, it is 

much more challenging to de-noise impulse series signals where wavelet coefficients are not so concentrated. 

The experimental results verify the effectiveness of the proposed method. The weak periodic impulse signature 

is successfully revealed and enhanced. Detection of the degradation signature at its early stage gives more time 

for maintenance reaction and business decision-making and also provides proof for prognostics.  

The results validate the proposed method is able to extract fault signatures from weak signals and can be 

regarded as an effective and reliable method for rolling element bearing faults diagnosis at an early stage. 

This method can be extended to measure the remaining useful life of bearing in future. 
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