
1

HOTEL DATA GATHERING

A PROJECT REPORT

Submitted in partial fulfillment of the

requirements for the award of the degrees

of

BACHELOR OF TECHNOLOGY

in

COMPUTER SCIENCE AND ENGINEERING

Submitted by:

Surendra Chouhan

Guided by:

Dr. Bodhisatwa Mazumdar,

Associate Professor,

Discipline of Computer Science and Engineering

INDIAN INSTITUTE OF TECHNOLOGY INDORE

December, 2017

2

CANDIDATE’S DECLARATION

I hereby declare that the project entitled “Hotel Data Gathering” submitted in partial

fulfillment for the award of the degree of Bachelor of Technology in ‘Computer Science

and Engineering’ completed under the supervision of Dr. Bodhisatwa Mazumdar,

Associate Professor, Discipline of Computer Science and Engineering, IIT Indore

and Mr. Prasad Kunte, Senior Manager at IDeaS-A SAS Company is an authentic

work.

 Further, I declare that I have not submitted this work for the award of any other

degree elsewhere.

Surendra Chouhan

CERTIFICATE BY BTP GUIDE

 It is certified that the above statement made by the students is correct to the best of

my knowledge.

 Dr. Bodhisatwa Mazumdar,

 Associate Professor,

 Discipline of CSE,

 IIT Indore,

3

Preface

This report on “Hotel Data Gathering" is prepared under the guidance of Dr.

Bodhisatwa Mazumdar, Associate Professor Discipline of Computer Science and

Engineering, IIT Indore and Mr. Prasad Kunte, Senior Manager at IDeaS.

Through in this report I have tried to give a detailed design of a web

application that I have created during my internship period at IDeaS.

I have tried to the best of my abilities and knowledge to explain the content in

a lucid manner. I have also added screens and figures to make it more

illustrative.

Surendra Chouhan

B.Tech. IV Year,

Discipline of Computer Science and Engineering,

IIT Indore

4

Acknowledgement

I would like to express my deepest appreciation to all those who provided me the

possibility to complete this report. A special gratitude I give to my BTP

project supervisor, Dr. Bodhisatwa Mazumdar, Associate Professor ,Discipline of

Computer Science and Engineering, IIT Indore.

Furthermore I would also like to acknowledge with much appreciation the crucial role of

the IDeaS , who gave me the opportunity to work for the company. Special thanks goes

to my team mate, Shubham Burewar, who worked with me on this project. Last but not

least, many thanks go to the manager of the project, Mr. Prasad Kunte, and my mentor

Mr. Chaitanya Deshmuk who have invested his full effort in guiding the team in

achieving the goal. I have to appreciate the guidance given by other supervisor as well as

the panels especially in our project presentation that has improved our presentation skills

thanks to their comment and advices.

Surendra Chouhan

B.Tech. IV Year,

Discipline of Computer Science and Engineering,

IIT Indore

5

 Contents

 Candidates Declaration………………………………………………. 2

 Supervisors Certificate………………………………………………... 2

 Preface………………………………………………………………… 3

 Acknowledgement…………………………………………………….. 4

 Chapter 1: Introduction

 Problem Statement…………………………………………….. 6

 About Company……………………………………………….. 7

 Problem explanation…………………………………………... 8

 Motivation for Project………………………………………… 9

 Chapter 2: Development Approach

 Agile Modal………………………………………………….. 10

 What is Agile………………………………………………… 10

 Agile vs Tradition SDLC Modals…………………………… 11

 Pros and Cons………………………………………………... 12

 Test Driven Development……………………………………..13

 Chapter 3: Application Design

 Basic Flow Diagram…………………………………………. . 15

 Master Data………………………………………………….... 16

 Google Places API………………………………………….... 17

 Expedia Static Data………………………………………….. 17

 Travel Payout Static Data……………………………………. 18

 Competitors List …………………………………………….. 18

 Daily room rates …………………………………………….. 19

Chapter 4: Result Screens…………………………………………….. 20

Chapter 5: Technologies Used……………………………………….. 25

Chapter 6: Future Scope……………………………………………... 26

Chapter 7: My Contribution to Project……...……………………….. 27

Chapter 8: Conclusion……………………………………………….. 28

6

CHAPTER 1: INTRODUCTION

Gather Online Hotel Data-

 • What?

 ◦ Hotels

 ▪ Are Geographically located

 ▪ Have Star Rating

 ▪ Have Reputation

 ▪ May have competitor hotel in its vicinity

 ◦ Given that we know hotel's geographical location, we should be able to get

 top n (configurable) competitors and their room rates for next 60 days.

 • Explore

 ◦ How can we get hotel's master data?

 ◦ How can we get hotel's daily room rate data?

 • Why?

 ◦ So that we can offer IDeaS solution to any hotel(small and

 medium size) which do not have revenue management culture or they can't

 afford one.

 ◦ These hotel can start getting some meaningful pricing decisions

 by analyzing above data.

 Develop a web application which can gather client hotels’ data from different

sources, these sources can be online websites/ APIs/ local database. And the gathered

data will be in the form of hotels’ master data (hotels’ basic information), its competitor

in a given range and their daily room rates which can be used for determining the room

rates for clients’ hotel.

7

ABOUT COMPANY

IDeaS - A SAS Company-

It is a private company founded in 1989, having headquarter in Minneapolis, MN. IDeaS

Pune is the major development center for the company.

With more than one million rooms priced daily on its advanced systems, IDeaS Revenue

Solutions leads the industry with the latest revenue management software solutions and

advisory services.

Powered by SAS® and more than 25 years of experience, IDeaS proudly supports more

than 9,000 clients in 94 countries and is relentless about providing hoteliers more

insightful ways to manage the data behind hotel pricing. IDeaS empower its clients to

build and maintain revenue management cultures by focusing on a simple promise:

Driving Better Revenue.

IDeaS has the knowledge, expertise and maturity to build upon proven revenue

management principles with next-generation analytics for more user-friendly, insightful

and profitable revenue opportunities—not just for rooms, but across the entire hotel

enterprise.

Specialties:

 Revenue Management

 Hospitality Pricing

 Forecasting & Revenue Optimization

 Car park

 Travel

 Hospitality

 Big Data

 Computer Software

 SaaS Applications

 Lodging

 Hotels

 Smart Spaces

8

Problem Explanation:

There are so many hotels in the world categorized by star ratings or reputations. These

hotels have some geographical location on the map. So using this geographical location I

need to find their competitor hotels in a certain distance from it. And rate for each

competitor hotel for next n days.

This data than can be used for analyzing the prices of the competitor hotels for a

particular day and by analyzing this data this application should be able to provide

optimal pricing rate for the hotel. So it can gain better revenue.

To do so I have to explore how I can get the data for the hotels in this entire world. This

data about the hotel can be called as ‘master data’ for that hotel. Master data includes the

name of the hotel, location of the hotel, star rating of the hotel, reputation/review of the

hotel, address of the hotel etc. along with the master data I have to find a way to get the

rate of the hotels for next 60 days at least.

To get the hotels’ master data I have to explore what can be the possible sources and

what type of data can be used for the application? Explore how it can be relatable to the

daily room rates. What kind of relation between them needed for the better pricing

prediction?

Star rating:

 Star ratings are often used to classify hotels according to their quality. There is a

wide variety of rating schemes used by different organizations around the world. Many

have a system involving stars, with a greater number of stars indicating greater luxury.

Reputation:

 The review given by the customers indicates the reputation of the hotel. It shows

how hotel is fulfilling the customer’s requirements.

9

Motivation for this project:

In this entire world only 10% of the hotels are using Revenue Management System

(RMS). And other 90% are not using any Revenue Management Systems because:

 RMS needs lots of history data (minimum one years’ booking history of the hotel)

which most of the hotels’ don’t have.

 This RMS are very costly, most of the hotels can’t afford to use them.

 Most of the hotels are not aware of RMS culture.

So IDeaS sees it as an opportunity to make business. Since 90% of the hotels are not

using any RMS. So introducing new product in the market will be an easy task for the

company. After analyzing the factors that are affecting the use of RMS by hotels, IDeaS

came up with a solution to develop a light weighted RMS for these hotels which will be

cost effective and can be afford by any size hotel. This application will work on the daily

room rates of the hotels. By analyzing the competitors’ room rate it will help the client

hotel to determine its room rate. This application will not require any history data so it

will be easy for those hotels who don’t maintain history records.

This application will help the company to enter in the RMS market with greater reach to

all types of the hotels.

10%

90%

Hotels using RMS

Hotels not using RMS

10

CHAPTER 2: DEVELOPMENT APPROACH

To develop this application I have used the ‘Agile Methodology’. And to support agile

development I have used the ‘Test Driven Development (TDD)’ practice.

Agile Model:

Agile is a software development life cycle model and is a combination of iterative and

incremental process models with focus on process adaptability and customer satisfaction

by rapid delivery of working software product. Agile Methods break the product into

small incremental builds. These builds are provided in iterations. Each iteration typically

lasts from about one to three weeks. Every iteration involves cross functional teams

working simultaneously on various areas like −

 Planning

 Requirements Analysis

 Design

 Coding

 Unit Testing and

 Acceptance Testing.

At the end of the iteration, a working product is displayed to the customer and important

stakeholders.

What is Agile?

Agile model believes that every project needs to be handled differently and the existing

methods need to be tailored to best suit the project requirements. In Agile, the tasks are

divided to time boxes (small time frames) to deliver specific features for a release.

Iterative approach is taken and working software build is delivered after each iteration.

Each build is incremental in terms of features; the final build holds all the features

required by the customer.

The Agile thought process had started early in the software development and started

becoming popular with time due to its flexibility and adaptability.

The most popular agile methods include:

 Rational Unified Process (1994)

 Scrum (1995)

11

 Crystal Clear

 Extreme Programming (1996)

 Adaptive Software Development

 Feature Driven Development

 Dynamic Systems Development Method (DSDM) (1995).

These are now collectively referred to as Agile Methodologies, after the Agile

Manifesto was published in 2001.

Following are the Agile Manifesto principles –

 Individuals and interactions − In Agile development, self-organization and

motivation are important, as are interactions like co-location and pair

programming.

 Working software − Demo working software is considered the best means of

communication with the customers to understand their requirements, instead of

just depending on documentation.

 Customer collaboration − As the requirements cannot be gathered completely in

the beginning of the project due to various factors, continuous customer

interaction is very important to get proper product requirements.

 Responding to change − Agile Development is focused on quick responses to

change and continuous development.

Agile Vs Traditional Software Development Life Cycle Models

 Agile is based on the adaptive software development methods, whereas the

traditional SDLC models like the waterfall model is based on a predictive

approach. Predictive teams in the traditional SDLC models usually work with

detailed planning and have a complete forecast of the exact tasks and features to

be delivered in the next few months or during the product life cycle.

 Predictive methods entirely depend on the requirement analysis and planning done

in the beginning of cycle. Any changes to be incorporated go through a strict

change control management and prioritization.

 Agile uses an adaptive approach where there is no detailed planning and there is

clarity on future tasks only in respect of what features need to be developed. There

is feature driven development and the team adapts to the changing product

requirements dynamically. The product is tested very frequently, through the

release iterations, minimizing the risk of any major failures in future.

 Customer Interaction is the backbone of this agile methodology, and open

communication with minimum documentation are the typical features of agile

12

development environment. The agile teams work in close collaboration with each

other and are most often located in the same geographical location.

Pros and Cons

Agile methods are being widely accepted in the software world recently. However, this

method may not always be suitable for all products. The advantages of the Agile Model

are as follows −

 Is a very realistic approach to software development.

 Promotes teamwork and cross training.

 Functionality can be developed rapidly and demonstrated.

 Resource requirements are minimum.

 Suitable for fixed or changing requirements

 Delivers early partial working solutions.

 Good model for environments that change steadily.

 Minimal rules, documentation easily employed.

 Enables concurrent development and delivery within an overall planned context.

 Little or no planning required.

 Easy to manage.

 Gives flexibility to developers.

The disadvantages of the Agile Model are as follows −

 Not suitable for handling complex dependencies.

 More risk of sustainability, maintainability and extensibility.

 An overall plan, an agile leader and agile PM practice is a must without which it

will not work.

 Strict delivery management dictates the scope, functionality to be delivered, and

adjustments to meet the deadlines.

 Depends heavily on customer interaction, so if customer is not clear, team can be

driven in the wrong direction.

 There is a very high individual dependency, since there is minimum

documentation generated.

 Transfer of technology to new team members may be quite challenging due to

lack of documentation.

13

To support the agile model to develop this application I have used the ‘Test Driven

Development (TDD)’ practice.

Test Driven Development:

Test-driven development (TDD) is a software development process that relies on the

repetition of a very short development cycle: Requirements are turned into very specific

test cases, and then the software is improved to pass the new tests, only. This is opposed

to software development that allows software to be added that is not proven to meet

requirements.

Test-driven development is related to the test-first programming concepts of extreme

programming, begun in 1999,[3] but more recently has created more general interest in

its own right.

Test Driven Development Cycle:

1. Add a test

In test-driven development, each new feature begins with writing a test. Write a

test that defines a function or improvements of a function, which should be very

succinct. To write a test, the developer must clearly understand the feature's

specification and requirements. The developer can accomplish this through use

cases and user stories to cover the requirements and exception conditions, and can

write the test in whatever testing framework is appropriate to the software

environment. It could be a modified version of an existing test. This is a

differentiating feature of test-driven development versus writing unit tests after the

code is written: it makes the developer focus on the requirements before writing

the code, a subtle but important difference.

2. Run all tests and see if the new test fails

This validates that the test harness is working correctly, shows that the new test

does not pass without requiring new code because the required behaviour already

exists, and it rules out the possibility that the new test is flawed and will always

pass. The new test should fail for the expected reason. This step increases the

developer's confidence in the new test.

3. Write the code

The next step is to write some code that causes the test to pass. The new code

written at this stage is not perfect and may, for example, pass the test in an

inelegant way. That is acceptable because it will be improved and honed in Step 5.

14

At this point, the only purpose of the written code is to pass the test. The

programmer must not write code that is beyond the functionality that the test

checks.

4. Run tests

If all test cases now pass, the programmer can be confident that the new code

meets the test requirements, and does not break or degrade any existing features. If

they do not, the new code must be adjusted until they do.

5. Refractor code

The growing code base must be cleaned up regularly during test-driven

development. New code can be moved from where it was convenient for passing a

test to where it more logically belongs. Duplication must be removed. Object,

class, module, variable and method names should clearly represent their current

purpose and use, as extra functionality is added. As features are added, method

bodies can get longer and other objects larger. They benefit from being split and

their parts carefully named to improve readability and maintainability, which will

be increasingly valuable later in the software lifecycle. Inheritance hierarchies

may be rearranged to be more logical and helpful, and perhaps to benefit from

recognized design patterns. By continually re-running the test cases throughout

each refactoring phase, the developer can be confident that process is not altering

any existing functionality.

Repeat

 Starting with another new test, the cycle is then repeated to push forward the

 functionality. The size of the steps should always be small, with as few as 1 to 10

 edits between each test run. If new code does not rapidly satisfy a new test, or

 other tests fail unexpectedly, the programmer should undo or revert in preference

 to excessive debugging. Continuous integration helps by providing revertible

 checkpoints. When using external libraries it is important not to make increments

 that are so small as to be effectively merely testing the library itself, unless there

 is some reason to believe that the library is buggy or is not sufficiently feature-

 complete to serve all the needs of the software under development.

15

CHAPTER 3: APPLICATION DESIGN

 Basic flow Diagram for the application

Search Client
Hotel

Master Data
For Client Hotel

Competitors
List

Configuration

Daily Room
Rate

Database
Update

Analytical
Algorithm

Price Pridiction
For Client

This search is from sources available.

Ex: Local Database, API etc.

Master data includes: Hotel name,
address, coordinates, city, star rating,
reputation, competitors

Ex: Local Database, API etc.

List of competitor hotels in a certain
radius from it.

Configuration of list by providing top
competitors. And that can be based
on star rating or distance.

Daily Room Rate for the Competitors
in the list. And this data is of next n
days.

The entire Configuration with Rate
data should be saved in the database
for analysis of the rates.

Analysis algorithm for prediction of
rate for client hotel. It analyzes the
competitors dialy room rate.

Prediction of the best optimal price
for client hotel. That client should
charge.

These two steps are

not included in the

internship project

term. My project

includes only up to

Database Update.

16

Master data:

It includes the basic details about the hotels.

Ex: Name, Address, City, Country, Geo-Coordinates, Star rating, reviews, reputation etc.

Sources for Master Data Collection:

To collect the master data I had explored the different possible sources that can be used

in this application. Some of them are listed below-

1. Websites

 www.booking.com

 in.hotels.com

 www.goibibo.com

 www.trivago.in

 www.makemytrip.com

 www.expedia.co.in/Hotels

 www.hotwire.com

 www.travelguru.com

 www.agoda.com

 www.priceline.com

 http://hotel.yatra.com

2. API

 Expedia

 Google Places

 Bookings.com

 Travel Payouts

This all websites and API provides master data for the hotel, but the format and the

content is different for all of them. Some of them have policies for using their data like:

For every 5000(can be more or less for different websites) number of requests of the

Hotel list request, expectation is at least 1 booking at minimum.

After understanding the working for all the sources I have decided to work with the static

data provided by some of above API. Below listed sources are fulfilling the major

requirement for the master data creation. These are easily available for the development

purpose without any policy.

http://www.booking.com/
http://www.goibibo.com/
http://www.trivago.in/
http://www.makemytrip.com/
http://www.expedia.co.in/Hotels
http://www.hotwire.com/
http://www.travelguru.com/
http://www.agoda.com/
http://www.priceline.com/
http://hotel.yatra.com/

17

Initial flow for Master Data Collection

1. Google Places API:

It is an API that provides access to information about more than 100 million places

around the World. These places are, usually, public places like touristic attractions,

hospitals, hotels and also stores, malls, companies etc. This API provides the details

about the place and these are:

 Name

 Address

 Latitude

 Longitude

 Rating

 Type

 Place id etc…

After getting these details, by using the coordinates (latitude and longitude) it allows us

to locate the nearby places of certain type in a given range. So this helps in locating the

competitor hotels for the client hotel and provides the details for all the competitor

hotels.

2. Expedia Static Data:

It is an Online Travel Agency, which helps to book hotel reservation worldwide. So it

has database for the hotels across the globe. And this database gets update in every seven

day. Database has:

 Hotel Id

 Hotel name

 Address

 Star rating

Search Hotel

Travel Payout

Expedia Static Data

Google Places API

Room Rate

18

 Latitude

 Longitude

and so many other details but which is not relevant to this project. It has 233224 hotels’

record and this helped in gathering master data for the client hotel.

3. Travel Payouts Static Data:

This is also an Online Travel Agency. Just like Expedia Static data it has similar

database. It has 1674389 hotels’ records.

These three are the major source for the master data of initial version of the project. But

all of these have some issues with them. Like -

Google Places API gives the results based on the geo coordinate of the place and radius

in which results should be shown but the result set is consist of the generalized places

and not specific to the hotels only. Ex: lodging – this is one of the place categories

which can be used to find places in Google Places API. This provides the hotels, hostels,

restaurants, lodges etc. except hotels others are not required. So it is giving unnecessary

data.

Expedia and Travel Payout static data is not a live data. This is provided by the

respective agencies. But this data is updated once in every week. So to maintain the

uniformity I need to update my database regularly in respect to get the updated data.

So, to overcome all of this I decided to work with only one source and that is Expedias’

static data. Since it is more informative and has all the required data in it to work with.

Final flow for master data collection is:

Competitors List:

To locate the competitor hotels in a given radius I have used the geo coordinates. Since

the local database created by using Expedia Static data has the coordinates of the hotels.

To find the list of the competitor hotels I have written a SQL query which finds the list of

hotels satisfying the radius criteria.

SQL QUERRY : SELECT *,(6371* ACOS (COS (RADIANS(:latitude)) * COS(RADIANS(Latitude)) *

COS(RADIANS(Longitude) - RADIANS(:longitude)) SIN (RADIANS(:latitude)) * SIN(RADIANS(

Latitude)))) AS distance FROM hotels HAVING distance < :radius;

 Latitude: Client hotels latitude

 Longitude: Client hotels longitude

Search Hotel Expedia Static Data Room Rate

19

 latitude: latitude of the hotel for which distance is calculated

 longitude: longitude of the hotel for which distance is calculated

 radius : radius in which competitors hotel list is obtained

 hotels: name of the SQL table in which Expedia static data is stored.

Once list of competitor hotels is obtained user can configure it by selecting some of its

major competitors and the selection criteria is dependent on user only, he can select the

hotels by star rating , by distance or by review ratings. Once user configures the list the

preference is saved in the local database against the hotel that user searched in the

beginning. And this data than further will be used to get the daily room rates for the

configured hotels only.

Daily Room Rates:

Source for the Daily room rates is Rate Shopping Websites.

Rate Shopping Websites: These provide the daily room rates for the hotels in a

particular city. And the rate data gets updated in every few hours. This makes it a better

and reliable source for getting room rates. This will provide us the room rates for future

days also, so by using these websites we can get the room rate for next 60 days or more.

In this project I have created the local database schema for the rate data that can be stored

by different dates. And the relationship between the rate data and hotel data is

maintained. Each hotel will have the room rate data for next 60 or more day in rate data

table. And this will help the analytical algorithm to predict the most optimal rate for the

client hotel by comparing the rates of the competitor hotels.

20

CHAPTER 4: RESULT SCREENS

 Home Screen:

This is the Home page for the application. It consists of the search option with the auto

completion feature. And these auto complete results are from local database that is

created using Expedia Static Data. Home page also consist the options for the registration

and login for the users. Only registered users are allowed to visit the application.

 Login and Registration Page:

21

These pages use the security feature of the Spring Boot framework. Spring Boot has the

predefined security for the web app. And it includes the authentication, registration,

login, logout, and sessions.

 Users Property page:

This is the page where a user can configure his/her properties. One user can have

multiple properties and each property will have different configurations so this page is all

about organizing these properties.

In this page user can add or remove properties, user can set the occupancy % for a

particular property (this factor is not used in this project but later it will be used by the

analytical algorithm).

Add option provides the hotel search function with the auto complete feature. It will be

helpful for the user to identify his/her property.

From each property card user can navigate to the Dashboard or can remove the property

from list or can set the occupancy.

22

 Dashboard

This is the dashboard for a particular property. It consists of a map in which the property

is highlighted with an information window and a red marker. Sidebar contains the list of

the possible competitor hotels in given radius i.e.5 km (in this screenshot). The list can be

filtered by using the rating filters and text search which can only show the filtered hotels

only. List is sorted on the basis of the distance from the client hotel. User can change the

search radius according to his/her needs. And map consists of the markers of the hotels

present in the list. There is weather data information is also available on the map, which

is gathered using the OpenWeatherMap API. On the header bar there is information

about the logged in user and a drop down list of properties from there user can switch to

the dashboard of the other property.

User can select the desired competitor hotel from the list by checking the checkbox

against each hotel in the list. Selected hotel information will be highlighted and the

information about the rate will be shown on the marker of the respective hotel on the

map.

23

User can save the selected hotels as preference list in the database by using save

preference option. And this preference will help to get the daily room data for the

selected hotels and will help in the prediction of the rate for client hotel.

 Table view representation for rates of seven days

In this screen the selected hotels from the list also get added in the table and this table

will show the seven days rate for a particular hotel. These seven day count start from the

present day. User can switch between map view and table view by using toggle buttons

on the top.

24

 Code coverage results for test cases:

This screen shows the result for the code coverage. Code coverage shows how much of

the total code is tested using the test case that has been created.

It shows there are total of 33 test cases. There is no test case for User Interface Testing.

These 33 test cases have covered 100% classes, 80% of the methods and 80% of the

code lines.

25

CHAPTER 5: TECHNOLOGIES USED

1. Software Development Life Cycle Modal

 Agile Modal

2. Agile Modal Technique

 Test Driven Development(TDD)

3. API

 Google Places API

 Google Maps API

 Google Geocode API

 OpenWeatherMap API

 Jquery UI API

4. Database

 MySQL

5. Testing Tool

 JUNIT

 Mockito

6. Framework

 Spring Boot

7. IDE

 IntelliJ IDEA

26

CHAPTER 6: FUTURE SCOPE

Since this report is about the project to collect the master data for the hotel and rates of

the hotels. This is a part of a larger project. So after this project, integration with the

analytical algorithm will help this project to get the predicted prices for the client hotel.

This will complete the product.

When this project is integrated with the analytical part, then the hotel of medium or small

sizes will be having some affordable RMS option, which will help them to get the better

pricing for them and also help them to gain better revenue. It will introduce the culture of

RMS to the medium or small sized hotels.

Rates that are used in this project are of only one type of room in the hotel which is

general room rate. In future it can be based on the type of rooms available in the hotel.

Ex: suits, deluxe room, presidential room etc.

In this project testing was done for java classes and methods only, in future test cases for

the user interface can be added and also the code coverage can be improved.

Performance can be improved in terms of load for the application. As it will be on the

production site so the performance will play major role in there.

27

CHAPTER 7: MY CONTRIBUTION TO PROJECT

 Created MySQL database for master data of the hotel.

 Created JavaScript file for Dashboard screen.

 Created JavaScript file for Property screen.

 Integration of the Dashboard with Google APIs.

 Added test cases for each Java class.

 Function for finding the competitor hotels from MySQL database.

 Implementation of Auto-complete feature.

 Created database schema for storing the preferences.

 Created the database schema for the user properties.

 Created database schema for rate shopping data.

 Implementation of the OpenWeatherMap API in the Dashboard.

28

CHAPTER 8: CONCLUSION

The objective for this report is to develop a web application for the product of the

company applying the standard J2EE development approach. This project was

developed by following the agile methodology. During the development of this project

I had to give daily progress report to my mentor. And he daily discussed the plan for

the rest of the day with me. We followed the “scrum methodology” in which every day

we have to conclude what we had done and what was the progress from previous day.

Along with the mentor I had to present the progress in the project to my manager

weekly. It’s like delivering the product to the client in small intervals and then

manager suggested some changes or introduced some new features for the application.

And that changes and feature would be the part of the next delivery. This all process

concluded the agile development of the project.

 I used the Test Driven Development approach for the agile development of the

project. So the results for the code coverage are as follows:

 Classes : 100% tested

 Methods : 80% tested

 Lines: 80% tested

This above results shows that the all the classes present in the project are well tested.

80% of the method in the whole project is tested. Remaining other methods comes

across the UI testing which is not done in this project. The most significant figures that

matters a lot is number of lines tested in the whole project and here almost all the lines

are tested only except the code line for the UI and Integration. So these figures

concluded that the TDD for this project was a successful approach.

29

REFERENCES:

 Google Maps: https://developers.google.com/maps/documentation/javascript/tutorial

 Google Places: https://developers.google.com/maps/documentation/javascript/places

 Google GeoCoordinates: https://developers.google.com/maps/documentation/geocoding/start

 Autocomplete: https://jqueryui.com/

 Weather: https://openweathermap.org/api

 Markers: https://developers.google.com/maps/documentation/javascript/markers

 Info Window: https://developers.google.com/maps/documentation/javascript/infowindows

 MySQL Documentaion: https://dev.mysql.com/doc/refman/5.7/en/

 JUNIT: http://junit.org/junit4/javadoc/latest/

 Spring Boot Initializer: https://start.spring.io/

 Spring Boot Documentation: https://docs.spring.io/spring-boot/docs/current-

SNAPSHOT/reference/htmlsingle/

https://developers.google.com/maps/documentation/javascript/tutorial
https://developers.google.com/maps/documentation/javascript/places
https://developers.google.com/maps/documentation/geocoding/start
https://jqueryui.com/
https://openweathermap.org/api
https://developers.google.com/maps/documentation/javascript/markers
https://developers.google.com/maps/documentation/javascript/infowindows
https://dev.mysql.com/doc/refman/5.7/en/
http://junit.org/junit4/javadoc/latest/
https://start.spring.io/
https://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/
https://docs.spring.io/spring-boot/docs/current-SNAPSHOT/reference/htmlsingle/

	Pros and Cons

