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Preface

This report on ”Timing-based side-channel attack on Hummingbird block ci-

pher” is prepared under the guidance of Dr. Bodhisatwa Mazumdar.

Through this report I have tried to give a detailed description of timing analysis

performed by me on the Hummmingbird cryptographic algorithm along with

proposed methods of launching a timing-based side-channel attack.

I have tried to the best of my ability and knowledge to explain the content in

a lucid manner. I have also added tables and figures to make it more illustra-

tive.

Khushboo Sharma

B. Tech, IV Year

Discipline of Computer Science and Engineering

IIT Indore
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Abstract

The Hummingbird algorithm is applied in secure systems like RFID tags, wire-

less sensor nodes and smart integrated circuits. Hummingbird is a cryptographic

algorithm which consists of a block cipher of 256-bit key and encrypts 16-bit

data in one operation. It is lightweight, fast and is resistant to the most common

cryptanalysis attacks like linear and differential cryptanalysis. In this report,

we attempt to launch a timing-based side-channel attack on the Hummingbird

block cipher. A timing-based attack takes into account the relationship between

input to a cryptosystem and the time required for operations to be performed.

We focus on the first subround of the first of the four block ciphers in the algo-

rithm.

Software implementation of the subround is targeted first. Analysis is done

on the dependence of execution time on plaintext, key and output of the first

subround. On finding that execution time is not a good measure for distin-

guishing between keys due to its highly inconsistent value, a switch is made

towards weighted execution time, measured by recording the execution time

20000 times for the same plaintext and key. Key search space is characterized

on the basis of the number of plaintexts satisfying the relation, plaintext = out-

put. Profiling and attack algorithms are described, analysis being done first on

a smaller set of the entire key search space and then gradually increasing the

size of the set. The efficiency of the attack algorithms is measured by recording

the size of the residual key space and the number of times expected key is an

element of the residual key space out of 100 times. A couple of miscellaneous

experiments relating to sensitivity of execution time to each bit of the plaintext
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and the measurement of probability of certain linear combinations of plaintexts

and output being 0 are also mentioned, which posed interesting observations

but could not be extended due to lack of resources and time.

Next, a hardware implementation of the subround coded in VHDL is studied.

Timing simulation is performed on this design to record the time at which out-

put is obtained. The dependency of this time on the basis of Hamming Weight

of plaintext, Hamming Weight of key and Hamming Distance between initial

and final values of output is investigated. This is also done wrt. the Hamming

Distance between plaintext and output. Another attack algorithm is proposed

based on the results and its efficiency is measured by measuring the size of the

residual key space.

Finally, results of the timing analyses and the efficiency of the corresponding

attacks are discussed. Conclusions drawn from the project and the scope of

future work is emphasized.
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1. Introduction

1.1 Resource Constrained Devices and Lightweight

Cryptography

With the advent of pervasive computing, various smart devices such as RFID

tags, smart cards, and wireless sensor nodes are penetrating into and impact-

ing people’s life at a staggering rate and in significant ways. Their applications

range from access control and supply-chain management to home automation

and healthcare. Since a multitude of applications involve processing of sensi-

tive personal information like health or biomedical data, the increasing demand

for integrating cryptographic functions into embedded applications has risen.

However, these pervasive smart devices usually have extremely constrained re-

sources in terms of computational capabilities, memory, and power supply. For

constrained devices such as these with their harsh limitations with respect to

gate count and power consumption, standard cryptographic algorithms can be

too big, too slow or too energy-consuming. Hence, it is desirable to employ

lightweight and specialized cryptographic algorithms for many security appli-

cations. The field of lightweight cryptography focuses exactly on this.
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Figure 1.1: RFID tags: applications

Lightweight cryptography (LWC) is a research field that has developed in

recent years and focuses in designing schemes for devices with constrained ca-

pabilities in power supply, connectivity, hardware and software. Schemes pro-

posed include hardware designs, which are typically considered more suitable

for ultra-constrained devices, as well as software and hybrid implementations

for lightweight devices. Algorithms are designed such that they are capable to

run on devices with very low computing power. One such algorithm is Hum-

mingbird.

1.2 Hummingbird cipher

The overall structure of the Hummingbird encryption algorithm consists of four

16-bit block ciphers Ek1 , Ek2 , Ek3 and Ek4 , four 16-bit internal state registers

RS1, RS2, RS3 and RS4, and a 16-stage LFSR. The 256-bit secret key K is

divided into four 64-bit subkeys k1, k2, k3 and k4 which are used in the four

block ciphers respectively. A 16-bit plaintext block PTi is encrypted by first

executing a modulo 216 addition of PTi and the content of the first internal state

register RS1. The result of the addition is then encrypted by the first block

2



cipher Ek1 . This procedure is repeated in a similar manner for another three

times and the output of Ek4 is the corresponding ciphertext PTi.

Figure 1.2: Encryption process: Hummingbird

Four identical 16-bit block ciphers are employed in a consecutive manner

in the Hummingbird encryption scheme. The 16-bit block cipher is a typical

substitution-permutation(SP) network with 16-bit block size and 64-bit key as

shown in Figure 1.3. It consists of four regular rounds and a final round that

only includes the key mixing and the S-box substitution steps. The 64-bit sub-

key ki is split into four 16-bit round keys K(i)
1 ,K(i)

2 ,K(i)
3 and K(i)

4 which are

used in the four regular rounds respectively. Moreover, the final round utilizes

two keys K(i)
5 and K(i)

6 directly derived from the four round keys. Like any
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other SP network, one regular round comprises of three stages: a key mixing

step, a substitution layer, and a permutation layer. For the key mixing, a simple

exclusive-OR operation is used in this 16-bit block cipher for efficient imple-

mentation in both software and hardware. The substitution layer is composed of

4 Serpent-type S-boxes with 4-bit inputs and 4-bit outputs, the action of which

in hexadecimal notation is described in Figure 1.3. The permutation layer in

this 16-bit block cipher is given by the linear transform L : {0,1}16→ {0,1}16

defined as follows:

L(m) = m⊕ (m� 6)⊕ (m� 10)

where m = (m0,m1, ...,m15) is a 16-bit data block.

Figure 1.3: The structure of the block cipher in the Hummingbird Crypto-
graphic Algorithm

Hummingbird is described as an ultra-lightweight cryptographic algorithm.

It is widely believed to be the most capable cryptosystem for implementation

in a resource-constrained environment. Hummingbird can achieve up to 147

and 4.7 times faster throughput for size-optimized and speed-optimized imple-
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mentations respectively, when compared to the state-of-the-art ultra-lightweight

block ciphers on similar platforms. Hummingbird is also designed to protect

against the most common attacks such as birthday attacks, differential and lin-

ear cryptanalysis, structure attacks, algebraic attacks, cube attacks, etc. [2].

Moreover, extremely simple arithmetic and logic operations are extensively em-

ployed in Hummingbird for faster performance.

Figure 1.4: Encryption performance comparison: Hummingbird vs. PRESENT

There are several emerging areas, such as automotive systems, sensor net-

works, healthcare, distributed control systems, the Internet of Things (IoT),

cyber-physical systems, and the smart grid, in which highly constrained devices

are interconnected, working in concert to accomplish some crucial task. Secu-

rity and privacy can be VERY important in all of these areas. Applications often

include direct interaction with the physical world. Consequently, a security in-

cident might lead to asset damage or even personal injury and death. Hence,

lightweight cryptographic algorithms should be designed very carefully keep-

ing in mind high security standards. Security Analysis must be done against all

fathomable attacks, like side channel attacks which are one of the most realistic

threat against devices using lightweight cryptography.
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1.3 Timing-based Side-channel attacks

In cryptography, a side-channel attack is any attack based on information gained

from the physical implementation of a cryptosystem, rather than brute force

or theoretical weaknesses in the algorithms. This information can be in the

form of timing, power consumption, electromagnetic leaks or even sound. A

timing-based side-channel attack is an attack based on measuring how much

time various computations take to perform. In a timing-based attack, the at-

tacker attempts to compromise a cryptosystem by analyzing the time taken to

execute cryptographic algorithms. Every logical operation in a computer takes

time to execute, and the time can differ based on the input. With precise time

measurements for each operation, an attacker can get information about the se-

cret key embedded in the device.

Our main motivation upon taking this project was the fact that there is no evi-

dence of a side-channel attack being analysed on the Hummingbird cipher till

date, let alone timing-based. Only theoretical attacks such as classical crypt-

analysis, birthday attacks etc. have been studied and the algorithm is found to

be resistant against all of these attacks. While this is a good thing, we feel that

the category of side-channel attacks should not be ignored bearing in mind the

increasing security demands of the ever-changing world of pervasive comput-

ing.

Taking all of this into consideration, we try and mount a timing-based side-

channel attack on the Hummingbird block cipher. A divide-and-conquer ap-

proach in view, we target only the first subround of the first block cipher(Ek1)

as shown in figure 1.5. The focus, like any other attack, was towards studying

the execution time values and gleaning some information about the key. For all

practical purposes, the 16-bit input to this round is referred to as ”plaintext” and

the 16-bit output of this round is referred to as ”output” throughout the rest of

the report, also the 16-bit key(K(i)
1 ) is referred to as ”key”.
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Figure 1.5: First subround-First block cipher:Hummingbird
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2. Timing Analysis: Software

Implementation

2.1 System Specifications

The Hummingbird cryptography algorithm was implemented on a machine with

Intel(R) i5 1.70 GHz processor. The installed memory(RAM) was 4.00 GB and

the system type was 64-bit with an x64 based processor. C++ 14 was used for

implementation, the compiler being MingGW-W64.

2.2 Execution time analysis

Since a timing-based attack had never been attempted earlier, our first task was

to find out whether mounting such an attack was possible on the Hummingbird

block cipher or not. That is, whether execution time of the algorithm depended

on the value of plaintext and key. To determine the existence of this depen-

dency, a very simple experiment was performed. The first subround of the first

block cipher (see Figure 1.5) was implemented in C++ 14. 10 sets of keys

were selected for the same plaintext and execution time was recorded. C++

QueryPerformanceCounter functions were used to measure execution time as

shown in Figure 2.1. A plot of execution time vs. key was obtained (Figure

2.2).

9



Figure 2.1: Code used for measuring execution time

Figure 2.2: Plot of execution time(µs) vs. key K(i)
1

Observing the graph, It was evident that execution time changed with change

in key values. The next task was to study this relationship further and to design

an attack. At this stage in our analysis, execution time seemed to be a good

measure for studying the difference between key values.

To better study the interdependence of input values and execution time, various

plots were observed. The first two plots (Figure 2.3 and 2.4) try to explore the

relationship between Hamming Weight of key and execution time. These were

obtained by measuring execution time for all the keys and then plotting them

Hamming-Weightwise. Plaintext was kept constant. Our purpose here was to

find out whether any Hamming Weight follows any special property wrt. Exe-

cution time. We were expecting a peak or depression in the graph corresponding

10



to such a Hamming Weight. This would have allowed us to predict the Ham-

ming Weight of the key by measuring the execution time while launching our

attack. The green and black lines here represent the maximum and minimum

values while the blue line gives the average over each Hamming Weight.

Figure 2.3: Execution time vs. Hamming Weight of key

Figure 2.4: Execution time vs. Hamming Weight of key: 2nd run

ET1(hw) = max(ET (x,k)∀k s.t. HW (k) = hw)

ET2(hw) = min(ET (x,k)∀k s.t. HW (k) = hw)

ET3(hw) = mean(ET (x,k) ∀k s.t. HW (k) = hw)

11



here,

ET(x,k): execution time for plaintext = x and key = k

HW(k): Hamming Weight of key k

Looking at these graphs, two points were suddenly very clear. There is no

Hamming Weight which obeys any special property with respect to execution

time. Values were sufficiently random to safely conclude this. Moreover, the

data obtained was very inconsistent. Multiple runs resulted in a totally different

graph.

Yet another effort to extract some information from these graphs was made.

This time, the mean and standard deviation of each Hamming Weight was

recorded and the confidence interval [µ−σ ,µ +σ ] was plotted. The purpose

was to find out if these confidence intervals can distinguish between different

Hamming Weights.

Figure 2.5: Confidence interval of execution time vs. Hamming Weight of key

ET1(hw) = µ−σ ;ET2(hw) = µ +σ

12



where,

µ : mean(ET (x,k) ∀k s.t. HW (k) = hw)

σ : stddev(ET (x,k) ∀k s.t. HW (k) = hw)

Had these intervals not overlapped, confidence interval of execution time could

have served as a good distinguisher. But, as can be observed from figure 2.5,

we were not so lucky.

The next task was to study the relationship between plaintext and execution

time. Figure 2.6 illustrates this for Hamming Weight = 2. The graphs for each

Hamming Weight were obtained by taking an average of all the key values of

that particular Hamming Weight for the corresponding plaintext. 17 graphs (one

for each Hamming Weight of key) were obtained in this manner.

Figure 2.6: Execution time vs. plaintext : hw = 2

EThw(x) = mean(ET (x,k) ∀k s.t. HW (k) = hw)

where,

x: plaintext; k: key

The purpose here was to find out whether the whole graph can serve as a dis-

tinguisher for that particular Hamming Weight. A small experiment was per-

13



formed to determine this. Obtaining these 17 graphs, we obtained a similar

graph, this time for an unknown key. Then a direct match (least Euclidean dis-

tance) was applied between this graph and the graphs obtained previously to

predict the Hamming Weight of this key (see figure 2.7). Accuracy of our pre-

diction algorithm was obtained by repeating the experiment for 1000 unknown

keys and determining the number of keys for which the predicted value was

equal to the actual value of Hamming Weight.

Figure 2.7: Hamming Weight Prediction

The above experiment produced disappointing results. Out of 1000 times,

the algorithm gave the correct value of Hamming Weight only 16 times. By this

time, it was realized that launching an attack using execution time measured just

once for any plaintext-key pair cannot give desirable results due to its highly

inconsistent values.

2.3 Weighted execution time analysis

Since execution time did not produce desirable results, it was decided to con-

dense our field of view and study the nature of this execution time, this time

focusing on a constant plaintext and key value. A probability distribution of ex-

ecution time was obtained by measuring it 20,000 times for the same plaintext

and key. Various probability distributions were obtained for different pairs of

plaintexts and keys. Table 2.1 shows all plaintext and keys for which pairs were

14



made. Figure 2.8 shows the probability distribution for plaintext = 0 and key =

0.

Plaintext Key

0 0
32768 12345
65536 54321

65536

Table 2.1: Plaintext and key pairs for probability distribution

Figure 2.8: Probability distribution of execution time; plaintext=0 and key=0

Every probability distribution had the following salient features:

• Two values of execution time were observed almost 90% of the time.

• The highest occurring value could be observed with a probability of 0.5-

0.6.

• The second highest occurring value could be observed with a probability

of 0.3-0.4.

• These values were not necessarily the same for each plaintext and key

pair.

15



To ensure more consistency, it was decided to replace the execution time with

weighted execution time which was calculated as follows:

ET (x,k) =
f 1∗ t1+ f 2∗ t2

f 1+ f 2

where,

f1: Frequency of execution time value occurring maximum number of times

t1: Execution time value occurring maximum number of times

f2: Frequency of execution time value occurring second maximum number of

times

t2: Execution time value occurring second maximum number of times

All further experiments were done using this weighted execution time. Fo-

cus was shifted towards finding vulnerable values of keys which could follow

certain criteria that would be detectable given plaintext and timing values. One

method that immediately suggested itself was categorizing keys on the basis of

the property plaintext = output. In an ideal cipher, there should not exist any

pair of plaintext and key for which this occurs, even if the output is measured

after just one round. Our next experiment was to find out whether this was true

for Hummingbird. Every possible plaintext and key pair was taken and checked

for the above property. Surprisingly, we found many values of plaintext and key

for which this was true. A sample of the output is shown in figure 2.9. Dividing

keys on the basis of the number of plaintexts that satisfy plaintext = output, 8

categories could be formed with the said number ranging from 0-7. Table 2.2

shows the number of keys in each category.

16



Figure 2.9: Key-plaintext pairs satisfying plaintext = output

Category Number of keys
0 24397
1 23759
2 11965
3 4112
4 1055
5 199
6 47
7 2

Total 65536

Table 2.2: Number of keys for each category: plaintext = output

The above experiment gave us the idea of categorizing values of weighted

execution time based on the Hamming Distance between plaintext and output.

The next graph (Figure 2.10) was obtained by measuring the weighted execu-

tion time for each plaintext keeping the key constant and plotting it against the

Hamming Distance between plaintext and output.

17



Figure 2.10: execution time(µs) vs. HD(plaintext,output); key = 2

Focusing specifically on the HD=0 and HD=1 data in the above graph, pro-

filing and attack algorithms were designed. Since the actual key search space

of 216 was too big for analysis, a smaller search space, consisting of those keys

for which number of plaintexts with HD = 0 is 6 (Table 2.2 Category 6) was

taken. This was gradually increased to include values from categories 4, 5 and

7 as well. Changing either the profiling and attack algorithms or the size of the

key search space, we performed 7 experiments (Figures 2.11 to 2.17). For all

the experiments below, x stands for plaintext, k stands for key, fk(x) stands for

output and ET stands for weighted execution time.

For every unknown key, our attack algorithms find a set of predicted key val-

ues. This set is referred to as the ’residual key space’ and is obtained through

elimination of keys which are less likely to be the actual keys. In such a case,

there is a chance that the actual key is also eliminated from the residual key

space. Keeping this in mind, the following parameters were used to measure

the efficiency of these algorithms:

• Size of the residual key space (should be less)

• Number of times actual key is an element of the residual key space (should

be more)

18



Experiment 1 (Figure 2.11) focuses on the data for HD = 0. For every key in the

search space K, we find plaintexts that satisfy plaintext=output and get the range

of weighted execution time for each key. Then for an unknown key, timing val-

ues are observed for all the plaintexts found previously. If any of the observed

timing values for plaintexts of a particular key lies outside the prescribed range

for that key (found by the profiling algorithm), the key is removed from the

residual key space. Figure 2.11 describes the algorithm more precisely.

Figure 2.11: Weighted execution time- key prediction: Experiment 1

Experiment 2 (Figure 2.12) is similar to Experiment 1 except that instead

of eliminating a key based on just one timing value, it is eliminated only if

majority of timing values for plaintexts corresponding to that key lie outside

the prescribed range.

19



Figure 2.12: Weighted execution time- key prediction: Experiment 2

Experiment 3 (Figure 2.13) and 4 (Figure 2.14) are actually experiments 1

and 2 repeated for HD=1 data.

Figure 2.13: Weighted execution time- key prediction: Experiment 3

20



Figure 2.14: Weighted execution time- key prediction: Experiment 4

Experiment 5 (Figure 2.15) reduces the plaintext set for which weighted

execution time values for unknown key are required to be calculated. This time

we just consider those values of plaintext which have timing values lying in the

confidence interval [µ−σ ,µ +σ ] of weighted execution time for each key.

Figure 2.15: Weighted execution time- key prediction: Experiment 5

Experiment 6 (Figure 2.16) repeats experiment 5 for HD=0 on a larger key

set.
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Figure 2.16: Weighted execution time- key prediction: Experiment 6

Experiment 7 (Figure 2.17) is an exact repetition of experiment 5 on a larger

key set.

Figure 2.17: Weighted execution time- key prediction: Experiment 7

Table 2.3 gives a summary of the results of all the above experiments, each

being repeated over 100 unknown keys.
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Experiment
Number

Size of the
residual key space

Number of times
expected key ∈

residual key space

1 18-34 59

2 24-35 65

3 14-29 54

4 26-39 75

5 26-39 77

6 624-737 56

7 1066-1163 73

Table 2.3: Results- Experiments 1 to 7

2.4 Miscellaneous experiments

This section describes a couple of miscellaneous experiments done on the Hum-

mingbird block cipher software implementation. These experiments were per-

formed during the course of the project. Some interesting observations were

obtained but due to lack of resources and time, they could not be pondered

upon any further.

2.4.1 Sensitivity analysis

The first of the aforementioned experiments was done with the purpose of ob-

serving the effect on execution time on flipping exactly one bit of the key.

Plaintext-key pairs were taken and execution time was measured before and

after flipping each and every bit one by one. Output for plaintext=0 and key=0

is shown in figure 2.18.
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Figure 2.18: Sensitivity analysis- sample output; plaintext =0 ,key = 0

It could be observed that the flipping of one bit had an effect on the execu-

tion time. However, no explicit relation with bit significance could be found.

Moreover, our purpose was to propose an attack, and this experiment did not

provide any future insight in that direction.

Still, we feel that the dependency between bit significance and execution time

can be studied more thoroughly. One way that suggests itself is the repetition of

the experiment with weighted execution time, which gives clearer results than

execution time, as we established later. The cumulative effect of bit signifi-

cance and Hamming Distance of ’key before flipping’ and ’key after flipping’

can be observed by carefully recording these results. Better and more dedicated

systems can be used for a precise measurement of execution time.

2.4.2 Key vulnerability

The second experiment under this category was focused towards extracting vul-

nerable plaintext-key pairs for the first subround. This involved evaluation of

certain linear combinations of plaintext and output bits. Taking a value of key

k, outputs were recorded for all plaintexts. Then, for two 16-bit numbers a and

b, the probability

Pr(
⊕

∑
0..15

aixi⊕
⊕

∑
0..15

biyi = 0)
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was observed. This was done for k=12345 and 100 random a and b values.

Figure 2.19 shows a part of the output.

Figure 2.19: Linear combination probability; key=12345

Taking an average of the 100 probabilities so obtained, we get the value

Pr = 0.49992934. For an ideal cipher, this value should be very close to 0.5.

If for any key value, this probability deviates far from 0.5, that key could be

regarded as vulnerable. In principle, to prove the existence of such vulnerable

keys, this experiment should be repeated for all keys and all possible values of

a and b. However, such a program would have a computational complexity of

O(248), and our machines were simply not capable of running such a program

in any reasonable amount of time.

The above analysis can be considered similar to the one done in linear crypt-

analysis, although it is different for two reasons. First, the input and output

do not correspond to that of the whole cipher; instead they correspond only

to the first subround. Second, our objective towards finding vulnerable keys

was to observe their timing behaviour as compared to other keys, as opposed to

launching a theoretical attack.
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Talking about the future scope of this experiment, we maintain that if proba-

bility values for all possible keys are somehow calculated, vulnerable keys can

perhaps be found. Execution time comparisons for these keys as compared to

other keys can be done thereafter. In fact, the relation between execution time

values and probability can be explored. However, since it was not possible with

the limited resources available to us, we suspended this analysis here.
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3. Timing Analysis: Hardware

Implementation

3.1 Implementation Details

The hardware implementation of the Hummingbird block cipher was done in

VHDL. Xilinx ISE 14.7 and ISim simulator were used for implementation and

simulation respectively. Post-Place and Route Simulation was done to obtain

information about the time when output was obtained after plaintext and key

had been set. For the rest of this chapter, we refer to this time as simulation

time. For better recording of data, Test Benches were implemented in Verilog.

The Verilog function $fmonitor() was used to record changes in output.

The device properties were as follows:

Family-Spartan6

Device-XC6SLX45T

Package-FGG484

The Device Utilization Summary from the Place and Route Report is shown

in Figure 3.1.
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Figure 3.1: Device utilization summary- VHDL implementation

3.2 Analysis

Similar to software implementation, our first task here was to find out whether

mounting a timing-based attack was possible. 10 values of keys were thus se-

lected to verify this and the simulation time was measured for plaintext = 12451.

Figure 3.2 shows the graph obtained.
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Figure 3.2: Simulation time vs. Key; plaintext = 12451

What remained now was to determine the parameters that simulation time

depended upon. On multiple simulations, as long as device specifications are

not changed, it was observed that simulation time depended upon three and

only three things- key, plaintext and the initial value of output before key and

plaintext are changed. Also, unlike execution time in the software implemen-

tation, the value of simulation time remained consistent i.e. it did not change

with multiple runs.

An attempt at characterization of the simulation time on the basis of Hamming

Weight of key, Hamming Weight of plaintext and the Hamming Distance be-

tween initial and final value of output was done. Since simulation time de-

pended on the key, it was only natural to think that it would depend linearly on

the Hamming Weight of the key. Similar speculations were made for plaintext

and output. For output, it was considered that, the more the number of bits that

need to be flipped (Hamming Distance), the greater the simulation time. To

learn the truth about these speculations, the following graphs were plotted:
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Figure 3.3: HW(key) vs. Simulation Time(ns)

Figure 3.4: HW(plaintext) vs. Simulation Time(ns)
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Figure 3.5: HD(out putinitial ,out put f inal) vs. Simulation Time(ns)

While plotting the graph for one parameter, the other two parameters were

kept constant. However, a linear relationship could still not be observed with

any of the three parameters. Still another attempt at characterization was made.

In the software implementation, we had collected information about weighted

execution time keeping in mind the Hamming Distance between input and out-

put (see Figure 2.10). A similar attempt was made here taking into consid-

eration classes HD=0 and HD=1 specifically. The graph in Figure 3.6 has

been obtained by taking categories 4, 5, 6 and 7 of keys from Table 2.2, get-

ting their corresponding plaintexts which satisfy HD(plaintext,output)=0 and

HD(plaintext,output)=1 and plotting simulation time for each pair vs. key. Our

purpose was to determine whether the ranges of simulation time for HD=0(yellow

points) and HD=1(blue points) were different. This would have meant that sim-

ulation time can be characterized on the basis of Hamming Distance between

plaintext and output.
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Figure 3.6: Simulation time(ns) vs. Key; HD=0 and HD=1

It can be seen from the above graph that ranges of values for HD=0 and

HD=1 are not distinct. Hence, even this attempt at characterization was not

fruitful. Still, it was known that simulation times are different for different

keys. Even though the nature of this dependency was not clear, an attack could

still be launched. We took a set of 10 plaintexts and recorded the simulation

time for each key. Then, similar to the attack algorithms of Figures 2.11-2.17,

a residual key space was defined for every unknown key. 10 simulation times

were recorded corresponding to each plaintext and only those keys were kept

in the residual key space for which these simulation times were the same as

those recorded earlier. Figure 3.7 describes these profiling and attack algorithms

more formally. Here, p stands for plaintext, k stands for key and ST stands for

simulation time.
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Figure 3.7: Simulation time- profiling & attack algorithms

To measure the efficiency of this algorithm, it was sufficient to determine the

size of the residual key space. Unlike in the software implementation, here there

wasn’t a chance of the actual key being eliminated as simulation value did not

change if plaintext, key and initial value of output were kept constant. Hence,

the actual key was always a part of the residual key space. After repeating our

experiment for 100 unknown keys,

Size range of the residual key space: 6 - 8192

Average size of the residual key space: 1771

We can reduce the size of the residual key space by increasing the size of the

set of plaintexts P. Although the 10 plaintexts that we did our experiment with

were chosen at random, efforts can be made towards finding the most efficient

plaintext set P that reduces the size of the residual key space to a bare minimum.

This can be done by better profiling. Due to time constraints, we could design

only a very basic attack algorithm and did not work on making it more efficient.

Time and space optimization can be applied on both the algorithms. Another

observation that could not be worked upon was that some bits were being set

later than others. A bit-wise analysis to separate such bits can be done.
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4. Achievements and Results

Throughout the course of this project, our purpose was to analyze the depen-

dence between the execution time of the first subround of the Hummingbird

block cipher and the input provided to it. This was done to find possible glitches

in implementation which could then help us gain information about the key. The

following sections summarize our achievements and results in this regard.

4.1 Software Implementation

A thorough analysis of the change in execution time for the first subround of

the Hummingbird block cipher with Hamming Weight of key and plaintext was

completed, leading us to successfully establish the fact that execution time alone

is not a good measure for mounting a timing-based attack. This fact was not es-

tablished by a mere observation of the data; an attack algorithm which predicted

the Hamming Weight of the key based on collected data was also tried and only

after finding that it had a ridiculously low accuracy, execution time was rejected

as a good parameter.

Analysis was not given up once it was found that weighted execution time can

serve as a better parameter for launching an attack than execution time. Further,

it was discovered that the subround does not follow ideal behaviour; there are

some plaintext-key pairs for which plaintext and output are the same. Vulner-

able keys were isolated based on the number of plaintexts which satisfied this

property.

Profiling and attack algorithms with weighted execution time and Hamming
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Distance of plaintext and output being the information were successfully de-

signed. A measure of their efficiency was effectively established and the said

efficiency correctly measured over a set of experiments. Results were obtained

not only on the basis of the method of profiling and attack but also on the size

of the key search space.

Result: On a reduced key search space, the proposed algorithms were able to

reduce the number of possible keys by roughly half. On increasing the size of

the key search space, this ratio reduced to approximately 0.2. The actual key

was a part of the reduced key space about 70% of the time in both cases.

4.2 Hardware Implementation

A thorough recording of the variations in simulation time with respect to key

was completed. The fact that simulation time depends only on key, plaintext

and initial value of output, provided device specifications are not changed, was

established. Further, it was also discovered that the relationship between sim-

ulation time and Hamming Weight of key, Hamming Weight of plaintext and

Hamming Distance between initial and final value of output is not linear. Cate-

gorization of simulation time on the basis of Hamming Distance between plain-

text and output fails.

A key prediction algorithm was successfully designed and its efficiency was

measured fixing the value of one of the algorithm parameters i.e. size of the

plaintext set P (see figure 3.7) for the experiment.

Result: The proposed algorithm was able to successfully reduce the entire

key search space to 3% of its original size.
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5. Conclusion and Scope of Future Work

The present study can be made to suggest that timing-based side-channel attack

algorithms can indeed be launched on the Hummingbird block cipher. This was

concluded from a series of observations which always proved that execution

time/simulation time changes with change in key value. However, our conclu-

sions are in no way absolute. As could also be noted at various points in the

report, there is a lot of scope for future analysis. The rest of this chapter dis-

cusses our inferences and provides some ideas on how they can be built upon in

the future.

5.1 Software implementation: Conclusions & Scope

Execution time is not a good measure for mounting a timing-based at-

tack. This is because execution time data changes drastically with multiple

runs. Aside from suggesting that it is not good for mounting a timing-based

side-channel attack, this also suggests that apart from key and plaintext, timing

values also depend upon other system variables like processor and memory uti-

lization, cache hits and misses, throughput etc., the values of which may change

phenomenally during the course of multiple runs. To account for these values,

either a more dedicated system can be used for measurement of time or their

relationship with execution time can be carefully studied.

Vulnerable keys can be identified on the basis of the number of plaintexts

that satisfy the relation plaintext=output. Based on this property, we were
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able to segregate keys into 8 categories (Table 2.2). A more rigorous analysis

than the one presented in this report can be done for finding relations between

execution time and categories. More ways of identifying vulnerable keys can

be found.

Attack methods based on weighted execution time can reduce the key space

by half and give a success rate of roughly 70%. This was established through

a series of seven experiments (Figures 2.11-2.17). Future work can involve im-

provement of the proposed algorithms to get a success rate of nearly 100%.

One way of doing this can be to carefully study the weighted execution time

and determine the factors that it depends upon.

5.2 Hardware implementation: Conclusions & Scope

For one particular device, simulation time depends only on plaintext, key

and the initial value of output. Sufficient number of simulations were done

to reach this conclusion, although, exactly how it depends on key, plaintext and

the initial value of output could never be determined. Efforts can be made in

this direction.

Attack algorithms based on simulation time can reduce the key space to

approximately 3%. This was when we collect data for 10 plaintexts while

profiling (See figure 3.7). The efficiency can be improved by increasing the

number of plaintexts. Efforts can be made towards finding the set of plaintexts

which gives the best results.

We conclude this report with the hope that our work aids in valuable research

targeted towards the betterment of humanity, even if it does so in a very small

way. It was definitely a great learning experience and saying that we enjoyed

every minute of it would not be an overstatement.
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