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Abstract

Bachelor of Technology

One Class Classification using Kernel Ridge Regression for Non-stationary

Environment

Kernel Ridge Regression (KRR) based One-class Classification (OCC) is explored in the past for

stationary environment but not for non-stationary environment. This paper presents a KRR

based one-class classifier, which can adapt the non-stationarity present in the data stream. In

this paper, Type-2 Fuzzy logic along with meta-cognition is employed with KRR based one-class

classifier for handling data in non-stationary environment. The meta-cognition enables the

one-class classifier for the decision of which inputs to train and how to train. And Type-2 fuzzy

logic generates a Type-2 fuzzy kernel which helps building the model which makes its decision

boundary adaptable to new incoming data. Additionally, employs a forgetting mechanism

under the Meta-cognition framework, which boosts the ability of the classifier to eliminate the

impact of irrelevant data as well as assures the execution of the proposed method within the

limited memory consumption. Moreover, the proposed method is tested on different types of

non-stationary artificial and real datasets to verify its behaviour under various drifting conditions

of normal and outlier samples, and compared the performance with the state-of-the-art kernel

based online one-class classifiers.
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Chapter 1

Introduction

1.1 Background

With sensors pervading our everyday lives, we are seeing an exponential increase in the availability

of streaming, time-series data. Largely driven by the rise of the Internet of Things (IoT) and

connected real-time data sources, we now have an enormous number of applications with sensors

that produce important data that changes over time. Analyzing these streams effectively can

provide valuable insights for any use case and application.

The detection of anomalies in real-time streaming data has practical and significant applications

across many industries. Use cases such as preventative maintenance, fraud prevention, fault

detection, and monitoring can be found throughout numerous industries such as finance, IT,

security, medical, energy, e-commerce, agriculture, and social media. Detecting anomalies can

Figure 1.1: The figure shows real-world temperature sensor data from an internal component
of a large industrial machine. Anomalies are labeled with circles. The first anomaly was a
planned shutdown. The third anomaly was a catastrophic system failure. The second anomaly,
a subtle but observable change in the behavior, indicated the actual onset of the problem that

led to the eventual system failure.

1



Chapter 1. Introduction 2

give actionable information in critical scenarios, but reliable solutions do not yet exist. To this

end, we propose a novel and robust solution to tackle the challenges presented by real-time

anomaly detection.

We define an anomaly as a point in time where the behavior of the system is unusual and

significantly different from previous, normal behavior. An anomaly may signify a negative

change in the system, like a fluctuation in the turbine rotation frequency of a jet engine, possibly

indicating an imminent failure. An anomaly can also be positive, like an abnormally high number

of web clicks on a new product page, implying stronger than normal demand. Either way,

anomalies in data identify abnormal behavior with potentially useful information. Anomalies can

be spatial, where an individual data instance can be considered anomalous with respect to the

rest of data, independent of where it occurs in the data stream, like the first and third anomalous

spikes in 1.1. An anomaly can also be temporal, or contextual, if the temporal sequence of

data is relevant; i.e., a data instance is anomalous only in a specific temporal context, but not

otherwise. Temporal anomalies, such as the middle anomaly of 1.1, are often subtle and hard to

detect in real data streams. Detecting temporal anomalies in practical applications is valuable

as they can serve as an early warning for problems with the underlying system.

1.1.1 Streaming Data

Streaming applications impose unique constraints and challenges for machine learning models.

These applications involve analyzing a continuous sequence of data occurring in real-time. In

contrast to batch processing, the full dataset is not available. The system observes each data

record in sequential order as they arrive and any processing or learning must be done in an

online fashion. Let the vector xt represent the state of a real-time system at time t. The model

receive a continuous stream of inputs:

..., xt-2,xt-1,xt,xt+1,xt+2, ...

Consider for example, the task of monitoring a datacenter. Components of xt might include CPU

usage for various servers, bandwidth measurements, latency of servicing requests, etc. At each

point in time t we would like to determine whether the behavior of the system is unusual. The

determination must be made in real-time, before time t+1. That is, before seeing the next input

(xt+1), the algorithm must consider the current and previous states to decide whether the system

behavior is anomalous, as well as perform any model updates and retraining. Unlike batch

processing, data is not split into train/test sets, and algorithms cannot look ahead. Practical

applications impose additional constraints on the problem. Typically, the sensor streams are

large in number and at high velocity, leaving little opportunity for human, let alone expert,

intervention; manual parameter tweaking and data labeling are not viable. Thus, operating in

an unsupervised, automated fashion is often a necessity.

c©Indian Institute of Technology Indore



Chapter 1. Introduction 3

Figure 1.2: CPU utilization (percent) for an Amazon EC2 instance (data from the Numenta
Anomaly Benchmark ). A modification to the software running on the machine caused the CPU
usage to change. The initial anomaly represents a changepoint, and the new system behavior
that follows is an example of concept drift. Continuous learning is essential for performing

anomaly detection on streaming data like this.

In many scenarios the statistics of the system can change over time, a problem known as

concept drift. Consider again the example of a production datacenter. Software upgrades and

configuration changes can occur at any time and may alter the behavior of the system 1.2. In

such cases models must adapt to a new definition of “normal” in an unsupervised, automated

fashion.

In predictive analytics and machine learning, the concept drift means that the statistical

properties of the target variable, which the model is trying to predict, change over time in

unforeseen ways. This causes problems because the predictions become less accurate as time

passes.

The term concept refers to the quantity to be predicted. More generally, it can also refer to

other phenomena of interest besides the target concept, such as an input, but, in the context of

concept drift, the term commonly refers to the target variable.

In streaming applications early detection of anomalies is valuable in almost any use case. Consider

a system that continuously monitors the health of a cardiac patient’s heart. An anomaly in

the data stream could be a precursor to a heart attack. Detecting such an anomaly minutes

in advance is far better than detecting it a few seconds ahead, or detecting it after the fact.

Detection of anomalies often gives critical information, and we want this information early

enough that it’s actionable, possibly preventing system failure. There is a tradeoff between early

detections and false positives, as an algorithm that makes frequent inaccurate detections is likely

to be ignored.

c©Indian Institute of Technology Indore
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1.1.2 Non-stationarity data

On the theoretical side this happens because the distribution from which your data in extracted

changes. In practice, this kind of difference could be due to spatial or temporal changes on new

data. Suppose you build a classifier to differentiate between male/female faces just using human

images. But, somehow, you start to get dogs/cats images to classify. This could lead to poor

performance.

The same could happen with spatial processes, for example suppose we build a classifier that,

given latitude/longitude of a house, we can predict the family income. But we only have

information about some parts of the city (downtown and close surroundings). Now we get the

lat/long of a new house in the city, far from the downtown area. Due to a totally unexpected

change on a neighborhood characteristic like a slum being very close to a fancy neighborhood on

the city we could get wrong results. (Type ‘morumbi paraisopolis’ at google images to see it) or

due to drastic changes on a terrain of some kind on satellite images.

Another situation could be due to behavioural changes over time. Imagine you use a Naive Bayes

to build a spam blocker. But somehow, the spammers understand the rules your filter apply

and then they adapt their messages in order to surpass your blocker. Your model will start to

perform poorly and you will need to ‘retrain’ your classifier.

Customers also change their behavior over time due to lots of things like technological and

competitors changes (Netflix/Blockbuster), laws (One child policy), social behavior (Gay marriage

is being more accepted in some places, which could lead to people who would declare themselves

single in the past now declare married).

1.2 Objectives

Given the above requirements, we define the ideal characteristics of a real-world anomaly

detection algorithm as follows:

1. To design an enhanced online one class classifier.

(a) The algorithm must learn continuously without a requirement to store the entire

stream.

(b) The algorithm must run in an unsupervised.

(c) Algorithms must adapt to dynamic environments and concept drift.

(d) Algorithm should handle fuzziness in the data.

c©Indian Institute of Technology Indore
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2. To test the proposed algorithm on standard non stationary datasets and achieve higher

accuracy than current algorithms.

Taken together, the above requirements suggest that anomaly detection for streaming applications

is a fundamentally different problem than static batch anomaly detection. As discussed further

below, the majority of existing anomaly detection algorithms (even those designed for time-series

data) are not applicable to streaming applications.

c©Indian Institute of Technology Indore



Chapter 2

Literature Survey

This chapter provides an overview of current algorithms and problem domain. The chapter starts

with problem description i.e. One Class Classification and current algorithms for OCC. Then it

proceeds to explain non stationary data and prospective solution to modify OCC algorithms to

handle non-stationary datasets.

2.1 One Class Classification

Conventional multi-class classification algorithms aim to classify an unknown object into one

of several pre-defined categories. A problem arises when the unknown object does not belong

to any of those categories. In one-class classification [25], one of the classes (referred to as the

positive class or target class) is well characterized by instances in the training data. For the

other class (nontarget), it has either no instances at all, very few of them, or they do not form

a statistically-representative sample of the negative concept. To motivate the importance of

one-class classification, let us consider some scenarios. One-class classification can be relevant in

detecting machine faults, for instance. A classifier should detect when the machine is showing

abnormal/faulty behaviour. Measurements on the normal operation of the machine (positive

class training data) are easy to obtain. On the other hand, most faults will not have occurred so

one will have little or no training data for the negative class. As another example, a traditional

binary classifier for text or web pages requires arduous pre-processing to collect negative training

examples. For example, in order to construct a homepage classifier [3], collecting sample

of homepages (positive training examples) is relatively easy, however collecting samples of

nonhomepages (negative training examples) is very challenging because it may not represent the

negative concept uniformly and may involve human bias.

6
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2.1.1 OCC vs. Multi-class Classification

In a conventional multi-class classification problem, data from two (or more) classes are available

and the decision boundary is supported by the presence of example samples from each class. Moya

et al. [16] originate the term One-Class Classification in their research work. Different researchers

have used other terms to present similar concepts such as Outlier Detection [18], Novelty Detection

[3] or Concept Learning [11]. These terms originate as a result of different applications to which

OCC has been applied. The drawbacks that are encountered in the conventional classification

problems, such as the estimation of error rates, measuring the complexity of a solution, the

curse of dimensionality, the generalization of the method, and so on, also appear in OCC, and

sometimes become even more prominent. As stated earlier, in OCC tasks, the negative data is

either absent or limited in its distribution, so only one side of the classification boundary can

be determined definitively by using the data. This makes problem of one-class classification

harder than the problem of conventional multi-class / binary classification. The task in OCC

is to define a classification boundary around the positive (or target) class, such that it accepts

as many objects as possible from the positive class, while it minimizes the chance of accepting

non-positive (or outlier) objects. Since only one side of the boundary can be determined, in

OCC, it is hard to decide, on the basis of just one class how tightly the boundary should fit in

each of the directions around the data. It is also harder to decide which attributes should be

used to find the best separation of the positive and non-positive class objects. In particular,

when the boundary of the data is long and non-convex, the required number of training objects

might be very high. Hence it is to be expected that one-class classification algorithms will require

a larger number training instances relative to conventional multi-class classification algorithms.

Based on reviewing past research that has been carried out in the field of OCC by using different

algorithms, methodologies and application domains, we propose a taxonomy with three broad

categories for the study of OCC problems. The taxonomy can be summarized as (see Fig. 2.1):

(a) Availability of Training Data: Learning with positive data only (or with a limited amount of

negative samples) or learning with positive and unlabeled data (b) Methodology Used: Algorithms

based on One Class Support Vector Machines (OSVMs) or methodologies based on algorithms

other than OSVMs (c) Application Domain Applied: OCC applied in the field of text/document

classification or in other application domains

The proposed categories are not mutually exclusive, so there may be some overlapping among

the research carried out in each of these categories. However, they cover almost all of the major

research conducted using the concept of OCC in various contexts and application domains. The

key contributions in most OCC research fall into one of the above-mentioned categories.

c©Indian Institute of Technology Indore
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Figure 2.1: Taxonomy for the Study of OCC Techniques.

2.1.2 OCSVM

The one-class classification problem is often solved by estimating the target density [16], or by

fitting a model to the data support vector classifier. Tax and Duin [26] seek to solve the problem

of OCC by distinguishing the positive class from all other possible patterns in the pattern space.

Instead of using a hyper-plane to distinguish between two classes, a hyper-sphere is found around

the positive class data that encompasses almost all points in the data set with the minimum

radius. This method is called the Support Vector Data Description (SVDD). Thus training this

model has the possibility of rejecting some fraction of the positively-labeled training objects,

when this sufficiently decreases the volume of the hyper-sphere. Furthermore, the hyper-sphere

model of the SVDD can be made more flexible by introducing kernel functions. Tax considers a

Polynomial and a Gaussian kernel and found that the Gaussian kernel works better for most

data sets. A drawback of this technique is that they often require a large data set; in particular,

in high dimensional feature spaces, it becomes very inefficient. Also, problems may arise when

large differences in density exist. Objects in low-density areas will be rejected although they are

legitimate objects. Scholkopf et al. [20] present an alternative approach to the above mentioned

work of Tax and Duin on OCC using a separating hyper-plane. The difference between theirs

and Tax and Duins approach is that instead of trying to find a hyper-sphere with minimal radius

to fit the data, they try to separate the surface region containing data from the region containing

no data. This is achieved by constructing a hyper-plane which is maximally distant from origin,

with all data points lying on the opposite side from the origin and such that the margin is

positive. Their paper proposes an algorithm that computes a binary function that returns +1

in small regions (subspaces) that contain data and -1 elsewhere. The data is mapped into the

feature space corresponding to the kernel and is separated from the origin with maximum margin.

They evaluate the efficacy of their method on the US Postal Services data set of handwritten

digits and show that the algorithm is able to extract patterns which are very hard to assign

to their respective classes and a number of outliers were identified. Manevitz and Yousef [15]

propose a different version of the one class SVM which is based on identifying outlier data as

representative of the second class. The idea of this methodology is to work first in the feature

c©Indian Institute of Technology Indore



Chapter 2. Literature Survey 9

space, and assume that not only is the origin the second class, but also that all data points close

enough to the origin are to be considered as noise or outliers. The vectors lying on standard

sub-spaces of small dimension (i.e. axes, faces, etc.) are treated as outliers. They evaluate their

results on Reuters Data set1 and the results are worse than the OSVM algorithm presented by

Scholkopf et al. [20]. Classifiers are commonly ensembled to provide a combined decision by

averaging the estimated posterior probabilities. When Bayes theorem is used for the combination

of different classifiers, under the assumption of independence, a product combination rule can

be used to create classifier ensemble. The outputs of the individual classifiers are multiplied

and then normalized (also called the logarithmic opinion pool ). In OCC, as the information on

the non-positive data is not available, in most cases, the outliers are assumed to be uniformly

distributed and the posterior probability can be estimated. Tax mentions that in some OCC

methods, distance is estimated instead of probability for one class classifier ensembling. Tax

observes that the use of ensembles in OCC improves performance, especially when the product

rule is used to combine the probability estimates. Yu [28] proposes an OCC algorithm with

SVMs using positive and unlabeled data, and without labeled negative data, and discusses some

of the limitations of other OCC algorithms [24][20][15]. Yu comments that in the absence of

negative examples, OSVM requires a much larger amount of positive training data to induce an

accurate class boundary

2.1.3 Non-OCSVM

Ridder et al. [23] conduct an experimental comparison of various OCC algorithms, including: (a)

Global Gaussian approximation; (b) Parzen density estimation; (c) 1-Nearest Neighbor method;

and (d) Gaussian approximation (combines aspects of (a) and (b)). Manevitz and Yousef [15]

trained a simple neural network to filter documents when only positive information is available.

To incorporate the restriction of availability of positive examples only, they used a three-level

feed forward network with a “bottleneck”. DeComite et al. [4] modify the C4.5 decision tree

algorithm [17] to get an algorithm that takes as input a set of labeled examples, a set of positive

examples, and a set of unlabeled data, and then use these three sets to construct the decision

tree. Letouzey et al. [5] design an algorithm which is based on positive statistical queries

(estimates for probabilities over the set of positive instances)and instance statistical queries

(estimates for probabilities over the instance space). They design a decision tree induction

algorithm, called POSC4.5, using only positive and unlabeled data. They present experimental

results on UCI data sets that are comparable to the C4.5 algorithm. Wang et al. [27] investigate

several one-class classification methods in the context of Human-Robot interaction for face and

non-face classification. Some of the noteworthy methods used in their study are: (a) SVDD;

(b) Gaussian data description; (c) KMEANS-DD; (d) Principal Component Analysis-DD. In
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Figure 2.2: Kernel Feature Mapping.

their experimentation, they observe that SVDD attains better performance than the other OCC

methods they studied.

2.2 Kernel Method

In machine learning, kernel methods are a class of algorithms for pattern analysis, whose best

known member is the support vector machine (SVM). The general task of pattern analysis is to

find and study general types of relations (for example clusters, rankings, principal components,

correlations, classifications) in datasets. For many algorithms that solve these tasks, the data in

raw representation have to be explicitly transformed into feature vector representations via a

user-specified feature map: in contrast, kernel methods require only a user-specified kernel, i.e.,

a similarity function over pairs of data points in raw representation.

Kernel methods owe their name to the use of kernel functions, which enable them to operate in

a high-dimensional, implicit feature space without ever computing the coordinates of the data in

that space, but rather by simply computing the inner products between the images of all pairs

of data in the feature space. This operation is often computationally cheaper than the explicit

computation of the coordinates. This approach is called the ”kernel trick”[1]. Kernel functions

have been introduced for sequence data, graphs, text, images, as well as vectors.

Algorithms capable of operating with kernels include the kernel perceptron, support vector

machines (SVM), Gaussian processes, principal components analysis (PCA), canonical correlation

analysis, ridge regression, spectral clustering, linear adaptive filters and many others. Any linear

model can be turned into a non-linear model by applying the kernel trick to the model: replacing

its features (predictors) by a kernel function[citation needed].

Most kernel algorithms are based on convex optimization or eigenproblems and are statistically

well-founded. Typically, their statistical properties are analyzed using statistical learning theory
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Figure 2.3: The training points are mapped to a 3-dimensional space where a separating
hyperplane can be easily found.

2.3 Online Learning

In predictive analytics and machine learning, the concept drift means that the statistical

properties of the target variable, which the model is trying to predict, change over time in

unforeseen ways. This causes problems because the predictions become less accurate as time

passes.

To prevent deterioration in prediction accuracy because of concept drift, both active and passive

solutions can be adopted. Active solutions rely on triggering mechanisms, e.g., change-detection

tests (Basseville and Nikiforov 1993; Alippi and Roveri, 2007) to explicitly detect concept drift

as a change in the statistics of the data-generating process. In stationary conditions, any fresh

information made available can be integrated to improve the model. Differently, when concept

drift is detected, the current model is no more up-to-date and must be substituted with a new

one to maintain the prediction accuracy (Gama et al., 2004; Alippi et al., 2011). On the contrary,

in passive solutions the model is continuously updated, e.g., by retraining the model on the most

recently observed samples (Widmer and Kubat, 1996), or enforcing an ensemble of classifiers

(Elwell and Polikar 2011).

Contextual information, when available, can be used to better explain the causes of the concept

drift: for instance, in the sales prediction application, concept drift might be compensated by

adding information about the season to the model. By providing information about the time of

the year, the rate of deterioration of your model is likely to decrease, concept drift is unlikely to

be eliminated altogether. This is because actual shopping behavior does not follow any static,

finite model. New factors may arise at any time that influence shopping behavior, the influence

of the known factors or their interactions may change.
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Figure 2.4: Data stream with new samples which leads to deletion of old samples.

Concept drift cannot be avoided for complex phenomenon that are not governed by fixed laws

of nature. All processes that arise from human activity, such as socioeconomic processes, and

biological processes are likely to experience concept drift. Therefore periodic retraining, also

known as refreshing, of any model is necessary.

We use Meta Cognitivity to adapt our offline classsifier to Online stream of data possessing

Concept Drift.

2.4 Metacognition

Metacognition is ”cognition about cognition”, ”thinking about thinking”, ”knowing about

knowing”, becoming ”aware of one’s awareness” and higher-order thinking skills. The term

comes from the root word meta, meaning ”beyond”. Metacognition can take many forms; it

includes knowledge about when and how to use particular strategies for learning or for problem-

solving. There are generally two components of metacognition: (1) knowledge about cognition

and (2) regulation of cognition.

Meta cognition is a technique that enables the self-regulation of the learning process [10]. Instead

of training on all samples as in a classical case we use meta cognitive approach that decides

what-to-learn, how-to-learn, what-to-learn from the data stream which in machine learning

domain is implemented by sample delete strategy, neuron growth strategy, parameter update

strategy, sample reserve strategy. Meta cognition over neural networks as in [19], neuro-fuzzy

systems as in [23], have been researched but lack a forget mechanism. Giduthuri et al. propose

a projection based learning algorithm including a forget mechanism in [2].

2.5 Fuzzy Logic

Fuzzy logic has become an important tool for number of different applications ranging from the

control of engineering system to artificial intelligence. Practical applications of fuzzy logic pose

a unique set of problems. The design of systems, which apply fuzzy logic to make use of human

knowledge and experience, is a daunting task without facing engineering problems of real world
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Figure 2.5: Metacognition.

systems. Fuzzy logic is a set of mathematical principles for knowledge representation based on

degrees of membership . Fuzzy logic is a form of many-valued logic; it deals with reasoning that

is approximate rather than fixed and exact. Compared to traditional binary sets (where variables

may take on true or false values), fuzzy logic variables may have a truth value that ranges in

degree between 0 and 1. Fuzzy logic has been extended to handle the concept of partial truth,

where the truth value may range between completely true and completely false . When linguistic

variables are used, these degrees may be managed by specific functions. Fuzzy logics provide the

basis for logical systems dealing with vagueness, e.g. for formalizing common natural language

predicates such as “tall” or “fast”. Design choices in this framework are made as to which real

numbers to take as truth values, and which properties connectives should have. In fact logics

based on real numbers occur in a number of areas in logic. Fuzzy logic is based on the theory of

fuzzy sets, which a generalization of the classical is set theory. Saying that the theory of fuzzy

sets is a generalization of the classical set theory means that the latter is a special case of fuzzy

sets theory. To make a metaphor in set theory speaking, the classical set theory is a subset of

the theory of fuzzy sets. A fuzzy set is a set without a crisp, not clearly defined boundary. It

can contain elements with a partial degree of membership with multi-valued logic. Fuzzification

comprises the process of transforming discrete values into grades of membership (continuous)

for linguistic terms of fuzzy sets. The membership function is used to associate a grade to each

linguistic term. Defuzzify evaluate several membership sets established by the system designer

for a fuzzy logic based control system, such as ”speed too fast,” ”speed too slow” and ”speed

about right” at a specific input value. Degree of membership is a specific value that defines

how each point in the input space is mapped to the specific environment being studied lying

between 0 and 1. Linguistic Variable means relating to language, (plain language words and

statements). While variables in mathematics usually take numerical values, in fuzzy logic, the

non-numeric linguistic variables are often used to facilitate the expression of rules and facts . A
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Figure 2.6: Fuzzy Logic System

Fuzzy Logic System consists of four main parts: fuzzier, rules, inference engine, and defuzzifier.

These components and the general architecture of a Fuzzy Logic System is shown in 2.6.

The process of fuzzy logic involves obtaining a crisp set of input data are gathered and converted

to a fuzzy set using fuzzy linguistic variables, fuzzy linguistic terms and membership functions .

This step is known as fuzzication. Afterwards, an inference is made based on a set of rules and

lastly, the resulting fuzzy output is mapped to a crisp output using the membership functions,

in the defuzzication step.

2.6 Type 2 Fuzzy

Type-2 fuzzy sets and systems generalize Type-1 fuzzy sets and systems so that more uncertainty

can be handled. From the very beginning of fuzzy sets, criticism was made about the fact that

the membership function of a type-1 fuzzy set has no uncertainty associated with it, something

that seems to contradict the word fuzzy, since that word has the connotation of lots of uncertainty.

So, what does one do when there is uncertainty about the value of the membership function?

The answer to this question was provided in 1975 by the inventor of fuzzy sets, Prof. Lotfi A.

Zadeh [29], when he proposed more sophisticated kinds of fuzzy sets, the first of which he called

a type-2 fuzzy set. A type-2 fuzzy set lets us incorporate uncertainty about the membership

function into fuzzy set theory, and is a way to address the above criticism of type-1 fuzzy sets

head-on. And, if there is no uncertainty, then a type-2 fuzzy set reduces to a type-1 fuzzy set,

which is analogous to probability reducing to determinism when unpredictability vanishes,.

In order to symbolically distinguish between a type-1 fuzzy set and a type-2 fuzzy set, a tilde

symbol is put over the symbol for the fuzzy set; so, A denotes a type-1 fuzzy set, whereas Ã

denotes the comparable type-2 fuzzy set. When the latter is done, the resulting type-2 fuzzy set

is called a general type-2 fuzzy set (to distinguish it from the special interval type-2 fuzzy set).

Prof. Zadeh didn’t stop with type-2 fuzzy sets, because in that 1976 paper [29] he also generalized

all of this to type-n fuzzy sets. The present article focuses only on type-2 fuzzy sets because
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Figure 2.7: The membership function of a general type-2 fuzzy set is three-dimensional. A
cross-section of one slice of the third dimension is shown. This cross-section, as well as all others,
sits on the FOU. Only the boundary of the cross-section is used to describe the membership

function of a general type-2 fuzzy set. It is shown filled-in for artistic purposes.

Figure 2.8: FOU for an interval type-2 fuzzy set. Many other shapes are possible for the FOU.

they are the next step in the logical progression from type-1 to type-n fuzzy sets, where n = 1,

2, . . . . Although some researchers are beginning to explore higher than type-2 fuzzy sets, as of

early 2009, this work is in its infancy.

The membership function of a general type-2 fuzzy set, Ã, is three-dimensional (Fig. 2.7), where

the third dimension is the value of the membership function at each point on its two-dimensional

domain that is called its footprint of uncertainty (FOU).

For an interval type-2 fuzzy set that third-dimension value is the same (e.g., 1) everywhere,

which means that no new information is contained in the third dimension of an interval type-2

fuzzy set. So, for such a set, the third dimension is ignored, and only the FOU is used to

describe it. It is for this reason that an interval type-2 fuzzy set is sometimes called a first-order

uncertainty fuzzy set model, whereas a general type-2 fuzzy set (with its useful third-dimension)

is sometimes referred to as a second-order uncertainty fuzzy set model.

The FOU represents the blurring of a type-1 membership function, and is completely described

by its two bounding functions (Fig. 2.8), a lower membership function (LMF) and an upper

membership function (UMF), both of which are type-1 fuzzy sets! Consequently, it is possible to

use type-1 fuzzy set mathematics to characterize and work with interval type-2 fuzzy sets. This
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means that engineers and scientists who already know type-1 fuzzy sets will not have to invest a

lot of time learning about general type-2 fuzzy set mathematics in order to understand and use

interval type-2 fuzzy sets.

Work on type-2 fuzzy sets languished during the 1980s and early-to-mid 1990’s, although a small

number of articles were published about them. People were still trying to figure out what to do

with type-1 fuzzy sets, so even though Zadeh proposed type-2 fuzzy sets in 1976, the time was

not right for researchers to drop what they were doing with type-1 fuzzy sets to focus on type-2

fuzzy sets. This changed in the latter part of the 1990s as a result of Prof. Jerry Mendel and

his student’s works on type-2 fuzzy sets and systems. Since then, more and more researchers

around the world are writing articles about type-2 fuzzy sets and systems.
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Chapter 3

Analysis and Design

This section describes the construction of KRR for One class classification, a technique to modify

the kernel according to the new samples, i.e., Meta-cognition 3.2 followed by the construction of

the type-2 fuzzy kernel in 3.3 and finally is concluded with pseudo code in 3.4.

Though the rest of the algorithm is trained and tested with streaming data, in order to initialize

the classifier with a set of normal training samples, we take an initial chunk of training data

where all the samples are of the normal class, i.e., with class label 1. All parameters describing

this initial chuck of data with a subscript of 0. So, the initial chunk of training samples is

denoted by {X0,R0} of size t0. Section 3.1 describes this initialization phase. Next, in Section

3.2 we describe the procedure to delete samples and insert new samples in the kernel matrix and

it’s inverse efficiently in order to alter the information stored in the model. This is necessary

as the data is non-stationary. This is followed by Section 3.3 where we discuss a procedure to

enable fuzzy handling in the kernel computed in Section 3.1 and Section 3.2. It is concluded

by Section 3.4, where we discuss how McTOC computes the class label of the new incoming

samples with the help of a pseudo-code.

3.1 Kernel Based methods for one class classification

In Boundary framework based OCKRR i.e. OCKRR(B), model is trained by only tar-

get data X and endeavored to approximate all data to any real number. Fig. 3.1 shows

OCC with single output node architecture. In Fig. 3.1, given a stream of training data X,

{(x 1, c1), (x 2, c2), ..., (x t, ct), ...}, where x t = [x1t , x
2
t , ..., x

n
t ] ∈ <n is n-dimensional input of the tth

sample and ct is the class label of the target class, which is same for all the training data. Input

layer takes data for tth input sample is coded as (x t, Rt) because model has to approximate all

data to any real number R. Target output vector R is represented as [R1, R2....Rt, ...], however,

value of Rt will be same for all samples. Here, value of Rt is considered as 1 for all the experiments.
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Figure 3.1: Schematic Diagram of Sequential One Class Kernel Ridge Regression: Boundary
Based

Further, kernel feature mapping has been employed between input and hidden layer. Different

symbol has been used for kernel matrix to avoid confusion between kernel Φ and random feature

mapping H. Here, kernel matrix is represented as Φ = HTH = K(X,X) = φ(X) and

H = h(X). During training, hidden layer output or kernel matrix Φ will be a square symmetric

matrix of size [t × t]. Output weight β for any t samples in sequence of data is represented

as [β11, β21....β(t−1)1, βtt]. R̂ = [R̂1, R̂2...R̂t, ...] is the predicted output vector and R̂t is the

predicted output for tth sample. ĉ = [ĉ1, ĉ2...ĉt, ...] is the predicted class vector, where, ĉt is the

predicted class for tth sample.

3.1.1 Kernel Ridge Regression based OCC (KOC)

OCC using KRR was proposed by Leng et al. [13], where the target output ti is same for all the

training samples. Thus, the model tries to map all positive data to a real number r ∈ <. This

process corresponds to the following optimization problem:

Minimize : L =
1

2
‖β‖2 +

C

2

N∑
i=1

‖ei‖22

Subject to : βTφi = r − ei, i = 1, 2, ..., N

(3.1)

After solving the minimization problem in (3.1) we obtain following output weight vector:

β =

(
ΦΦT +

I

C

)−1

Φr (3.2)
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Note: r ∈ <N in bold face is a vector consists of all elements equal to r (r without bold face is

a scalar). This representation is same throughout the paper.

After calculating output weight vector β, the output of the network for a given input vector x p

is given by:

op = f(xp) = βTφp (3.3)

Whether x p belongs to the positive (i.e. normal) class or it is an outlier is decided based on the

following rule:

If abs(op − r) ≤ ε, x p belongs to normal class

Otherwise, x p is an outlier
(3.4)

In the above, ε is a threshold value which is calculated based on the error obtained on the

training data by rejection of few deviant training samples after completion of training.

3.1.2 Initialization Phase

For the initial chunk {X0,R0} of size N0, the objective is to minimize the output weight β0 as

well as error E0 between expected (R0) and predicted value (φ(X0)β0). For regularization, λ

is used as a regularization parameter with minimization problem. First we will write basic KRR

formulation for random feature mapping with hidden layer matrix H and later, we will derive

this formulation for kernel mapping using Representer Theorem[1]. Hence, minimization problem

with hidden layer matrix for X0 i.e. H0 = h(X0) with weight vector w0 can be written as

follows:

Minimize : L =
1

2
‖w0‖2 + λ

1

2
‖E0‖2

Subject to : H0w0 = R0−E0

(3.5)

Representer Theorem [1] is exploited in (3.6), which describes the weight vector wo as a linear

combination of the training data representation in KRR space (H0) and a reconstruction vector

(β0) as follows:

w0 = H0β0. (3.6)

Further, minimization problem in (3.5) can be reformulated as follows using Representer theorem:

c©Indian Institute of Technology Indore



Chapter 3. Analysis and Design 20

Minimize : L =
1

2
βT
0H

T
0 H0β0 + λ

1

2
‖E0‖2

Subject to : βT
0H

T
0 H0 = R0−E0

(3.7)

Now, substituting kernel matrix Φ0 = φ(X0) = (H0)TH0 = K(X0,X0) in the above equation

and obtained:

Minimize : L =
1

2
βT
0 Φ0β0 + λ

1

2
‖E0‖2

Subject to : βT
0 Φ0 = R0−E0

(3.8)

According to Karush-Kuhn-Tucker (KKT) theorem [8], (3.8) can be written as dual optimization

problem:

Minimize : L =
1

2
βT
0 Φ0β0 + λ

1

2
‖E0‖2

−α(βT
0 Φ0−R0 +E0)

(3.9)

where α is Langrange multiplier, which is employed to combine the constraint with minimization

problem. Further take partial derivatives of (3.9) with respect to all variables β0,E0 and α:

∂L

∂β0
= 0⇒ β0 = α

∂L

∂E0
= 0⇒ λE0 = α

∂L

∂α
= 0⇒ βT

0 Φ0−R0 +E0 = 0

(3.10)

Following weight is obtained from (3.10):

β0 = (Φ0 +
1

λ
I)−1R0 (3.11)

Here, I is an identity matrix.

Finally, we have weight matrix for initial samples which needs to update for each upcoming

sample is as follows:

β0 = P0R0

P0 = Φ−1
0

Φ0 = φ(X0)

(3.12)

Here, Φ0 is a kernel matrix for initial N0 of size N0 ×N0. Kernel matrix Φ0 is defined based on

Mercer’s condition. Hence, any kernel method which satisfies Mercer’s condition can be adopted

as the kernel for the proposed classifier. For initial N0 sample, kernel matrix will be defined as:
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Φ = Φ0 =




Ω11 Ω12 . . . Ω1N0

Ω21 Ω22 . . . Ω2N0

...
...

. . .
...

ΩN01 ΩN02 . . . ΩN0N0

+
1

λ
I

 (3.13)

P = P0 = Φ−1
0 =




Ω11 Ω12 . . . Ω1N0

Ω21 Ω22 . . . Ω2N0

...
...

. . .
...

ΩN01 ΩN02 . . . ΩN0N0

+
1

λ
I


−1

(3.14)

3.2 Metacognition

We use the three basic meta cognitive principles of what-to-learn, how-to-learn, when-to-learn.

The new samples are passed through What-to-learn part if the sample is accepted by what-to-learn

it is passed to how-to-learn part.

3.2.1 What To Learn

When a new sample arrives output given by current model is calculated and projected on 1. If

the new training sample has potential drift the output will be at a higher distance from 1 and if

the new training sample doesn’t have any concept drift it would lie in our current model. Thus,

not providing any additional information to our model. In such cases evolving our model with

these samples won’t have any effect and it will be a waste of time. So, we reject such samples.

We define a threshold distance from 1 before which we will delete the new sample.

Projection = Output− 1 (3.15)

Projection < α (3.16)

The result of What-to-learn depends on this value of alpha. If it is very close to 1 then there

won’t be many sample deleted and we would be training on already learned sample. If it is very

far away from 1 we will be loosing the samples that have drift. Empirically, we found this value

to be 0.3. What-to-learn prevents evolving of model with samples already learned, and thus,

helping us in reducing over-training and the computational work required.
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3.2.2 How To Learn

The sample that is accepted by What to learn is passed to How to learn. This section can be

divided in two parts:

1. Sample Delete Strategy :What past sample needs to be pruned.

2. Model Update Strategy :How to update the current model to learn the new knowledge

that the sample passed from previous section represents.

3.2.2.1 Decremental Learning

Selecting The Sample Each sample has its value age value.Each sample is assigned a

confidence value. When the new sample arrives the sample with least importance is unlearned

and new sample is added to the model using block inverse.

Confidence is defined as below:

X =

∑N
i=1(Xi)

N
(3.17)

Ci = (X −Xi)(X −Xi)‘ + θ ∗ agei (3.18)

The value of constant theta is determined empirically. The sample with least confidence value is

deleted as described below.

Deleting The Sample During online learning, data increases continuously and it creates two

issue i.e. how the algorithm will learn continuously (i) if the distribution of training samples

change and (ii) if the memory of system exhausted as memory can’t be infinite. Both issues are

addressed by forgetting mechanism with a sliding window as shown in Fig. 3.3. This mechanism

unlearns the old or irrelevant samples by unlearning the trained model. Further, relearning on

new samples can be done by online learning as discussed in previous sections.

Forgetting Mechanism for KRR based One-Class Classifier:

Suppose, we have currently Pcurr = Φ−1
curr ∈ <s×s is the inverse of current kernel matrix

Φcurr ∈ <s×s. Now, we want to remove the impact of learning of old f samples. In this

mechanism, two things viz., kernel matrix and the inverse of that kernel matrix, needs to be

updated before moving to learning of new samples. Modified kernel matrix φnew can be simply

generated by removing rows and columns of the corresponding samples from the current kernel
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Figure 3.2: Illustration of Sliding Window for a Given Data Stream

matrix Φcurr and modified inverse matrix Pnew are calculated after removing (forgetting) few

samples from Φcurr as follows:

Pcurr = Φ−1
curr =

[
F11 F12

F T
12 R22

]−1

=

[
Fi11 Fi12

FiT12 Ri22

]
(3.19)

[
Fi11 Fi12

FiT12 Ri22

][
F11 F12

F T
12 R22

]
=

[
I 0

0 I

]
(3.20)

Suppose, if we need to delete F11, F12 and F T
12 from Φcurr and calculate the inverse of the

remaining block R22 by reusing the currently available inverse Pcurr. R−1
22 is calculated from

(3.20) by multiplying the (3.21) on both sides as follows:[
I 0

−Fi−1
11 Fi

T
12 I

]
(3.21)

[
Fi11 Fi12

0 Ri22 − Fi12Fi−1
11 Fi

T
12

][
F11 F12

F T
12 R22

]

=

[
I 0

−Fi−1
11Fi

T
12 I

] (3.22)

From (3.22), R−1
22 can be obtained after deletion of F11, F12 and F T

12 from Φcurr as follows:

(
Ri22 − Fi12Fi−1

11Fi
T
12

)
R22 = I

Pnew = R−1
22 = Ri22− Fi12Fi−1

11Fi
T
12

(3.23)

3.2.2.2 Incremental Learning

Initially, Φ and P will be equal to Φ0 and P0 respectively. Here, Φ represents kernel matrix

and P represents inverse of this kernel matrix for all the arrived samples till now for training.
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Here, Φ and P will be updated continuously for any upcoming new samples Xv as per (3.24),

where, Xv= {(x v
1, c1), (x

v
2, c2), ..., (x

v
s , cs)} and Xv ⊂ X. Xv is just next chunk of the data.

Current value of Φ is represented as Φu, which is generated by using old samples Xu ⊂ X.

Here, u and v simply denote old and new values respectively. Now, calculate Φ after arrival of

new sample as follows:

Φ =

[
Φu Φu,v

(Φu,v)T Φv

]
(3.24)

Here, Φ is combination of four block matrices. Φu is the old value of Φ. Block matrix Φu,v and

Φv in (3.24) are calculated as per (3.25), which is discussed below.

Let the number of samples processed till now be b and number of samples in the current chunk

be s. b is initially equal to N0. Update b and s each time when calculation starts for new samples.

The block matrices Φv and Φu,v can be defined as follows:

Φv =



K(xv1, x

v
1) . . . K(xv1, x

v
s)

...
. . .

...

K(xvs , x
v
1) . . . K(xvs ,x

v
s)

+
1

λ
I

 (3.25)

Φu,v =


K(xu1 , x

v
1) . . . K(xu1 ,x

v
s)

...
. . .

...

K(xub , x
v
1) . . . K(xub , x

v
s)

 (3.26)

Now, value of P will be inverse of Φ in (3.24) as follows:

P = Φ−1 =

[
Φu Φu,v

(Φu,v)T Φv

]−1

(3.27)

Further, compute the inverse in (3.27) using block matrix inverse [22].

S = D−1 =

[
D11 D12

D21 D22

]−1

=

[
S11 S12

S21 S22

]
(3.28)

S in (3.28) can be written as follows to obtain inverse: H[
D11 D12

D21 D22

][
S11 S12

S21 S22

]
=

[
I 0

0 I

]
(3.29)
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where, S21 = ST
12 and D21 = DT

12.

After solving (3.29), following solution is obtained:

S11 = (D11−D12D
−1
22 D21)−1

S12 = −D−1
11 D12(D22−D21D

−1
11 D12)−1

S21 = −D−1
22 D21(D11−D12D

−1
22 D21)−1

S22 = (D22−D21D
−1
11 D12)−1

Hence, (3.27) will be rewritten as follows:

P = Φ−1 =

[
Φu Φu,v

(Φu,v)T Φv

]−1

=

[
P11 P12

P21 P22

]
(3.30)

P11, P12, P21 and P22 in (3.30) can be written as follows:

P11 = (Φu−Φu,vΦ−1
v ΦT

u,v)−1

P12 = −Φ−1
u Φu,vP22

P21 = −Φ−1
v ΦT

u,vP11

P22 = (Φv −ΦT
u,vΦ−1

u Φu,v)−1

(3.31)

P11 can be expanded by employing Woodbury formula[9] as:

P11 = (Φu−Φu,vΦ−1
v ΦT

u,v)−1

= Φ−1
u −Φ−1

u Φu,v(ΦT
u,vΦ−1

u Φu,v

+ Φ−1
v )−1ΦT

u,vΦ−1
u

(3.32)

Woodbury formula[9] is employed instead of computing direct inverse because now we need

to calculate two inverse i.e. Φ−1
u and Φ−1

v independently, where, Φ−1
u is already computed in

previous iteration. How it impacts time and storage complexity is described in the Section ??.

In a similar fashion, (3.31) can be explored for P12, P21 and P22.

3.3 Type-2 Fuzzy Kernel

When the data stream suffers from various uncertain conditions the performance of ’model’ will

be hindered. Hence, we use an Interval Type-2 Fuzzy Kernel for ’model’ to tackle uncertainty.

This will enable efficient classification even with data uncertainty.
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3.3.1 Interval Design

Following is a Type-2 Fuzzy set Ã that has a membership function such that the secondary

membership is equal to one for all primary memberships:

Ã = {(x, u), µÃ(x, u)|∀x ∈ A,∀u ∈ Jx ⊆ [0, 1], µÃ(x, u) = 1} (3.33)

Such a Type 2 Fuzzy set is called an Interval Type 2 Fuzzy set(IT2). Jx, the primary membership

function of a sample x, can be represented as:

Jx = [µ(x), µ(x)] (3.34)

A similar concept is used to represent the kernel uncertainty, with JKm being the primary

membership of the kernel Km. Following is a Interval Type-2 Fuzzy Kernel set k̃:

k̃ = {(x, u), µÃ(x, u)|∀x ∈ k,∀u ∈ Jx ⊆ [0, 1], µk̃(x, u) = 1} (3.35)

Different kernel models with different kernel parameters will be used to compute the upper and

lower primary memberships. Hence, primary membership of Km,JKm , will be:

JKm = [µ(Km), µ(Km)] (3.36)

Now let {(Km, P )|P ∈ ∆} be a set where P is the kernel parameter and Km be a model from

the set of kernels that satisfies the Mercer conditions. So a kernel model Km will be tested with

a J kernel parameters to make a kernel set:

{(Km, Pm
j )}, j = 1, . . . , J (3.37)

Obtain a vector with values calculated using kernel computation between samples that are

converted either column-by-column/row-by-row and denote it by Wm
j . Calculate the mean as

follows that will denote the mean of output value kernel computation:

Wm =

J∑
j=1

Wm
j (3.38)

Now the mean variance can be calculated as follows:
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V m =

∑J
j=1(W

m
j −Wm)2

J
(3.39)

Let Cm
j describe the output of confidence of the output values of the kernels which as be obtained

as follows:

Cm
j = 1−

(Wm
j −Wm)2

V m
(3.40)

So we can obtain a confidence value for any kernel computation. The modified kernel set that

includes the confidence value of the kernel can be written as follows:

Km, Pm
j , C

m
j ,m = 1, . . . ,M, j = 1, . . . , J (3.41)

To calculate the fuzzy membership interval of the kernel model Km we use the confidence values

of the different parameters as follows:

u(Km) = max(Cm
j ), j = 1, . . . , J (3.42)

u(Km) = min(Cm
j ), j = 1, . . . , J (3.43)

3.3.2 Type Reduction

A centroid type reducer, as in [12], is used for the Type Reduction step of the Interval Type 2

Fuzzy kernels.

The upper Kernel, K, is given by:

K =

∑M
m=1 µ(Km).Km∑M

m=1 µ(Km)
(3.44)

The lower Kernel, K, is given by:

K =

∑M
m=1 µ(Km).Km∑M

m=1 µ(Km)
(3.45)
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Figure 3.3: Type-2 Fuzzy Kernel Flowchart

3.3.3 Defuzzification

To defuzzify the primary membership interval [K,K] obtained from Type Reduction, we use the

mean of K and K as the output. Hence, the final defuzzified kernel can be written as:

K =
K +K

2
(3.46)

3.4 Pseudo-Code
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Algorithm 1 ORK-OCELM(B):Boundary Based Approach

Input: Training set X= (x 1, c1), (x 2, c2), ..., (xN0 , cN0), ...,
(x t, ct), ...

Output: Whether Target or Outlier corresponding to each sample
Initialization Phase

1: Pass initial set of samples X0,R0 to the classifier as: {(x 1, R1), (x 2, R2), ..., (xN0 , RN0)}
// For first chunk of N0 samples, following steps are required

2: Employ kernel feature mapping: Φ0 = φ(X0).
3: Output Weight β0 for (X0,R0):

β0← P0R0

P0← Φ−1
0

b← N0

End of Initialization Phase
// For second chunk onwards, following steps are required

Φ← Φ0

P ← P0

4: for i = 1 to last chunk of data in X do
5: Size of chunk at the current stage = s
6: Update the final kernel matrix Φ and its inverse P in two steps:

Step 1: Forgetting Phase:
7: Remove the impact of s old samples from the current inverse P using (3.23):

Pnew = R−1
22 = Ri22− Fi12Fi−1

11Fi
T
12

8: Update the kernel matrix Φ by removing those rows and columns which were generated
due to those old s samples.
Step 2: Retraining Phase

9: Update the kernel matrix Φ as per (3.24):

Φ =

[
Φu Φu,v

(Φu,v)T Φv

]
(3.24)

10: Calculate Φv for ith chunk by using (3.25)
11: Calculate Φu,v for ith chunk by using (3.26)
12: Compute the inverse of updated kernel matrix Φ, P = Φ−1 using block inverse as discussed

in (3.28)-(3.32)
13: b = b+ s
14: Update the Output Weight as per the value of R and updated P :

β = PR

15: Compute the predicted value by using output function f(Xk),
16: Calculate distances(d) between predicted value of training sample and R:

d(xt) = |f(xt)−Rt| =
∣∣∣R̂t −Rt

∣∣∣
17: Sort the distances in decreasing order
18: Compute θ: θ = d(bη ∗Nc)
19: Use (3.4) to decide whether a new sample z belongs to target or not

Sign(θ − d(z )) =

{
1, z is classified as target
−1, z is classified as outlier

(3.4)

20: end for



Chapter 4

Setup and Implementation

This chapter discuss about the testing of the algorithm on artificial dataset and real dataset.

The first section talks about the specification of datasets whose results and comparative analysis

are portrayed in next chapter

4.1 Datasets

Datasets used for testing can be classified in two types-

1. Artificial datasets - Data was created artificially to test drift with different direction and

speed. Details of each dataset is provided in Table 4.1.

2. Real datasets - Data was taken from real world with abrupt concept drift.

4.1.1 Environment

• Software Specifications:

– Language used - Matlab

– IDE - Matlab 2016b

• Hardware Specifications:

- Processor - Intel i5 processor

- RAM - 4 GB
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Table 4.1: Datasets Description

Dataset Name No. of Classes No. of Attributes Drift No. of Samples

1CDT[21] 2 2 400 16,000

2CDT[21] 2 2 400 16,000
1CHT[21] 2 2 400 16,000
2CHT[21] 2 2 400 16,000
4CR[21] 4 2 400 144,400
4CRE-V1[21] 4 2 1,000 125,000
4CRE-V2[21] 4 2 1,000 183,000
5CVT[21] 5 2 1,000 40,000
1CSurr[21] 2 2 600 55,283
4CE1CF[21] 5 2 750 173,250
FG-2C-2D[6] 2 2 2,000 200,000
UG-2C-2D[7] 2 2 1,000 100,000
UG-2C-3D[7] 2 3 2,000 200,000
UG-2C-5D[7] 2 5 2,000 200,000
MG-2C-2D[7] 2 2 2,000 200,000
GEARS-2C-2D[7] 2 2 2,000 200,000

Table 4.2: Real Datasets Description

Dataset Name Drift No. of Samples

Electricity[14] Unknown 45,312

Keystroke[14] Unknown 1,600
Abalone[14] Unknown 4,177
Sea[14] Unknown 16,000
Poker[14] Unknown 8,29,201

4.2 Implementation

In this section we consider the code implementation of the proposed algorithm on MATLAB

2016b. It is described in Section 3.4. Here, Section 4.2.1 covers the implementation of the

algorithm to generate the fuzzy kernel from a provided set of kernel models and corresponding

parameters. It is followed by Section 4.2.2, the code for the forgetting mechanism, whose

formulation was covered in Section 3.2.

4.2.1 Type-2 Fuzzy Kernel

Implementation of Type-2 fuzzy kernel matrix. Input to the function is the input data and

kernel parameters.

function kernel = fuzzy_kernel(Xtrain , kernel_list , Xtest)

disp(nargin );
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if nargin <3

sz = size(Xtrain*Xtrain ’);

else

sz = size(Xtrain*Xtest ’);

end

K_upper = zeros(sz);

K_lower = zeros(sz);

u_upper_sum = 0;

u_lower_sum = 0;

M = 0;

for kernel_type_cell = keys(kernel_list)

M = M + 1;

kernel_type = char(kernel_type_cell );

pars_list = kernel_list(kernel_type );

J = 0;

K = {};

for kernel_pars = pars_list

J = J + 1;

if nargin <3

K{J} = kernel_matrix(Xtrain , kernel_type , kernel_pars );

else

K{J} = kernel_matrix(Xtrain , kernel_type , kernel_pars , Xtest);

end

end

unique = 0;

for j = 2:J

if K{1} ~= K{j}

unique = 1;

end

end

if unique == 0

K_upper = K{1};

K_lower = K{1};

u_upper_sum = 1;

u_lower_sum = 1;

else

C = zeros(1,J);

for i = 1:sz(1)

W_mean = zeros(1, sz (2));

for j = 1:J

W_mean = W_mean + K{j}(i,:);

end

W_mean = W_mean/J;

MV = 0;

for j = 1:J

MV = MV + (K{j}(i,:) - W_mean )*(K{j}(i,:) - W_mean)’;

end

MV = MV/J;
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if(MV==0)

end

for j = 1:J

x = abs(MV - (K{j}(i,:) - W_mean )*(K{j}(i,:) - W_mean )’)/MV;

if (~(0<x&&x <=1+10^ -9))

keyboard

end

C(j) = C(j) + 1 - x;

end

end

for j = 1:J

C(j) = C(j)/sz(1);

end

[u_upper , max_idx] = max(C);

[u_lower , min_idx] = min(C);

K_upper = K_upper + u_upper * K{max_idx };

K_lower = K_lower + u_lower * K{min_idx };

u_upper_sum = u_upper_sum + u_upper;

u_lower_sum = u_lower_sum + u_lower;

end

end

if(u_upper_sum ~=0)

K_upper = K_upper/u_upper_sum;

end

if(u_lower_sum ~=0)

K_lower = K_lower/u_lower_sum;

end

kernel = (K_upper + K_lower )/2.0;

if isnan(kernel)

assert (0);

end

end

4.2.2 Forgetting Mechanism

Following code unlearns the old sample and learns the new sample.

function [W] = forget_mechanism(W, forgetting_factor)

%%% get the data from a trained_model as it is in the form of prmapping

c©Indian Institute of Technology Indore



Chapter 4. Setup and Implementation 34

% ============================ forgetting mechanism ============================

if ~isempty(W)

training_a = W.training_a;

fracrej = W.fracrej;

HTrain = W.HTrain;

R = W.R;

else

error(’Pass the trained model as structure trained_model is empty ’);

end

ind_del = forgetting_factor; %%% Index of those samples which needs to be deleted/removed. Deleted as per forgetting mechanism rule.

ind_remain = setdiff (1: size(R,1), ind_del ); %%% Index of those samples which remains after deleting few samples

Rnew = R(ind_remain ,ind_remain) - R(ind_remain ,ind_del) * inv(R(ind_del ,ind_del )) * (R(ind_remain ,ind_del ))’;

%%% Just clear before updating the necessary variable in the structure of trained model

W.training_a = [];

W.threshold = [];

W.HTrain = [];

W.beta = [];

W.R = [];

training_b=training_a; HTrain_b = HTrain;

%%%% Update the variable

%%%% Calculate updated Beta i.e. OutputWeight by Rnew %%%

training_a = training_a(ind_remain ,:);

HTrain = HTrain(ind_remain ,ind_remain );

%%%%% Just checking whether forgetting is working properly or not

% a1inv=inv(HTrain+speye(size(HTrain ,1))/1);

% %chk1=round(Rnew ,3); chk2=round(a1inv ,3);

% chk1=Rnew; chk2=a1inv;

% if ~isequal(chk1 ,chk2)

% keyboard

% end

%%%% End of checking

[m,~] = size(training_a );

T = ones(m,1);

beta = Rnew * T;

Y=HTrain * beta;

out = abs(Y-T);

[sout ,~] = sort(out);

W.training_a = training_a;

W.HTrain = HTrain;

W.threshold = sout(ceil(m*(1- fracrej )),1);

W.beta = beta;

W.R = Rnew;

end

The results, compared with present algorithms, discussed in next chapter.
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Chapter 5

Experimental Results

Here we discuss results obtained and compare performance with other online adaptive one class

classification algorithms. We evaluate the proposed model and provide detailed discussion of

findings to help the ongoing research of online learning and one class classification.

We tested the proposed model against other one class classifier for online learning with concept

drift. Other algorithms don’t consider fuzziness in the data. Algorithms evaluated includes

OKPCA, incSVDD, AAKELM. These algorithms were implemented accoeding to their respective

papers. Exhaustive testing was used to tune the parameters of these algorithms.

Datasets taken for testing purpose fall in two categories-artificial datasets and real datasets.

Artificial datasets are public benchmark datasets provided to evaluate learning algorithms in

non stationary environment. These datasets have incremental and gradual drifts. While these

datasets were generated for multi class classification, we choose one class as our standard samples

and consider the rest of the classes as outlier.

Table 5.1 summarizes the result for artificial datasets. Overall we note that proposed model

provides better results across all algorithms tested.

Drift only in anomalies: In the datasets 1CHT, 1CDT, 4CE1CF only the anomalies are

changing characteristics, drift is only observed in anomaly class the normal class remains static,

thus in this case static algorithms also give good results as can be seen in Table 5.1.

Drift in both the normal class and anomalies: For Gears-2C-2D, 4CRE-V1, 4CRE-V2

and 5CVT datasets, drift occurs in both the normal and outlier classes which causes the static

algorithms to fail. Online algorithms, like OKPCA and proposed algorithm gives better accuracy

as they detect the drift and update the model accordingly. Accuracy of static algorithms plunges

on the occurence of the drift while online algorithm catches fast as can be seen in Fig. 5.1.

Proposed algorithm outperforms other online algorithms in these datasets.
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Table 5.1: Accuracy of all algorithms on Artificial datasets

Datasets McTOC McTOC AAKELM (S) incSVDD OKPCA Block Size Sliding Window Size

1CDT 94.92 97.63 97.79 95.85 96.22 50 150

2CDT 90.42 90.49 54.24 88.17 87.34 50 150

1CHT 94.69 96.58 93.11 94.89 94.97 50 150

2CHT 82.86 79.92 55.61 78.06 77.50 50 150

4CR 97.18 98.92 69.17 97.26 98.34 50 150

4CRE-V1 96.01 97.06 71.44 96.10 95.40 50 150

4CRE-V2 93.38 92.26 63.76 92.25 88.68 50 150

5CVT 89.48 89.14 68.68 88.55 86.38 50 150

1CSurr 96.75 98.13 66.06 95.70 96.27 50 150

4CE1CF 97.28 98.04 97.03 96.32 96.75 50 150

UG-2C-2D 92.08 92.49 51.13 89.54 89.36 50 150

MG-2C-2D 88.2 87.88 47.56 84.51 83.79 50 150

FG-2C-2D 86.5 88.32 66.49 84.72 84.09 50 150

UG-2C-3D 86.1 87.24 52.99 87.45 84.11 50 150

UG-2C-5D 83 84.22 56.74 83.10 77.79 50 150

GEARS-2C-2D 93.81 96.11 83.22 92.99 87.37 50 150

Table 5.2: Accuracy of all algorithms on Real datasets

Datasets McToc McToc AAKELM (S) incSVDD OKPCA Block Size Sliding Window Size

ELEC 58.15 61.16 55.14 61.25 58.67 200 2500

Keystroke 97.03 97.37 18.83 97.31 85.86 50 150

Abalone 73.42 77.37 57.66 75.32 66.77 50 150

sea 76.86 76.1254 44.34 67.75 57.74 50 150

Poker 77.29 77.8 49.9 73.29 66.95 50 150

For 2CDT and 2CHT datasets, the drift is non periodic and increases continuously. Static

algorithm perform worst in this case giving the accuracy of just more than 50 %. The proposed

algorithm outperforms other online algorithm by a large margin here as seen in Table 5.1.

Table 5.2 provides the results for real datasets. Real datasets provide abrupt concept drift and

fuzziness in the data. Data source range from Electricty, change in keystroke of a user, poker,

sea and abalone dataset

Electricty data is collected from real world markets where the price varies with respect to the

demand and the supply. Task here is to find the change of price relative to the moving average.

Proposed OCC achieves better results than other algorithms.

Poker has largest number of samples of the datasets presented here. It originally had 10 classes,

one non poker hand class and others poker hand. Al poker hand classes were treated as single

class for one class classification. Task was to identify the poker hand where the model was

trained on non poker hand. Proposed model outperformed all other algorithm by a large margin.

Keystroke is another real world dataset, which represents the rhythm of user typing on keyboard.

Here user authentication is done based on the typing rythm of user instead of the traditional way

of user id and password. With type typing rhythm of user changes which result in drift. One

user data is taken for learning and further authentication of user is done through the trained
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Table 5.3: Number of samples rejected in Online learning

Datasets Count Rejected

1CDT 454

2CDT 450

1CHT 455

2CHT 448

4CR 2876

4CRE-V1 2488

4CRE-V2 3649

5CVT 472

1CSurr 1127

4CE1CF 3450

FG-2C-2D 3989

UG-2C-2D 2876

UG-2C-3D 14122

UG-2C-5D 5795

MG-2C-2D 5736

GEARS-2C-2D 14084

Real World

ELEC 1198

Keystroke 20

Abalone 41

sea 5341

Poker 32997

model. Result of the proposed algorithm is way better than OKPCA and is similar to that of

incSVDD.

The Abalone dataset is taken from the UCI repository [14]. Original dataset requires to predict

the age of Abalone from physical measurements. It had 29 classes. Classes 9 to 29 were merged

into 1 to give normal class and class 1 to 8 were taken as anomaly. The proposed algorithm

performs better than both OKPCA and incSVDD.

As the data comes in a stream and in many cases it is an infinite stream, learning of new sample

is not needed when new sample doesn’t have any concept drift. This is where the evaluation of

What-to-learn comes, we need to reject some of the samples. Rejecting these sample leads to a

significant speed up of the algorithm which is the requirement of online learning. Table 5.3 gives

us the count of number of samples rejected in each dataset.

In most of the datasets, our algorithm beats other algorithm by a good margin and produce

similar results for other datasets. Real data sets possesses higher level of fuzziness in the data,

Type 2 Fuzzy produces good results in these datasets as can be seen in Table [real] proposed

algorithm beats other algorithms by far greater margin than in artificial datasets.

c©Indian Institute of Technology Indore



Chapter 5. Experimental Results 38

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(a) 1CDT

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(b) 2CDT

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(c) 1CHT

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(d) 2CHT

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(e) 4CR

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)
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(k) FG-2C-2D
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(l) UG-2C-2D

0 10 20 30 40 50 60 70 80 90 100

Step

0

10

20

30

40

50

60

70

80

90

100

Ac
cu

ra
cy

 (%
)

(m) UG-2C-3D
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Figure 5.1: Performance over 16 datasets in 100 steps

Offline classifier can be considered a special case of online classifier, so the algorithm proposed

works for offline classifer too.
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Chapter 6

Conclusion and Future Work

With rising number of devices, transactions etc, the amount of data is immense and is changing

characteristic over time. To handle fraud, failure in large systems, anomaly detection has become

indispensable.

Kernel Ridge Regression (KRR) based One-class Classification (OCC) has been enhanced for non-

stationary environment. This thesis proposes a KRR based one-class classifier, which can adapt

the non-stationarity present in the data stream. Type-2 Fuzzy logic along with meta-cognition is

employed with KRR based one-class classifier for handling data in non-stationary environment.

The meta-cognition enables the one-class classifier for the decision of which inputs to train and

how to train. And Type-2 fuzzy logic generates a Type-2 fuzzy kernel which helps building

the model which makes its decision boundary adaptable to new incoming data. Moreover, a

forgetting mechanism is employed under the Meta-cognition framework, which boosts the ability

of the classifier to eliminate the impact of irrelevant data as well as assures the execution of

the proposed method within the limited memory consumption. The proposed method is tested

on different types of non-stationary artificial and real datasets to verify its behaviour under

various drifting conditions of normal and outlier samples, and compared the performance with

the state-of-the-art kernel based online one-class classifiers.

We achieved far better results than present algorithms. We, for the first time, handled fuzziness

in the data stream. Meta-cognition handles the non stationarity of the data very well. We

proposed rejection of new samples based on knowledge of current system which further enhanced

the result and time.

For future work, Number of samples rejected by What-to-learn can be improved significantly.

Currently, we empirically set the parameters in What-to-learn. An automatic way based on the

number of samples rejected and average difference in projection can be used to automate and

vary the parameters while learning.
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