Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/10492
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGangwar, Aparnaen_US
dc.contributor.authorBulusu, Satya Silendraen_US
dc.date.accessioned2022-07-15T10:41:19Z-
dc.date.available2022-07-15T10:41:19Z-
dc.date.issued2022-
dc.identifier.citationGangwar, A., Bulusu, S. S., & Banerjee, A. (2022). Feed-forward neural networks for fitting of kinetic energy and its functional derivative. Chemical Physics Letters, 801, 139718. https://doi.org/10.1016/j.cplett.2022.139718en_US
dc.identifier.issn0009-2614-
dc.identifier.otherEID(2-s2.0-85131094181)-
dc.identifier.urihttps://doi.org/10.1016/j.cplett.2022.139718-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/10492-
dc.description.abstractWe present a feed-forward NN approach for fitting of kinetic energy and its functional derivative for a 1-dimensional system. The density is represented in terms of orthogonal basis functions. The coefficients of basis functions forms the inputs to NN. Using this approach we found no oscillatory behaviour in functional derivative. Using NN based functional derivative we determine the ground-state density by solving the Euler–Lagrange equation. The presented approach can open up new ways for accurate calculations kinetic energy and the functional derivative, which can be considered as an important step towards advancement of machine learning based OF-DFT methods. © 2022 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceChemical Physics Lettersen_US
dc.subjectEquations of motionen_US
dc.subjectFeedforward neural networksen_US
dc.subjectGround stateen_US
dc.subjectKinetic energyen_US
dc.subjectOrthogonal functionsen_US
dc.subjectBase functionen_US
dc.subjectDFTen_US
dc.subjectDimensional systemsen_US
dc.subjectEuler-Lagrange equationsen_US
dc.subjectFeed forwarden_US
dc.subjectFeed forward neural net worksen_US
dc.subjectFunctional derivativesen_US
dc.subjectGround-state densityen_US
dc.subjectOrthogonal basis functionen_US
dc.subjectOscillatory behaviorsen_US
dc.subjectKineticsen_US
dc.titleFeed-forward neural networks for fitting of kinetic energy and its functional derivativeen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: