Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/10905
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNalwaya, AdityaDas, Kritiprasanna;Pachori, Ram Bilas;en_US
dc.date.accessioned2022-11-03T19:48:12Z-
dc.date.available2022-11-03T19:48:12Z-
dc.date.issued2022-
dc.identifier.citationNalwaya, A., Das, K., & Pachori, R. B. (2022). Emotion identification from TQWT-based EEG rhythms. AI-enabled smart healthcare using biomedical signals (pp. 195-216) doi:10.4018/978-1-6684-3947-0.ch011 Retrieved from www.scopus.comen_US
dc.identifier.isbn9781668439487; 9781668439470-
dc.identifier.otherEID(2-s2.0-85136878876)-
dc.identifier.urihttps://doi.org/10.4018/978-1-6684-3947-0.ch011-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/10905-
dc.description.abstractElectroencephalogram (EEG) signals are the recording of brain electrical activity, commonly used for emotion recognition. Different EEG rhythms carry different neural dynamics. EEG rhythms are separated using tunable Q-factor wavelet transform (TQWT). Several features like mean, standard deviation, information potential are extracted from the TQWT-based EEG rhythms. Machine learning classifiers are used to differentiate various emotional states automatically. The authors have validated the proposed model using a publicly available database. Obtained classification accuracy of 92.9% proves the candidature of the proposed method for emotion identification. © 2022, IGI Global. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherIGI Globalen_US
dc.sourceAI-Enabled Smart Healthcare Using Biomedical Signalsen_US
dc.titleEmotion identification from TQWT-based EEG rhythmsen_US
dc.typeBook Chapteren_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: