Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/10959
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKushwaha, Ajay Kumar;en_US
dc.date.accessioned2022-11-03T19:52:10Z-
dc.date.available2022-11-03T19:52:10Z-
dc.date.issued2022-
dc.identifier.citationKumar, U., Mishra, K. A., Kushwaha, A. K., & Cho, S. B. (2022). Bandgap analysis of transition-metal dichalcogenide and oxide via machine learning approach. Journal of Physics and Chemistry of Solids, 171 doi:10.1016/j.jpcs.2022.110973en_US
dc.identifier.issn0022-3697-
dc.identifier.otherEID(2-s2.0-85138106373)-
dc.identifier.urihttps://doi.org/10.1016/j.jpcs.2022.110973-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/10959-
dc.description.abstractPredicting bandgap is a crucial topic in materials informatics, however, it is still difficult when the available dataset is limited and unbalanced. Here, we applied a machine learning approach to construct a prediction model for transition metal dichalcogenides and oxides. Using an oversampling technique and atomistic feature engineering, we successfully constructed the machine learning model and analyzed the correlation with other physical properties. Furthermore, we also utilized the model to obtain a compressive sensing model based on physical quantities for analytic interpretation and quick prediction. © 2022 Elsevier Ltden_US
dc.language.isoenen_US
dc.publisherElsevier Ltden_US
dc.sourceJournal of Physics and Chemistry of Solidsen_US
dc.subjectCompressed sensing; Energy gap; Forecasting; Transition metals; Compressive sensing; Dichalcogenides; Machine learning approaches; Machine-learning; Material Informatics; Oversampling technique; Prediction modelling; Regression; Transition metal dichalcogenides (TMD); Transition-metal oxides; Machine learningen_US
dc.titleBandgap analysis of transition-metal dichalcogenide and oxide via machine learning approachen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: