Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11070
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGanaie, M. A.en_US
dc.contributor.authorTanveer, M.en_US
dc.contributor.authorMalik, Ashwani Kumaren_US
dc.date.accessioned2022-11-21T14:27:21Z-
dc.date.available2022-11-21T14:27:21Z-
dc.date.issued2022-
dc.identifier.citationGanaie, M. A., Tanveer, M., Malik, A. K., & Suganthan, P. N. (2022). Minimum variance embedded random vector functional link network with privileged information. Paper presented at the Proceedings of the International Joint Conference on Neural Networks, , 2022-July doi:10.1109/IJCNN55064.2022.9891930 Retrieved from www.scopus.comen_US
dc.identifier.isbn978-1728186719-
dc.identifier.otherEID(2-s2.0-85140782380)-
dc.identifier.urihttps://doi.org/10.1109/IJCNN55064.2022.9891930-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11070-
dc.description.abstractA teacher in a school plays significant role in classroom while teaching the students. Similarly, learning via privileged information (LUPI) gives extra information generated by a teacher to 'teach' the learning algorithm while training. This paper proposes minimum variance embedded random vector functional link network with privileged information (MVRVFL+). The proposed MVRVFL+ minimizes the intraclass variance of the training data and uses privileged information paradigm which provides the additional knowledge during the training of the model. The proposed MVRVFL+ classification model is evaluated on 43 benchmark UCI datasets. From the experimental analysis, the proposed MVRVFL+ showed best average accuracy and emerged as the lowest average rank classifier among the baseline models. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceProceedings of the International Joint Conference on Neural Networksen_US
dc.subjectClassification (of information)en_US
dc.subjectLearning algorithmsen_US
dc.subjectStudentsen_US
dc.subjectClass varianceen_US
dc.subjectELMen_US
dc.subjectFunctional-link networken_US
dc.subjectIntra classen_US
dc.subjectMinimum varianceen_US
dc.subjectPrivileged informationen_US
dc.subjectRandom vectorsen_US
dc.subjectRandomized Algorithmsen_US
dc.subjectRVFLen_US
dc.subjectTeachers'en_US
dc.subjectPersonnel trainingen_US
dc.titleMinimum Variance Embedded Random Vector Functional Link Network with Privileged Informationen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: