Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11088
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2022-11-21T14:27:23Z-
dc.date.available2022-11-21T14:27:23Z-
dc.date.issued2022-
dc.identifier.citationSharma, R., Goel, T., Tanveer, M., Suganthan, P. N., Razzak, I., & Murugan, R. (2022). Conv-ERVFL: Convolutional neural network based ensemble RVFL classifier for alzheimer's disease diagnosis. IEEE Journal of Biomedical and Health Informatics, , 1-9. doi:10.1109/JBHI.2022.3215533en_US
dc.identifier.issn2168-2194-
dc.identifier.otherEID(2-s2.0-85140739401)-
dc.identifier.urihttps://doi.org/10.1109/JBHI.2022.3215533-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11088-
dc.description.abstractAs per the latest statistics, Alzheimer&#x0027;s disease (AD) has become a global burden over the following decades. Identifying AD at the intermediate stage became challenging, with mild cognitive impairment (MCI) utilizing credible biomarkers and robust learning approaches. Neuroimaging techniques like magnetic resonance imaging (MRI) and positron emission tomography (PET) are practical research approaches that provide structural atrophies and metabolic variations. With the help of MRI and PET scans, metabolic and structural changes in AD patients can be visible even ten years before the disease&#x0027;s onset. This paper proposes a novel wavelet packet transform-based structural and metabolic image fusion approach using MRI and PET scans. An eight-layer trained CNN extracts features from multiple layers and these features are fed to an ensemble of non-iterative random vector functional link (RVFL) models. The RVFL network incorporates the <inline-formula><tex-math notation="LaTeX">$s$</tex-math></inline-formula>-membership fuzzy function as an activation function that helps overcome outliers. Lastly, outputs of all the customized RVFL classifiers are averaged and fed to the RVFL classifier to make the final decision. Experiments are performed over Alzheimer&#x0027;s Disease Neuroimaging Initiative (ADNI) dataset, and classification is made over CN vs. AD vs. MCI. The model performance obtained is decent enough to prove the effectiveness of the fusion-based ensemble approach. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_US
dc.subjectBiomarkersen_US
dc.subjectClassification (of information)en_US
dc.subjectConvolutionen_US
dc.subjectDiagnosisen_US
dc.subjectElectronsen_US
dc.subjectIterative methodsen_US
dc.subjectMagnetismen_US
dc.subjectMetabolismen_US
dc.subjectNeural networksen_US
dc.subjectPositron emission tomographyen_US
dc.subjectPositronsen_US
dc.subjectWavelet transformsen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimers diseaseen_US
dc.subjectCognitive impairmenten_US
dc.subjectConvolutional neural networken_US
dc.subjectFeatures extractionen_US
dc.subjectFunctional linksen_US
dc.subjectNetwork-baseden_US
dc.subjectRandom vector functional linken_US
dc.subjectRandom vectorsen_US
dc.subjectWavelets transformen_US
dc.subjectMagnetic resonance imagingen_US
dc.titleConv-ERVFL: Convolutional Neural Network Based Ensemble RVFL Classifier for Alzheimer&#x0027;s Disease Diagnosisen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: