Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11106
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2022-11-25T12:04:12Z-
dc.date.available2022-11-25T12:04:12Z-
dc.date.issued2022-
dc.identifier.citationDash, S., Tripathy, R. K., Dash, D. K., Panda, G., & Pachori, R. B. (2022). Multiscale domain gradient boosting models for the automated recognition of imagined vowels using multichannel EEG signals. IEEE Sensors Letters, , 1-4. doi:10.1109/LSENS.2022.3218312en_US
dc.identifier.issn2475-1472-
dc.identifier.otherEID(2-s2.0-85141561862)-
dc.identifier.urihttps://doi.org/10.1109/LSENS.2022.3218312-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11106-
dc.description.abstractThis letter proposes the multiscale domain gradient boosting (MDGB) based approach for the automated recognition of imagined vowels using the multichannel electroencephalogram (MCEEG) signals. The multiscale analysis of the MCEEG signals is performed using multivariate automatic singular spectrum analysis (MASSA) and multivariate fast and adaptive empirical mode decomposition (MFAEMD) methods. The features such as bubble entropy, energy, slope domain entropy (SDE), sample entropy, and L1-norm are evaluated from the multiscale domain modes of the MCEEG signals. The extreme gradient boosting (XGBoost) and light gradient boosting machine (LGBM) models are employed for imagined vowel recognition task as //a// versus //e// versus //i// versus //o// versus //u// using the multiscale domain features of the MCEEG signals. A publicly available MCEEG database has been used to test the performance of the proposed approach. The results demonstrate that the proposed approach has achieved an overall accuracy (OA) of 51.47&#x0025en_US
dc.description.abstractwhich is higher as compared to other imagined vowel recognition methods using the same database comprising of the MCEEG signals. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Lettersen_US
dc.subjectBrainen_US
dc.subjectElectroencephalographyen_US
dc.subjectElectrophysiologyen_US
dc.subjectImage recognitionen_US
dc.subjectLinguisticsen_US
dc.subjectSpectrum analysisen_US
dc.subjectSupport vector machinesen_US
dc.subjectBoostingen_US
dc.subjectBrain modelingen_US
dc.subjectElectroencephalogram signalsen_US
dc.subjectFeatures extractionen_US
dc.subjectGradient boostingen_US
dc.subjectImagined vowelen_US
dc.subjectMulti scale analysisen_US
dc.subjectMultichannel electroencephalogram signalen_US
dc.subjectMultichannel electroencephalogramsen_US
dc.subjectPerformance measureen_US
dc.subjectSupport vectors machineen_US
dc.subjectTask analysisen_US
dc.subjectEntropyen_US
dc.titleMultiscale Domain Gradient Boosting Models for the Automated Recognition of Imagined Vowels Using Multichannel EEG Signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: