Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11186
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTiwari, Manish Kumaren_US
dc.contributor.authorYadav, Subhash Chanden_US
dc.contributor.authorSrivastava, Abhisheken_US
dc.contributor.authorKanwade, Archanaen_US
dc.contributor.authorSatrughna, Jena Akash Kumaren_US
dc.contributor.authorShirage, Parasharam Marutien_US
dc.date.accessioned2022-12-14T12:10:27Z-
dc.date.available2022-12-14T12:10:27Z-
dc.date.issued2022-
dc.identifier.citationTiwari, M. K., Yadav, S. C., Srivastava, A., Kanwade, A., Satrughna, J. A. K., Mali, S. S., . . . Shirage, P. M. (2022). Enhancement of CO gas sensing performance by mn-doped porous ZnSnO3 microspheres. RSC Advances, 12(50), 32249-32261. doi:10.1039/d2ra06785den_US
dc.identifier.issn2046-2069-
dc.identifier.otherEID(2-s2.0-85143253105)-
dc.identifier.urihttps://doi.org/10.1039/d2ra06785d-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11186-
dc.description.abstractThis work reports the synthesis of Mn-doped ZnSnO3 microspheres (Zn1−xMnxSnO3) using a simple co-precipitation method with (x = 0 to 0.15) and characterized for structural, morphological, surface area, and sensing properties. X-ray diffraction (XRD) analysis revealed the face-centered cubic structure of Mn-doped ZnSnO3 samples. Brunauer-Emmett-Teller (BET) analysis demonstrated the variation in surface area from 15.229 m2 g−1 to 42.999 m2 g−1 with x = 0 to 0.15 in Zn1−xMnxSnO3. XPS indicates the change in the defect levels by Mn doping, which plays a crucial role in chemical sensors. Indeed a significant increase (≈311.37%) in CO gas sensing response was observed in the x = 0.10 sample compared to pure ZnSnO3 with a simultaneous reduction in operating temperature from 250 to 200 °C. Moreover, remarkable enhancements in response/recovery times (≈6.6/34.1 s) were obtained in the x = 0.10 sample. The Mn-doped ZnSnO3 could be a promising candidate for CO gas sensing devices used for maintaining air quality. © 2022 The Royal Society of Chemistry.en_US
dc.language.isoenen_US
dc.publisherRoyal Society of Chemistryen_US
dc.sourceRSC Advancesen_US
dc.subjectAir qualityen_US
dc.subjectChemical detectionen_US
dc.subjectChemical sensorsen_US
dc.subjectCrystal structureen_US
dc.subjectGas detectorsen_US
dc.subjectMicrospheresen_US
dc.subjectPrecipitation (chemical)en_US
dc.subjectX ray diffraction analysisen_US
dc.subjectZinc compoundsen_US
dc.subjectBrunauer Emmett Teller analysisen_US
dc.subjectCoprecipitation methoden_US
dc.subjectFace-centered cubic structureen_US
dc.subjectGas sensingen_US
dc.subjectMn-dopeden_US
dc.subjectSensing performanceen_US
dc.subjectSensing propertyen_US
dc.subjectSimple++en_US
dc.subjectSurface areaen_US
dc.subjectSurface sensingen_US
dc.subjectTin compoundsen_US
dc.titleEnhancement of CO gas sensing performance by Mn-doped porous ZnSnO3 microspheresen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold, Green-
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences
Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: