Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11241
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNema, Aneeshen_US
dc.contributor.authorAnand, Vijayen_US
dc.contributor.authorKanhangad, Viveken_US
dc.date.accessioned2023-01-23T14:08:36Z-
dc.date.available2023-01-23T14:08:36Z-
dc.date.issued2022-
dc.identifier.citationNema, A., Anand, V., & Kanhangad, V. (2022). Fast high-resolution fingerprint recognition using domain-knowledge infused global descriptors. Paper presented at the AVSS 2022 - 18th IEEE International Conference on Advanced Video and Signal-Based Surveillance, doi:10.1109/AVSS56176.2022.9959396 Retrieved from www.scopus.comen_US
dc.identifier.isbn978-1665463829-
dc.identifier.issn0000-0000-
dc.identifier.otherEID(2-s2.0-85143909496)-
dc.identifier.urihttps://doi.org/10.1109/AVSS56176.2022.9959396-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11241-
dc.description.abstractHigh-resolution fingerprint recognition is mainly centred around local descriptors created using pore patches. Although these methods provide good verification performance, they are not well-suited for identification due to poor computational performance and variable and large template size caused by the variable number of useful pore patches. We present a deep learning model that overcomes this problem by learning to generate a fixed-sized global descriptor while also taking into account the finer level-3 features by infusing domain knowledge using a multi-task architecture. Our approach employs a CNN with two branches simultaneously trained to generate descriptors and pore-intensity maps. We have augmented a publicly available dataset (IITI-HRF) for performance evaluation. Our method compares favorably to the state-of-the-art in terms of accuracy, while being significantly faster (∼ 24× for verification and ∼ 518000× for identification) and having a smaller template size. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceAVSS 2022 - 18th IEEE International Conference on Advanced Video and Signal-Based Surveillanceen_US
dc.subjectComputer visionen_US
dc.subjectDeep learningen_US
dc.subjectPalmprint recognitionen_US
dc.subjectComputational performanceen_US
dc.subjectDomain knowledgeen_US
dc.subjectFingerprint Recognitionen_US
dc.subjectGlobal Descriptorsen_US
dc.subjectHigh resolutionen_US
dc.subjectLearning modelsen_US
dc.subjectLocal descriptorsen_US
dc.subjectPerformanceen_US
dc.subjectTemplate sizesen_US
dc.subjectVariable numberen_US
dc.subjectDomain Knowledgeen_US
dc.titleFast High-Resolution Fingerprint Recognition using Domain-Knowledge Infused Global Descriptorsen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: