Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11320
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJena, Milan Kumaren_US
dc.contributor.authorRoy, Diptendu Sinhaen_US
dc.contributor.authorPathak, Biswarupen_US
dc.date.accessioned2023-02-26T06:44:16Z-
dc.date.available2023-02-26T06:44:16Z-
dc.date.issued2022-
dc.identifier.citationJena, M. K., Roy, D., & Pathak, B. (2022). Machine learning aided interpretable approach for single nucleotide-based DNA sequencing using a model nanopore. Journal of Physical Chemistry Letters, 13(50), 11818-11830. doi:10.1021/acs.jpclett.2c02824en_US
dc.identifier.issn1948-7185-
dc.identifier.otherEID(2-s2.0-85144344975)-
dc.identifier.urihttps://doi.org/10.1021/acs.jpclett.2c02824-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11320-
dc.description.abstractSolid-state nanopore-based electrical detection of DNA nucleotides with the quantum tunneling technique has emerged as a powerful strategy to be the next-generation sequencing technology. However, experimental complexity has been a foremost obstacle in achieving a more accurate high-throughput analysis with industrial scalability. Here, with one of the nucleotide training data sets of a model monolayer gold nanopore, we have predicted the transmission function for all other nucleotides with root-mean-square error scores as low as 0.12 using the optimized eXtreme Gradient Boosting Regression (XGBR) model. Further, the SHapley Additive exPlanations (SHAP) analysis helped in exploring the interpretability of the XGBR model prediction and revealed the complex relationship between the molecular properties of nucleotides and their transmission functions by both global and local interpretable explanations. Hence, experimental integration of our proposed machine-learning-assisted transmission function prediction method can offer a new direction for the realization of cheap, accurate, and ultrafast DNA sequencing. © 2022 American Chemical Society. All rights reserved.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceJournal of Physical Chemistry Lettersen_US
dc.subjectDNAen_US
dc.subjectDNA sequencesen_US
dc.subjectGene encodingen_US
dc.subjectLearning algorithmsen_US
dc.subjectMachine learningen_US
dc.subjectMean square erroren_US
dc.subjectNanoporesen_US
dc.subjectQuantum theoryen_US
dc.subjectDNA nucleotidesen_US
dc.subjectDNA Sequencingen_US
dc.subjectElectrical detectionen_US
dc.subjectHigh-throughput analysisen_US
dc.subjectMachine-learningen_US
dc.subjectNext-generation sequencingen_US
dc.subjectQuantum tunnelingen_US
dc.subjectSingle nucleotidesen_US
dc.subjectSolid-state nanoporeen_US
dc.subjectTransmission functionen_US
dc.subjectNucleotidesen_US
dc.subjectnucleotideen_US
dc.subjectDNA sequenceen_US
dc.subjectmachine learningen_US
dc.subjectnanoporeen_US
dc.subjectnucleotide sequenceen_US
dc.subjectproceduresen_US
dc.subjectBase Sequenceen_US
dc.subjectMachine Learningen_US
dc.subjectNanoporesen_US
dc.subjectNucleotidesen_US
dc.subjectSequence Analysis, DNAen_US
dc.titleMachine Learning Aided Interpretable Approach for Single Nucleotide-Based DNA Sequencing using a Model Nanoporeen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: