Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11446
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAhmad, Sk. Safiqueen_US
dc.contributor.authorKanhya, Princeen_US
dc.date.accessioned2023-03-07T11:47:08Z-
dc.date.available2023-03-07T11:47:08Z-
dc.date.issued2022-
dc.identifier.citationAhmad, S. S., & Kanhya, P. (2022). Backward error analysis of specified eigenpairs for sparse matrix polynomials. Numerical Linear Algebra with Applications, doi:10.1002/nla.2476en_US
dc.identifier.issn1070-5325-
dc.identifier.otherEID(2-s2.0-85148349498)-
dc.identifier.urihttps://doi.org/10.1002/nla.2476-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11446-
dc.description.abstractThis article studies the unstructured and structured backward error analysis of specified eigenpairs for matrix polynomials. The structures we discuss include (Formula presented.) -symmetric, (Formula presented.) -skew-symmetric, Hermitian, skew Hermitian, (Formula presented.) -even, (Formula presented.) -odd, (Formula presented.) -even, (Formula presented.) -odd, (Formula presented.) -palindromic, (Formula presented.) -anti-palindromic, (Formula presented.) -palindromic, and (Formula presented.) -anti-palindromic matrix polynomials. Minimally structured perturbations are constructed with respect to Frobenius norm such that specified eigenpairs become exact eigenpairs of an appropriately perturbed matrix polynomial that also preserves sparsity. Further, we have used our results to solve various quadratic inverse eigenvalue problems that arise from real-life applications. © 2022 John Wiley & Sons Ltd.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Ltden_US
dc.sourceNumerical Linear Algebra with Applicationsen_US
dc.titleBackward error analysis of specified eigenpairs for sparse matrix polynomialsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: