Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVasavan, Hari Narayananen_US
dc.contributor.authorBadole, Manishen_US
dc.contributor.authorSaxena, Samriddhien_US
dc.contributor.author58094295500en_US
dc.contributor.authorKumar, Sunilen_US
dc.date.accessioned2023-03-07T11:48:14Z-
dc.date.available2023-03-07T11:48:14Z-
dc.date.issued2022-
dc.identifier.citationVasavan, H. N., Badole, M., Saxena, S., Das, A. K., Deswal, S., Kumar, P., & Kumar, S. (2022). Excellent structural stability-driven cyclability in P2-type ti-based cathode for na-ion batteries. ACS Applied Energy Materials, doi:10.1021/acsaem.2c03750en_US
dc.identifier.issn2574-0962-
dc.identifier.otherEID(2-s2.0-85148040415)-
dc.identifier.urihttps://doi.org/10.1021/acsaem.2c03750-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11462-
dc.description.abstractIn the current study, we have synthesized Ti-based P2-type Na0.7Ni0.2Cu0.1Ti0.65O2 (NNCT) through the sol-gel route and characterized it for its structural, electrical, and electrochemical properties. The analysis of X-ray diffraction (XRD) data confirmed the existence of a single P2 phase for the sample calcined at 950 °C with suppressed Na-ion vacancy ordering. Impedance studies and chronoamperometric data revealed that NNCT exhibited a poor conductivity of ∼1.37 × 10-7 S cm-1 at room temperature, with the electronic conductivity contribution to the total electrical conduction being only 0.4%. The sample exhibited specific capacities of 83, 54, and 42 mA h g-1 at discharge rates of 0.1C, 0.5C, and 1C, respectively, with remarkable cyclic stability of 96% capacity retention after 700 cycles at 0.5C which makes NNCT an attractive cathode for Na-ion batteries in stationary storage applications. The ex situ XRD analysis confirmed that NNCT maintains a single P2 phase during cycling between 2.0 and 4.2 V. NNCT also exhibited moisture stability, thus enabling the use of a cost-effective water-based slurry for cathode layer fabrication. © 2023 American Chemical Society.en_US
dc.language.isoenen_US
dc.publisherAmerican Chemical Societyen_US
dc.sourceACS Applied Energy Materialsen_US
dc.subjectAnodesen_US
dc.subjectCathodesen_US
dc.subjectCopper compoundsen_US
dc.subjectCost effectivenessen_US
dc.subjectDigital storageen_US
dc.subjectElectric dischargesen_US
dc.subjectIonsen_US
dc.subjectNickel compoundsen_US
dc.subjectSodium compoundsen_US
dc.subjectSol-gel processen_US
dc.subjectSol-gelsen_US
dc.subjectStabilityen_US
dc.subjectTitanium oxidesen_US
dc.subjectX ray diffractionen_US
dc.subject'currenten_US
dc.subjectCyclabilityen_US
dc.subjectCyclic performanceen_US
dc.subjectElectrochemical behaviorsen_US
dc.subjectImpedanceen_US
dc.subjectLayered oxidesen_US
dc.subjectNa-ion batteriesen_US
dc.subjectStructural stabilitiesen_US
dc.subjectSynthesiseden_US
dc.subjectTi-baseden_US
dc.subjectSodium-ion batteriesen_US
dc.titleExcellent Structural Stability-Driven Cyclability in P2-Type Ti-Based Cathode for Na-Ion Batteriesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: