Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11536
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPakhira, Srimantaen_US
dc.contributor.authorKumar, Vikash Anilen_US
dc.date.accessioned2023-04-11T11:15:17Z-
dc.date.available2023-04-11T11:15:17Z-
dc.date.issued2023-
dc.identifier.citationPakhira, S., Kumar, V., & Ghosh, S. (2023). Revealing the superior electrocatalytic performance of 2D monolayer WSe2 transition metal dichalcogenide for efficient H2 evolution reaction. Advanced Materials Interfaces, doi:10.1002/admi.202202075en_US
dc.identifier.issn2196-7350-
dc.identifier.otherEID(2-s2.0-85147533818)-
dc.identifier.urihttps://doi.org/10.1002/admi.202202075-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11536-
dc.description.abstractH2 evolution reaction (HER) requires an electrocatalyst to reduce the reaction barriers for the efficient production of H2. 2D transition metal dichalcogenides (2D TMDs) have emerged as a pinnacle group of materials for many potential applications, including HER. In this work, a pristine 2D monolayer WSe2 TMD is computationally designed using the first principle-based hybrid density functional theory (DFT) to investigate its structural, electronic properties and the electrocatalytic performance for HER. The possible Volmer-Heyrovsky and Volmer-Tafel reaction mechanisms for HER at the W-edge of the active site of WSe2 are studied by using a nonperiodic finite molecular cluster model W10Se21. The study shows that the pristine 2D monolayer WSe2 follows either the Volmer-Heyrovsky or the Volmer-Tafel reaction mechanisms with a single-digit low reaction barrier about 6.11, 8.41 and 6.61 kcal mol−1 during the solvent phase calculations of H•-migration, Heyrovsky and Tafel transition (TS) states, respectively. The lower reaction barriers, high turnover frequency (TOF) ≈ 4.24 × 106 s−1 and 8.86 × 107 s−1 during the Heyrovsky and Tafel reaction steps and the low Tafel slope 29.58 mV dec−1 confirm that the pristine 2D monolayer WSe2 might be a promising alternative to platinum group metals (PGM) based electrocatalyst. © 2023 The Authors. Advanced Materials Interfaces published by Wiley-VCH GmbH.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.sourceAdvanced Materials Interfacesen_US
dc.subjectElectrocatalystsen_US
dc.subjectElectronic propertiesen_US
dc.subjectMonolayersen_US
dc.subjectSelenium compoundsen_US
dc.subjectTransition metalsen_US
dc.subject2d transition metal dichalcogenidesen_US
dc.subjectDensity-functional-theoryen_US
dc.subjectDichalcogenidesen_US
dc.subjectEvolution reactionsen_US
dc.subjectH 2 evolutionen_US
dc.subjectH2 evolution reactionen_US
dc.subjectHeyrovsky reactionen_US
dc.subjectHOMO and LUMOen_US
dc.subjectTafelen_US
dc.subjectTafel reactionen_US
dc.subjectTafel slopesen_US
dc.subjectTurnover frequencyen_US
dc.subjectVolme reactionen_US
dc.subjectDensity functional theoryen_US
dc.titleRevealing the Superior Electrocatalytic Performance of 2D Monolayer WSe2 Transition Metal Dichalcogenide for Efficient H2 Evolution Reactionen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Metallurgical Engineering and Materials Sciences
Department of Physics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: