Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11560
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2023-04-11T11:17:09Z-
dc.date.available2023-04-11T11:17:09Z-
dc.date.issued2023-
dc.identifier.citationDubey, R., Sharma, R. R., Upadhyay, A., & Pachori, R. B. (2023). Automated variational non-linear chirp mode decomposition for bearing fault diagnosis. IEEE Transactions on Industrial Informatics, , 1-9. doi:10.1109/TII.2022.3229829en_US
dc.identifier.issn1551-3203-
dc.identifier.otherEID(2-s2.0-85148446943)-
dc.identifier.urihttps://doi.org/10.1109/TII.2022.3229829-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11560-
dc.description.abstractThe variational non-linear chirp mode decomposition (VNCMD) requires initialization of number of modes (NMs) and instantaneous frequency (IF). This paper proposes an automated method for NM selection and IF initialization which works on the scale-space representation based automated boundary detection in magnitude spectrum (MS). The proposed automated VNCMD (AVNCMD) method is applied for bearing fault detection in which the kurtosis based dominant mode selection method is recommended. The instantaneous amplitude (IA) and IF with spectral entropy are computed from the dominant mode. Features are given to feed forward neural network classifier. Methodology is investigated on two datasets for inner race, outer race, and ball race faults detection. The proposed method classifies inner race, outer race, and ball race bearing faults with 97.52&#x0025en_US
dc.description.abstractaccuracy and classifies inner race and outer race bearing fault with 100&#x0025en_US
dc.description.abstractaccuracy. Efficacy of the proposed method is compared with the existing methods to justify the superiority. IEEEen_US
dc.language.isoenen_US
dc.publisherIEEE Computer Societyen_US
dc.sourceIEEE Transactions on Industrial Informaticsen_US
dc.subjectAutomationen_US
dc.subjectFault detectionen_US
dc.subjectSpectrum analysisen_US
dc.subjectSupport vector machinesen_US
dc.subjectBearing faulten_US
dc.subjectChirpen_US
dc.subjectContinuous Wavelet Transformen_US
dc.subjectFaults detectionen_US
dc.subjectInstantaneous amplitudeen_US
dc.subjectInstantaneous frequencyen_US
dc.subjectLinear chirpen_US
dc.subjectMagnitude spectrumen_US
dc.subjectMode decompositionen_US
dc.subjectNon linearen_US
dc.subjectOptimisationsen_US
dc.subjectSupport vectors machineen_US
dc.subjectVariational non-linear chirp mode decompositionen_US
dc.subjectVibrationen_US
dc.subjectMode decompositionen_US
dc.titleAutomated Variational Non-linear Chirp Mode Decomposition for Bearing Fault Diagnosisen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: