Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11562
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2023-04-11T11:17:18Z-
dc.date.available2023-04-11T11:17:18Z-
dc.date.issued2023-
dc.identifier.citationGoel, T., Sharma, R., Tanveer, M., Suganthan, P. N., Maji, K., & Pilli, R. (2023). Multimodal neuroimaging based alzheimer's disease diagnosis using evolutionary RVFL classifier. IEEE Journal of Biomedical and Health Informatics, , 1-9. doi:10.1109/JBHI.2023.3242354en_US
dc.identifier.issn2168-2194-
dc.identifier.otherEID(2-s2.0-85148430872)-
dc.identifier.urihttps://doi.org/10.1109/JBHI.2023.3242354-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11562-
dc.description.abstractAlzheimer'en_US
dc.description.abstracts disease (AD) is one of the most known causes of dementia which can be characterized by continuous deterioration in the cognitive skills of elderly people. It is a non-reversible disorder that can only be cured if detected early, which is known as mild cognitive impairment (MCI). The most common biomarkers to diagnose AD are structural atrophy and accumulation of plaques and tangles, which can be detected using magnetic resonance imaging (MRI) and positron emission tomography (PET) scans. Therefore, the present paper proposes wavelet transform-based multimodality fusion of MRI and PET scans to incorporate structural and metabolic information for the early detection of this life-taking neurodegenerative disease. Further, the deep learning model, ResNet-50, extracts the fused images'en_US
dc.description.abstractfeatures. The random vector functional link (RVFL) with only one hidden layer is used to classify the extracted features. The weights and biases of the original RVFL network are being optimized by using an evolutionary algorithm to get optimum accuracy. All the experiments and comparisons are performed over the publicly available Alzheimer'en_US
dc.description.abstracts Disease Neuroimaging Initiative (ADNI) dataset to demonstrate the suggested algorithm'en_US
dc.description.abstracts efficacy. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Journal of Biomedical and Health Informaticsen_US
dc.subjectDeep learningen_US
dc.subjectDeteriorationen_US
dc.subjectDiagnosisen_US
dc.subjectElectronsen_US
dc.subjectFeature extractionen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeuroimagingen_US
dc.subjectPositron emission tomographyen_US
dc.subjectPositronsen_US
dc.subjectWavelet transformsen_US
dc.subjectAlzheimer diseaseen_US
dc.subjectAlzheimers diseaseen_US
dc.subjectComputational modellingen_US
dc.subjectFeatures extractionen_US
dc.subjectFunctional linksen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectPositron emission tomographyen_US
dc.subjectRandom vector functional linken_US
dc.subjectRandom vectorsen_US
dc.subjectResnet-50en_US
dc.subjectMagnetic resonance imagingen_US
dc.titleMultimodal Neuroimaging based Alzheimer's Disease Diagnosis using Evolutionary RVFL Classifieren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: