Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/11567
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Khati, Unmesh | en_US |
dc.date.accessioned | 2023-04-11T11:17:41Z | - |
dc.date.available | 2023-04-11T11:17:41Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Lavalle, M., Telli, C., Pierdicca, N., Khati, U., Cartus, O., & Kellndorfer, J. (2023). Model-based retrieval of forest parameters from sentinel-1 coherence and backscatter time-series. IEEE Geoscience and Remote Sensing Letters, , 1-1. doi:10.1109/LGRS.2023.3239825 | en_US |
dc.identifier.issn | 1545598X | - |
dc.identifier.other | EID(2-s2.0-85148429655) | - |
dc.identifier.uri | https://doi.org/10.1109/LGRS.2023.3239825 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/11567 | - |
dc.description.abstract | This letter describes a model-based algorithm for estimating tree height and other bio-physical land parameters from time series of synthetic aperture radar (SAR) interferometric coherence and backscatter supported by sparse lidar data. The random-motion-over-ground model (RMoG) is extended to time series and revisited to capture the short- and long-term temporal coherence variability caused by motion of the scatterers and changes in the soil and canopy backscatter. The proposed retrieval algorithm estimates first the spatially slow-varying RMoG model parameters using sparse lidar data, and subsequently the spatially fast-varying model parameters such as tree height. The recently published global Sentinel-1 (S-1) interferometric coherence and backscatter data set and sparse spaceborne GEDI lidar data are used to illustrate the algorithm. Results obtained for a small region over Spain show that the temporal coherence and backscatter time series have the potential to be used for global, model-based land parameter estimation. © 2004-2012 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.source | IEEE Geoscience and Remote Sensing Letters | en_US |
dc.subject | Backscattering | en_US |
dc.subject | Interferometry | en_US |
dc.subject | Optical radar | en_US |
dc.subject | Parameter estimation | en_US |
dc.subject | Time series | en_US |
dc.subject | Backscatter | en_US |
dc.subject | De correlations | en_US |
dc.subject | Decorrelations | en_US |
dc.subject | Interferometric coherence | en_US |
dc.subject | LIDAR data | en_US |
dc.subject | Model-based OPC | en_US |
dc.subject | Random motions | en_US |
dc.subject | Sentinel-1 | en_US |
dc.subject | Times series | en_US |
dc.subject | Tree height | en_US |
dc.subject | Synthetic aperture radar | en_US |
dc.title | Model-Based Retrieval of Forest Parameters From Sentinel-1 Coherence and Backscatter Time Series | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Hybrid Gold | - |
Appears in Collections: | Department of Astronomy, Astrophysics and Space Engineering |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: