Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11653
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEyyunni, Pramoden_US
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2023-05-03T15:05:31Z-
dc.date.available2023-05-03T15:05:31Z-
dc.date.issued2023-
dc.identifier.citationBhoria, S. C., Eyyunni, P., & Maji, B. (2023). A new generalization of the minimal excludant arising from an analogue of franklin's identity. Discrete Mathematics, 346(5) doi:10.1016/j.disc.2023.113334en_US
dc.identifier.issn0012365X-
dc.identifier.otherEID(2-s2.0-85149637939)-
dc.identifier.urihttps://doi.org/10.1016/j.disc.2023.113334-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11653-
dc.description.abstractEuler's classical identity states that the number of partitions of an integer into odd parts and distinct parts are equinumerous. Franklin gave a generalization by considering partitions with exactly j different multiples of r, for a positive integer r. We prove an analogue of Franklin's identity by studying the number of partitions with j multiples of r in total and in the process, discover a natural generalization of the minimal excludant (mex) which we call the r-chain mex. Further, we derive the generating function for σrcmex(n), the sum of r-chain mex taken over all partitions of n, thereby deducing a combinatorial identity for σrcmex(n), which neatly generalizes the result of Andrews and Newman for σmex(n), the sum of mex over all partitions of n. © 2023 Elsevier B.V.en_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.sourceDiscrete Mathematicsen_US
dc.titleA new generalization of the minimal excludant arising from an analogue of Franklin's identityen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: