Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/11653
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Eyyunni, Pramod | en_US |
dc.contributor.author | Maji, Bibekananda | en_US |
dc.date.accessioned | 2023-05-03T15:05:31Z | - |
dc.date.available | 2023-05-03T15:05:31Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Bhoria, S. C., Eyyunni, P., & Maji, B. (2023). A new generalization of the minimal excludant arising from an analogue of franklin's identity. Discrete Mathematics, 346(5) doi:10.1016/j.disc.2023.113334 | en_US |
dc.identifier.issn | 0012365X | - |
dc.identifier.other | EID(2-s2.0-85149637939) | - |
dc.identifier.uri | https://doi.org/10.1016/j.disc.2023.113334 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/11653 | - |
dc.description.abstract | Euler's classical identity states that the number of partitions of an integer into odd parts and distinct parts are equinumerous. Franklin gave a generalization by considering partitions with exactly j different multiples of r, for a positive integer r. We prove an analogue of Franklin's identity by studying the number of partitions with j multiples of r in total and in the process, discover a natural generalization of the minimal excludant (mex) which we call the r-chain mex. Further, we derive the generating function for σrcmex(n), the sum of r-chain mex taken over all partitions of n, thereby deducing a combinatorial identity for σrcmex(n), which neatly generalizes the result of Andrews and Newman for σmex(n), the sum of mex over all partitions of n. © 2023 Elsevier B.V. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.source | Discrete Mathematics | en_US |
dc.title | A new generalization of the minimal excludant arising from an analogue of Franklin's identity | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: