Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11669
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2023-05-03T15:06:41Z-
dc.date.available2023-05-03T15:06:41Z-
dc.date.issued2023-
dc.identifier.citationSharma, R., Goel, T., Tanveer, M., Lin, C. T., & Murugan, R. (2023). Deep learning based diagnosis and prognosis of Alzheimer’s disease: A comprehensive review. IEEE Transactions on Cognitive and Developmental Systems, , 1-1. doi:10.1109/TCDS.2023.3254209en_US
dc.identifier.issn2379-8920-
dc.identifier.otherEID(2-s2.0-85149812215)-
dc.identifier.urihttps://doi.org/10.1109/TCDS.2023.3254209-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11669-
dc.description.abstractAlzheimer&#x2019en_US
dc.description.abstracts Disease (AD) is the most prevalent neurodegenerative disorder and the most common cause of Dementia. Neuroimaging analyses such as T1 weighted Magnetic Resonance Imaging, Positron Emission Tomography, and the deep learning (DL) approaches have attracted researchers for automated AD diagnosis in the early stages. Therefore, a review is required to understand DL algorithms to develop more efficient AD diagnosis methods. This paper discusses a detailed review of automated early AD diagnosis using DL methods published from 2009 to 2022. The novelties of this paper include: 1) introducing popular imaging modalities, 2) discussing early biomarkers for AD diagnosis using neuroimaging scans, 3) reviewing the popular online available datasets widely used, 4) systematically describing the various DL algorithms for accurate and early assessment of AD, 5) discussion on advantages &#x0026en_US
dc.description.abstractlimitations of the DL-based model for AD diagnosis, and 6) provides an outlook toward future trends derived from our critical assessment. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Cognitive and Developmental Systemsen_US
dc.subjectDeep learningen_US
dc.subjectDiagnosisen_US
dc.subjectNeurodegenerative diseasesen_US
dc.subjectNeuroimagingen_US
dc.subjectPositron emission tomographyen_US
dc.subjectPositronsen_US
dc.subjectAlzheimeren_US
dc.subjectAlzheimer’s diseaseen_US
dc.subjectCognitive impairmenten_US
dc.subjectDeep learningen_US
dc.subjectDiagnosis and prognosisen_US
dc.subjectHippocampusen_US
dc.subjectMild cognitive impairmenten_US
dc.subjectNeurodegenerative disordersen_US
dc.subjectNeuroimaging Analysisen_US
dc.subjectT1-weighted magnetic resonance imagingen_US
dc.subjectMagnetic resonance imagingen_US
dc.titleDeep learning based diagnosis and prognosis of Alzheimer&#x2019en_US
dc.titles disease: A comprehensive reviewen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: