Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11752
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2023-06-08T11:34:37Z-
dc.date.available2023-06-08T11:34:37Z-
dc.date.issued2023-
dc.identifier.citationBanerjee, D., & Maji, B. (2023). Identities associated to a generalized divisor function and modified bessel function. Research in Number Theory, 9(2) doi:10.1007/s40993-023-00431-3en_US
dc.identifier.issn2363-9555-
dc.identifier.otherEID(2-s2.0-85151073429)-
dc.identifier.urihttps://doi.org/10.1007/s40993-023-00431-3-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11752-
dc.description.abstractIn his lost notebook, Ramanujan noted down many elegant identities involving divisor functions and the modified K-Bessel function, and some of them are connected with the Fourier series expansion of the non-holomorphic Eisenstein series. Recently, Cohen established interesting generalizations of some of the identities of Ramanujan. In this paper, we study Ramanujan and Cohen-type identities associated to a generalized divisor function and the modified K-Bessel function. In the process, we extend a result of Chandrasekharan and Narasimhan and some identities of Cohen. Furthermore, we obtain a new identity for odd zeta values that can be thought of as a Bessel function analogue of Ramanujan’s famous formula for odd zeta values. © 2023, The Author(s), under exclusive licence to Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceResearch in Number Theoryen_US
dc.subjectDivisor functionsen_US
dc.subjectK-Bessel functionen_US
dc.subjectNon-holomorphic Eisenstein seriesen_US
dc.subjectOdd zeta valuesen_US
dc.titleIdentities associated to a generalized divisor function and modified Bessel functionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: