Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11806
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Alok Kumaren_US
dc.contributor.authorYadav, Kajalen_US
dc.contributor.authorUpadhyay, Prabhat Kumaren_US
dc.date.accessioned2023-06-09T14:10:53Z-
dc.date.available2023-06-09T14:10:53Z-
dc.date.issued2023-
dc.identifier.citationShukla, A. K., Yadav, K., Upadhyay, P. K., & Moualeu, J. M. (2023). Exploiting deep learning in the performance evaluation of EH-based coordinated direct and relay transmission system with cognitive NOMA. IEEE Communications Letters, , 1-1. doi:10.1109/LCOMM.2023.3258665en_US
dc.identifier.issn1089-7798-
dc.identifier.otherEID(2-s2.0-85151494511)-
dc.identifier.urihttps://doi.org/10.1109/LCOMM.2023.3258665-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11806-
dc.description.abstractThis letter investigates an energy harvesting (EH)-assisted coordinated direct and relay transmission in an overlay cognitive non-orthogonal multiple access (NOMA) system assuming perfect and imperfect successive interference cancellation. Specifically, we derive analytical expressions of the outage probability (OP) which include an infinite series, system throughput, and energy efficiency. Moreover, an asymptotic analysis of the OP in the high signal-to-noise ratio is carried out. Closed-form expressions of the exact OP and the ergodic sum capacity (ESC) are intractable owing to the complexity of the proposed scheme. To tackle this problem, we propose a deep learning (DL) framework to predict both the OP and ESC performances. The predicted results through the DL framework are shown to be consistent with the numerical results. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Communications Lettersen_US
dc.subjectCognitive radioen_US
dc.subjectcoordinated direct and relay transmissionen_US
dc.subjectDeep learningen_US
dc.subjectdeep learningen_US
dc.subjectEnergy harvestingen_US
dc.subjectenergy harvestingen_US
dc.subjectInterference cancellationen_US
dc.subjectNOMAen_US
dc.subjectNOMAen_US
dc.subjectRelaysen_US
dc.subjectSignal to noise ratioen_US
dc.subjectSWIPTen_US
dc.subjectThroughputen_US
dc.titleExploiting Deep Learning in the Performance Evaluation of EH-Based Coordinated Direct and Relay Transmission System with Cognitive NOMAen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: