Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/11888
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kumar, Ashisha | en_US |
dc.date.accessioned | 2023-06-20T15:34:55Z | - |
dc.date.available | 2023-06-20T15:34:55Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Bagchi, S., Kumar, A., & Sen, S. (2023). Roe–Strichartz theorem on two-step nilpotent lie groupsa. Mathematische Nachrichten, doi:10.1002/mana.202000270 | en_US |
dc.identifier.issn | 0025-584X | - |
dc.identifier.other | EID(2-s2.0-85153352285) | - |
dc.identifier.uri | https://doi.org/10.1002/mana.202000270 | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/11888 | - |
dc.description.abstract | Strichartz characterized eigenfunctions of the Laplacian on Euclidean spaces by boundedness conditions which generalized a result of Roe for the one-dimensional case. He also proved an analogous statement for the sub-Laplacian on the Heisenberg groups. In this paper, we extend this result to connected, simply connected two-step nilpotent Lie groups. © 2023 Wiley-VCH GmbH. | en_US |
dc.language.iso | en | en_US |
dc.publisher | John Wiley and Sons Inc | en_US |
dc.source | Mathematische Nachrichten | en_US |
dc.subject | eigenfunction | en_US |
dc.subject | sub-Laplacian | en_US |
dc.subject | two-step nilpotent Lie group | en_US |
dc.title | Roe–Strichartz theorem on two-step nilpotent Lie groupsa | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: