Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/11888
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumar, Ashishaen_US
dc.date.accessioned2023-06-20T15:34:55Z-
dc.date.available2023-06-20T15:34:55Z-
dc.date.issued2023-
dc.identifier.citationBagchi, S., Kumar, A., & Sen, S. (2023). Roe–Strichartz theorem on two-step nilpotent lie groupsa. Mathematische Nachrichten, doi:10.1002/mana.202000270en_US
dc.identifier.issn0025-584X-
dc.identifier.otherEID(2-s2.0-85153352285)-
dc.identifier.urihttps://doi.org/10.1002/mana.202000270-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/11888-
dc.description.abstractStrichartz characterized eigenfunctions of the Laplacian on Euclidean spaces by boundedness conditions which generalized a result of Roe for the one-dimensional case. He also proved an analogous statement for the sub-Laplacian on the Heisenberg groups. In this paper, we extend this result to connected, simply connected two-step nilpotent Lie groups. © 2023 Wiley-VCH GmbH.en_US
dc.language.isoenen_US
dc.publisherJohn Wiley and Sons Incen_US
dc.sourceMathematische Nachrichtenen_US
dc.subjecteigenfunctionen_US
dc.subjectsub-Laplacianen_US
dc.subjecttwo-step nilpotent Lie groupen_US
dc.titleRoe–Strichartz theorem on two-step nilpotent Lie groupsaen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: