Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12395
Title: Association of white matter volume with brain age classification using deep learning network and region wise analysis
Authors: Tanveer, M.
Keywords: Brain age classification;Cerebrospinal fluid;Gray matter;Magnetic resonance imaging;Random vector functional link;White matter
Issue Date: 2023
Publisher: Elsevier Ltd
Citation: Pilli, R., Goel, T., Murugan, R., & Tanveer, M. (2023). Association of white matter volume with brain age classification using deep learning network and region wise analysis. Engineering Applications of Artificial Intelligence, 125. Scopus. https://doi.org/10.1016/j.engappai.2023.106596
Abstract: Structural magnetic resonance imaging (sMRI) has been used to examine age-related neuroanatomical changes in the human brain. In the present work, a pre-trained deep learning model and an ensemble deep random vector functional link (edRVFL) classifier have been used to create a brain age classification framework from magnetic resonance imaging (MRI) scans. A total of 155 MRI scans of the brain are obtained from the open-access OpenNeuro database and categorized into three age groups (3–5 years old, 7–12 years old, and 18–40 years old). To visualize the age connection across different brain regions, all MRI scans are first segmented into Gray Matter (GM), White Matter (WM), and Cerebrospinal Fluid (CSF). The ResNet-50 network is used to extract features from MRI images, while the edRVFL network is used to classify the retrieved features. Classification accuracy for GM, WM, CSF, and whole brain images are 96.11%, 98.33%, 93.33%, and 94.00%, respectively, using the edRVFL classifier. Region-wise analysis has also been done using Pearson's correlation coefficient (r), coefficient of determination (R2), and root mean square error (RMSE) to analyze the relationship between brain age and brain tissue volumes. According to the findings of the suggested deep model for brain age categorization, and region-wise analysis, alterations in WM volume are strongly linked to brain aging. © 2023 Elsevier Ltd
URI: https://doi.org/10.1016/j.engappai.2023.106596
https://dspace.iiti.ac.in/handle/123456789/12395
ISSN: 0952-1976
Type of Material: Journal Article
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: