Please use this identifier to cite or link to this item:
https://dspace.iiti.ac.in/handle/123456789/12452
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sarkar, Sudipta | en_US |
dc.contributor.author | Shukla, Niraj Kumar | en_US |
dc.date.accessioned | 2023-11-03T12:30:31Z | - |
dc.date.available | 2023-11-03T12:30:31Z | - |
dc.date.issued | 2023 | - |
dc.identifier.citation | Sarkar, S., & Shukla, N. K. (2023). Characterizations of extra-invariant spaces under the left translations on a Lie group. Advances in Operator Theory, 8(3). Scopus. https://doi.org/10.1007/s43036-023-00273-x | en_US |
dc.identifier.issn | 2538-225X | - |
dc.identifier.other | EID(2-s2.0-85162052176) | - |
dc.identifier.uri | https://doi.org/10.1007/s43036-023-00273-x | - |
dc.identifier.uri | https://dspace.iiti.ac.in/handle/123456789/12452 | - |
dc.description.abstract | In the context of a connected, simply connected nilpotent Lie group, whose representations are square-integrable modulo the center, we find characterization results of extra-invariant spaces under the left translations associated with the range functions. Consequently, the theory is valid for the Heisenberg group Hd, a 2-step nilpotent Lie group. © 2023, Tusi Mathematical Research Group (TMRG). | en_US |
dc.language.iso | en | en_US |
dc.publisher | Birkhauser | en_US |
dc.source | Advances in Operator Theory | en_US |
dc.subject | Heisenberg group | en_US |
dc.subject | Nilpotent Lie group | en_US |
dc.subject | Plancherel transform and periodization operator | en_US |
dc.subject | Range function | en_US |
dc.subject | Translation invariant space | en_US |
dc.title | Characterizations of extra-invariant spaces under the left translations on a Lie group | en_US |
dc.type | Journal Article | en_US |
dc.rights.license | All Open Access, Green | - |
Appears in Collections: | Department of Mathematics |
Files in This Item:
There are no files associated with this item.
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
Altmetric Badge: