Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12472
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKumari, Anuradhaen_US
dc.contributor.authorGanaie, M. A.en_US
dc.contributor.authorTanveer, M.en_US
dc.date.accessioned2023-11-15T07:27:21Z-
dc.date.available2023-11-15T07:27:21Z-
dc.date.issued2023-
dc.identifier.citationKumari, A., Ganaie, M. A., & Tanveer, M. (2023). Intuitionistic Fuzzy Universum Support Vector Machine. In M. Tanveer, S. Agarwal, S. Ozawa, A. Ekbal, & A. Jatowt (Eds.), Neural Information Processing (Vol. 13623, pp. 236–247). Springer International Publishing. https://doi.org/10.1007/978-3-031-30105-6_20en_US
dc.identifier.isbn978-3031301049-
dc.identifier.issn0302-9743-
dc.identifier.otherEID(2-s2.0-85161262215)-
dc.identifier.urihttps://doi.org/10.1007/978-3-031-30105-6_20-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12472-
dc.description.abstractThe classical support vector machine is an effective classification technique. It solves a convex optimization problem to give a global solution. But it suffers from noise and outliers. To deal with this, an intuitionistic fuzzy number (IFN) is assigned to the training samples which reduces the effect of noise. In this paper, we propose intuitionistic fuzzy universum support vector machine (IFUSVM), where IFN is assigned to the training data points in presence of universum data. Universum points lead to prior knowledge about data distribution and assignment of IFN to the data points reduces the effect of outliers and noise. Thus, leading to the enhanced generalization property of the model. Numerical experimental results and statistical analysis over 17 binary benchmark UCI datasets show the superiority of the proposed model over the baseline models in terms of rank and accuracy. © 2023, The Author(s), under exclusive license to Springer Nature Switzerland AG.en_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.sourceLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.subjectclassificationen_US
dc.subjectIntuitionistic Fuzzy Numberen_US
dc.subjectoutliersen_US
dc.subjectSVMen_US
dc.subjectUniversumen_US
dc.titleIntuitionistic Fuzzy Universum Support Vector Machineen_US
dc.typeConference Paperen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: