Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12500
Full metadata record
DC FieldValueLanguage
dc.contributor.authorEyyunni, Pramoden_US
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2023-11-15T07:27:42Z-
dc.date.available2023-11-15T07:27:42Z-
dc.date.issued2023-
dc.identifier.citationBaruah, N. D., Bhoria, S. C., Eyyunni, P., & Maji, B. (2023). A refinement of a result of Andrews and Newman on the sum of minimal excludants. The Ramanujan Journal. https://doi.org/10.1007/s11139-023-00738-wen_US
dc.identifier.issn1382-4090-
dc.identifier.otherEID(2-s2.0-85161826673)-
dc.identifier.urihttps://doi.org/10.1007/s11139-023-00738-w-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12500-
dc.description.abstractIn this article, we refine a result of Andrews and Newman, that is, the sum of minimal excludants over all the partitions of a number n equals the number of partitions of n into distinct parts with two colors. As a consequence, we find congruences modulo 4 and 8 for the functions appearing in this refinement. We also conjecture three further congruences for these functions. In addition, we also initiate the study of kth moments of minimal excludants. At the end, we also provide an alternate proof of a beautiful identity due to Hopkins, Sellers, and Stanton. © 2023, The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceRamanujan Journalen_US
dc.subjectColored partitionsen_US
dc.subjectMinimal excludanten_US
dc.subjectPartition congruencesen_US
dc.subjectPartitionsen_US
dc.subjectRefinementen_US
dc.titleA refinement of a result of Andrews and Newman on the sum of minimal excludantsen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Green-
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: