Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12620
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGangwar, Aparnaen_US
dc.contributor.authorBulusu, Satya Silendraen_US
dc.date.accessioned2023-12-14T12:37:57Z-
dc.date.available2023-12-14T12:37:57Z-
dc.date.issued2023-
dc.identifier.citationGangwar, A., Bulusu, S. S., & Banerjee, A. (2023). Neural network learned Pauli potential for the advancement of orbital-free density functional theory. Journal of Chemical Physics. Scopus. https://doi.org/10.1063/5.0165524en_US
dc.identifier.issn0021-9606-
dc.identifier.otherEID(2-s2.0-85173124733)-
dc.identifier.urihttps://doi.org/10.1063/5.0165524-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12620-
dc.description.abstractThe Pauli kinetic energy functional and its functional derivative, termed Pauli potential, play a crucial role in the successful implementation of orbital-free density functional theory for electronic structure calculations. However, the exact forms of these two quantities are not known. Therefore, perforce, one employs the approximate forms for the Pauli functional or Pauli potential for performing orbital-free density functional calculations. In the present study, we developed a feed-forward neural network-based representation for the Pauli potential using a 1-dimensional (1-D) model system. We expanded density in terms of basis functions, and the coefficients of the expansion were used as input to a feed-forward neural network. Using the neural network-based representation of the Pauli potential, we calculated the ground-state densities of the 1-D model system by solving the Euler equation. We calculated the Pauli kinetic energy using the neural network-based Pauli potential employing the exact relation between the Pauli kinetic energy functional and the potential. The sum of the neural network-based Pauli kinetic energy and the von Weizsäcker kinetic energy resulted in an accurate estimation of the total kinetic energy. The approach presented in this paper can be employed for the calculation of Pauli potential and Pauli kinetic energy, obviating the need for a functional derivative. The present study is an important step in the advancement of application of machine learning-based techniques toward the orbital-free density functional theory-based methods. © 2023 Author(s).en_US
dc.language.isoenen_US
dc.publisherAmerican Institute of Physics Inc.en_US
dc.sourceJournal of Chemical Physicsen_US
dc.titleNeural network learned Pauli potential for the advancement of orbital-free density functional theoryen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Bronze-
Appears in Collections:Department of Chemistry

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: