Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12797
Full metadata record
DC FieldValueLanguage
dc.contributor.authorYamalakonda, Venu Gopalen_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.contributor.authorAppina, Balasubramanyamen_US
dc.contributor.authorSingh, Abhinoy Kumaren_US
dc.date.accessioned2023-12-22T09:16:04Z-
dc.date.available2023-12-22T09:16:04Z-
dc.date.issued2023-
dc.identifier.citationChaudhary, P., Hubballi, N., & Kulkarni, S. G. (2023). eNCache: Improving content delivery with cooperative caching in Named Data Networking. Computer Networks. Scopus. https://doi.org/10.1016/j.comnet.2023.110104en_US
dc.identifier.issn2475-1472-
dc.identifier.otherEID(2-s2.0-85178046391)-
dc.identifier.urihttps://doi.org/10.1109/LSENS.2023.3333376-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12797-
dc.description.abstractThis letter introduces an embedded cubature Kalman filter (ECKF) based on the fifth-degree embedded cubature rule for estimating unmeasured/hidden concentrations of plasma insulin (PIC) and interstitial insulin (IIC). The design of a robust and intelligent controller for blood glucose (BG) regulation requires estimates of PIC and IIC. The nonavailability of insulin sensors necessitates the use of a mathematical model to estimate PIC and IIC. We have integrated Bergman's minimal model of dynamic glucose-insulin relations with the glucose sensor measurement. The dynamic model and stochastic process that accounts for fluctuations in BG levels were integrated into ECKF to estimate PIC and IIC resulting from multiple meal disturbances. The root mean square error results demonstrate the improved estimation accuracy of the proposed method. © 2017 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Lettersen_US
dc.subjectdynamic glucose-insulin systemen_US
dc.subjectembedded cubature rule (ECR)en_US
dc.subjectglucose sensor (GS)en_US
dc.subjectinsulin estimationen_US
dc.subjectnonlinear estimationen_US
dc.subjectSensor signal processingen_US
dc.titleEmbedded Cubature Kalman Filter for Glucose and Insulin Concentration Estimation Using Noisy Glucose Sensor Data and Multiple Meal Disturbancesen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: