Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12861
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRai, Niveditaen_US
dc.contributor.authorSemwal, Sandeepen_US
dc.contributor.authorNirala, Rohit Kumaren_US
dc.contributor.authorKranti, Abhinaven_US
dc.date.accessioned2023-12-22T09:16:23Z-
dc.date.available2023-12-22T09:16:23Z-
dc.date.issued2023-
dc.identifier.citationPaul, A., Strugarek, A., & Vaidya, B. (2023). Global-MHD Simulations Using MagPIE: Impact of Flux Transfer Events on the Ionosphere. Journal of Geophysical Research: Space Physics. Scopus. https://doi.org/10.1029/2023JA031718en_US
dc.identifier.issn1549-8328-
dc.identifier.otherEID(2-s2.0-85177093755)-
dc.identifier.urihttps://doi.org/10.1109/TCSI.2023.3328584-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12861-
dc.description.abstractThis paper proposes a simplified analytical approach to analyze the influence of process variations including quantum confinement effect (QCE) on the functionality of ultralow power (ULP) subthreshold 1) inverter and 2) Schmitt trigger (ST) circuits implemented with gate-all-around (GAA) junctionless (JL) nanowire transistor (NWT). QCE and variability-centric analysis of process corners reveal severe constraints to maintain functionality in worst-case scenarios corresponding to 1) fast NMOS&#x2013en_US
dc.description.abstractslow PMOS for inverter as noise margin reducesen_US
dc.description.abstract2) slow n-sub-circuit-fast p-sub-circuit in ST as symmetry is disturbeden_US
dc.description.abstractand 3) slow NMOS and PMOS feedback transistors in ST as hysteresis width is degraded. In addition, the minimum operating voltage is shown to degrade for the above cases i.e. <inline-formula> <tex-math notation="LaTeX">$\sim\times $</tex-math> </inline-formula>8 and <inline-formula> <tex-math notation="LaTeX">$\sim\times $</tex-math> </inline-formula>3 higher than the nominal case for ULP inverter and ST, respectively. A ULP circuit implemented using JL devices with moderate doping and longer underlap is the best suited to accommodate 3<inline-formula> <tex-math notation="LaTeX">$\sigma $</tex-math> </inline-formula> variations in threshold voltage (<inline-formula> <tex-math notation="LaTeX">$V_{\mathbf{th}}$</tex-math> </inline-formula>). The proposed approach serves as a guide to evaluate and mitigate the impact of the variability in ULP circuits. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Transactions on Circuits and Systems I: Regular Papersen_US
dc.subjectCMOSen_US
dc.subjectDopingen_US
dc.subjectIntegrated circuit modelingen_US
dc.subjectinverteren_US
dc.subjectInvertersen_US
dc.subjectjunctionless nanowire transistoren_US
dc.subjectLogic gatesen_US
dc.subjectMOS devicesen_US
dc.subjectNanoscale devicesen_US
dc.subjectnoise marginen_US
dc.subjectquantum confinementen_US
dc.subjectSchmitt triggeren_US
dc.subjectsubthresholden_US
dc.subjectTransistorsen_US
dc.subjectultralow poweren_US
dc.subjectvariabilityen_US
dc.titlePragmatic Evaluation of Process Corners in ULP Subthreshold Circuits With Quantum Confinement Effects in Junctionless Nanowire Transistoren_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: