Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/12937
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBansal, Dikshaen_US
dc.contributor.authorJaindungarwal, Anuvraten_US
dc.contributor.authorMaji, Bibekanandaen_US
dc.date.accessioned2023-12-22T09:18:58Z-
dc.date.available2023-12-22T09:18:58Z-
dc.date.issued2023-
dc.identifier.citationBansal, D. R., Jaindungarwal, A., & Maji, B. (2023). Voronoï bound for a generalized divisor function. Proceedings of the Indian Academy of Sciences: Mathematical Sciences. Scopus. https://doi.org/10.1007/s12044-023-00754-2en_US
dc.identifier.issn0253-4142-
dc.identifier.otherEID(2-s2.0-85174711336)-
dc.identifier.urihttps://doi.org/10.1007/s12044-023-00754-2-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/12937-
dc.description.abstractUsing hyperbola method, Dirichlet, in 1849, proved that the error term in the study of the summatory function of the divisor function d(n) is O(x) . Then in 1904, Voronoï used the method of contour integration to improve the error term as O(x13+ϵ) , for any positive ϵ . Recently, Gupta and Maji (J. Math. Anal. Appl. 507 (2022) 125738) studied the following generalized divisor function: for any k∈ N, r∈ Z , Dk,r(n)=∑dk|n(ndk)r. In this paper, we obtain a Voronoï error bound for the summatory function of Dk,r(n) . © 2023, Indian Academy of Sciences.en_US
dc.language.isoenen_US
dc.publisherSpringeren_US
dc.sourceProceedings of the Indian Academy of Sciences: Mathematical Sciencesen_US
dc.subjectDirichlet divisor problemen_US
dc.subjectDivisor functionen_US
dc.subjectgeneralized divisor functionen_US
dc.subjectVoronoï bounden_US
dc.titleVoronoï bound for a generalized divisor functionen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Mathematics

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: