Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13049
Full metadata record
DC FieldValueLanguage
dc.contributor.authorShukla, Vidya Bhaskeren_US
dc.contributor.authorBhatia, Vimalen_US
dc.date.accessioned2024-01-09T06:33:34Z-
dc.date.available2024-01-09T06:33:34Z-
dc.date.issued2023-
dc.identifier.citationShukla, V. B., Bhatia, V., & Choi, K. (2023). Cascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO System. IEEE Wireless Communications Letters. Scopus. https://doi.org/10.1109/LWC.2023.3337289en_US
dc.identifier.issn2162-2337-
dc.identifier.otherEID(2-s2.0-85179082193)-
dc.identifier.urihttps://doi.org/10.1109/LWC.2023.3337289-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13049-
dc.description.abstractThe synergistic integration of the intelligent reflecting surface (IRS) and millimeter wave (mmWave) multiple-input multiple-output (MIMO) system is a potential solution for future wireless communication systems, aiming to achieve exceptionally high data rates with enhanced coverage. However, estimation of the cascaded channel state information is essential for beamforming in mmWave MIMO systems with IRS. Unlike conventional MIMO systems, channel estimation for IRS-aided mmWave MIMO systems is challenging due to the limited signal processing capability of the IRS. In this letter, we propose an online sparse exponential forgetting window least mean square-based channel estimator for IRS-assisted mmWave hybrid MIMO systems. Furthermore, we compare accuracy of the proposed estimator with the existing sparse estimators such as orthogonal matching pursuit, sparse Bayesian learning, and oracle least square for benchmarking. Additionally, we perform an analysis of the spectral efficiency and computational complexity of the proposed algorithms. Simulations corroborate superior performance of the proposed method in terms of accuracy, complexity, and robustness. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Wireless Communications Lettersen_US
dc.subjectadaptive filteringen_US
dc.subjectchannel estimationen_US
dc.subjectChannel estimationen_US
dc.subjectIRSen_US
dc.subjectl0-normen_US
dc.subjectMatricesen_US
dc.subjectMillimeter wave communicationen_US
dc.subjectMIMOen_US
dc.subjectMIMO communicationen_US
dc.subjectmmWaveen_US
dc.subjectRadio frequencyen_US
dc.subjectSparse matricesen_US
dc.subjectWireless communicationen_US
dc.titleCascaded Channel Estimator for IRS-Aided mmWave Hybrid MIMO Systemen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: