Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13120
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhan, Suhelen_US
dc.contributor.authorVasudevan, Srivathsanen_US
dc.date.accessioned2024-01-29T05:18:49Z-
dc.date.available2024-01-29T05:18:49Z-
dc.date.issued2024-
dc.identifier.citationKhan, S., Mukhopadhyay, S., Vasudevan, S., Goel, G., Joshi, D., Kapoor, N., & Das, S. (2024). Development of a cost-effective compact diode-laser-based photoacoustic sensing instrument for breast tissue diagnosis. Journal of Biomedical Optics. Scopus. https://doi.org/10.1117/1.JBO.29.1.017002en_US
dc.identifier.issn1560-2281-
dc.identifier.otherEID(2-s2.0-85182299123)-
dc.identifier.urihttps://doi.org/10.1117/1.JBO.29.1.017002-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13120-
dc.description.abstractSignificance: The photoacoustic (PA) technique, a noninvasive pump-probe technique, has found interesting applications in biomedical tissue diagnosis over the last decade. To take it a step further to clinical applications, the PA technique needs to be designed as an instrument focusing on a compact design, reducing the cost, and quickly providing a quantitative diagnosis. Aim: This work presents a design and characterization of a cost-effective, compact PA sensing instrument for biomedical tissue diagnosis. Approach: A compact laser diode case design is developed to house several laser diodes for PA excitation, and a pulsed current supply unit is also developed in-house to power the laser diodes to generate a 25 ns current pulse at a frequency of 20 kHz. After PA experimental data acquisition, the signal's frequency spectra were calculated to characterize the tissue quantitatively and correlated with their mechanobiological properties. Results: The corresponding dominant frequency peak in the PA spectral response (PASR) study was low in the fibrofatty normal breast tissue formula presented , compared to the dominant frequency peak of formula presented in the fibrocystic disease tissue, which had increased glandular and stromal elements, thereby increased tissue density. The histopathological findings correlated with the PASR results, and the fibrocystic breast disease tissue exhibited a higher dominant frequency peak and energy compared to the normal breast tissue. Conclusions: We experimented with an in vitro PASR study of fibrocystic human breast tissues and successfully differentiated different tissue types using quantitative spectral parameters peak frequency, mean frequency, and spectral energy. This gives the potential to take this technique further for cost-effective and quick clinical applications. © 2024 The Authors.en_US
dc.language.isoenen_US
dc.sourceJournal of biomedical opticsen_US
dc.subjectbreast tissue diagnosisen_US
dc.subjectdiode laseren_US
dc.subjectoptical casingen_US
dc.subjectphotoacoustic sensingen_US
dc.subjectquantitative informationen_US
dc.subjectspectral responseen_US
dc.titleDevelopment of a cost-effective compact diode-laser-based photoacoustic sensing instrument for breast tissue diagnosisen_US
dc.typeJournal Articleen_US
dc.rights.licenseAll Open Access, Gold-
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: