Please use this identifier to cite or link to this item: https://dspace.iiti.ac.in/handle/123456789/13222
Full metadata record
DC FieldValueLanguage
dc.contributor.authorReddy, Alavala Siva Sankaren_US
dc.contributor.authorPachori, Ram Bilasen_US
dc.date.accessioned2024-02-21T06:31:23Z-
dc.date.available2024-02-21T06:31:23Z-
dc.date.issued2024-
dc.identifier.citationReddy, A. S. S., & Pachori, R. B. (2024). Multivariate Dynamic Mode Decomposition for Automatic Imagined Speech Recognition Using Multichannel EEG Signals. IEEE Sensors Letters. Scopus. https://doi.org/10.1109/LSENS.2024.3354288en_US
dc.identifier.issn2475-1472-
dc.identifier.otherEID(2-s2.0-85182942177)-
dc.identifier.urihttps://doi.org/10.1109/LSENS.2024.3354288-
dc.identifier.urihttps://dspace.iiti.ac.in/handle/123456789/13222-
dc.description.abstractIn this letter, the multivariate dynamic mode decomposition (MDMD) is proposed for multivariate pattern analysis across multichannel electroencephalogram (MC-EEG) sensor data for improving decomposition and enhancing the performance of automatic imagined speech recognition (AISR) system. Using the proposed MDMD, the MC-EEG signal is decomposed into dynamic modes, which shows the mutual characteristics across all cross channels. Further, different features namely, frequency, power, and average absolute amplitude have been derived from each computed dynamic mode. The proposed method has been tested on the publicly available dataset of imagined speech EEG sensor data, comprising four different types of imagined prompts. The MDMD-based classification frameworks using random forest (RF) and K-nearest neighbor (KNN) have been developed and achieved significant accuracy of 88.9&#x00B1en_US
dc.description.abstract2.44&#x0025en_US
dc.description.abstractfor long words and 73.93&#x00B1en_US
dc.description.abstract2.86&#x0025en_US
dc.description.abstractfor short words imagined speech MC-EEG classes, respectively. The proposed MDMD method is capable of delivering improved AISR accuracy for MC-EEG data, and the developed classification framework can be an efficient brain-computer interface (BCI) tool for persons with speech disabilities. IEEEen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.sourceIEEE Sensors Lettersen_US
dc.subjectand classifiersen_US
dc.subjectautomatic imagined speech recognition (AISR)en_US
dc.subjectbrain-computer interface (BCI)en_US
dc.subjectEigenvalues and eigenfunctionsen_US
dc.subjectElectroencephalographyen_US
dc.subjectFeature extractionen_US
dc.subjectImage reconstructionen_US
dc.subjectMatrix decompositionen_US
dc.subjectmultichannel electroencephalogram (MC-EEG)en_US
dc.subjectMultivariate dynamic mode decomposition (MDMD)en_US
dc.subjectmultivariate signal processingen_US
dc.subjectSpeech recognitionen_US
dc.subjectTrajectoryen_US
dc.titleMultivariate Dynamic Mode Decomposition for Automatic Imagined Speech Recognition Using Multichannel EEG Signalsen_US
dc.typeJournal Articleen_US
Appears in Collections:Department of Electrical Engineering

Files in This Item:
There are no files associated with this item.


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

Altmetric Badge: